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Abstract

In this paper, we argue that models coming from a variety of fields share a com-

mon structure that we call matching function equilibria with partial assignment. This

structure revolves around an aggregate matching function and a system of nonlin-

ear equations. This encompasses search and matching models, matching models with

transferable, non-transferable and imperfectly transferable utility, and matching with

peer effects. We provide a proof of existence and uniqueness of an equilibrium as well

as an efficient algorithm to compute it. We show how to estimate parametric versions

of these models by maximum likelihood. We also propose an approach to construct

counterfactuals without estimating the matching functions for a subclass of models.

We illustrate our estimation approach by analyzing the impact of the elimination of

the Social Security Student Benefit Program in 1982 on the marriage market in the

United States.
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1 Introduction

Social scientists and demographers have long been fascinated with the workings of the mar-

riage market. In particular, how does the distribution of marriages between heterogenous

agents get affected by demographic changes in the number of available men and women, or

some exogenous changes that affects the desirability of certain matches relative to remaining

single. One of the key challenge confronting researchers is to understand the role of prefer-

ences and how that differs from the pressures of relative scarcity of heterogenous agents in

the marriage market. Most of the empirical settings involve aggregate data of final matches

of who marries whom.1 Confronted with aggregate data, demographers and economists have

heavily relied on aggregate matching functions. Such functions allow the researcher to relate

the number of matches between two partners of given characteristics (such as age or edu-

cation) to their respective supply of single individuals in the population.2 One drawback of

this earlier approach is the absence of behavioral foundation for these matching functions.

Consequently, it is difficult to interpret the model parameters or think about estimation.

Choo and Siow (2006b) proposed an approach to estimate the aggregate matching surplus

using an equilibrium transferable utility model of marriage where agents have unobserved and

heterogenous taste for partners of known types. Using only aggregate data, their approach

rationalizes a matching function where preference parameters are primitives of the behav-

ioral model. Unlike some matching markets where preference data may be directly collected,

it is not immediately clear how data on final matches could be used to identify preferences.

The approach borrows many ideas from the structural IO literature where estimating model

primitives from equilibrium models using limited aggregate data is a norm. These identified

primitives are important inputs when considering counterfactual experiments such as how

the distribution of marriage responds to exogenous demographic shocks or government in-

tervention. Chiappori, Salanié, and Weiss (2017) and Galichon and Salanié (2020), among

others build on this and relax some of the assumptions in the Choo and Siow (2006b) model.

This paper unifies the themes in these papers and makes four contributions.

1While there are some examples where preference ordering are directly solicited from marriage market
participants, these cases are rare. See Hitsch, Hortaçsu, and Ariely (2010) for example.

2A standard matching function is the harmonic marriage matching function used by demographers (see
e.g. Qian and Preston (1993) and Schoen (1981)).
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Our first contribution is to define a class of models, that we call matching function equi-

libria, that share a common structure with, in its center, a behaviorally coherent aggregate

matching function and a system of nonlinear equations that balances available individuals for

each type. We argue that our approach is not anecdotal. It is striking to see that many set-

tings in the matching literature can be characterized by an aggregate matching function and

a system of nonlinear equations.3 In this paper, we focus on models with partial assignment,

i.e. in which unassigned agents are allowed (models with full assignment are discussed in

the companion paper Chen et al. (2020)). We recall the proof of existence and uniqueness of

a solution of Galichon, Kominers, and Weber (2019), without claiming novelty here. These

existence and uniqueness results are important for policy analysis as they ensure a unique

counterfactual equilibrium when considering the effects of policy changes (see our third and

fourth contributions below).

Our second contribution is to show how to estimate the matching functions parame-

ters by maximum likelihood using two computational approaches: (i) the nested approach;

and (ii) the MPEC (mathematical program with equilibrium constraints) approach. We

provide analytical expressions of the gradient of the log-likelihood for both approaches for

efficient estimation. Furthermore, we show that for models featuring a constant return to

scale matching function, one can obtain close-form formulas for the confidence intervals of

estimates.

Our third contribution is to show that we can conduct counterfactual experiments without

estimating the model parameters. We call this the Parameter-Free approach. All the papers

in the literature have taken the standard approach where we first estimate the structural

parameters followed by computation of the counterfactual equilibrium using the estimated

parameters. We show that for a subclass of matching function equilibrium models whose

matching functions satisfy two properties, (i) homogeneity and (ii) multiplicative separa-

bility in parameters, we can compute the counterfactual equilibrium without knowledge of

the estimated parameters. These two properties allow us to reformulate these equilibrium

3This includes the search and matching model of Shimer and Smith (2000), Non Transferable Utility
models of Dagsvik (2000) and Menzel (2015), Transferable Utility models of Choo and Siow (2006b) and
Siow (2008), Imperfectly Transferable Utility models of Galichon, Kominers, and Weber (2019), demand
models of Berry, Levinsohn, and Pakes (1995), bilateral trade models of Head and Mayer (2014), non
additive random utility models, and models of the labor market with full assignment, among others.
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matching models into a system of nonlinear equations, with the ratio of counterfactual to

observed equilibria as unknowns. The new system of non-linear equations is free from struc-

tural parameters. We show that this new system of equations has a unique solution in terms

of the ratio of the counterfactual to observed equilibria which allow us to compute the coun-

terfactual equilibrium accordingly. While this Parameter-Free approach has limitations in

terms of scope of models it applies to, it has the computational advantage of not requiring

the estimation of the structural parameters in the matching functions.

Our final contribution is to apply our proposed estimation approaches to analyze the

impact of the elimination of the Social Security Student Benefit Program in 1982 on the

marriage market using the Transferable Utility model in Choo and Siow (2006b) (CS here-

after). In the United States, the Social Security Student Benefit Program established in

1965 provided financial aid for children of deceased, disabled or retired workers to attend

college.4 The elimination of this benefit program in 1982 is one of the largest policy changes

in college students’ financial aid in the United States. The number of college beneficiaries is

estimated to have dropped from about 600,000 in 1981 to 66,000 in 1986. The average total

monthly payment fell substantially from about $196 million in 1981 to $26 million in 1986.

Dynarski (2003) show that this policy change had a significant causal effect on reducing

students’ college attendance and completion among eligible students.

Our goal in this empirical application is to estimate the impact of the policy change on

the marriage distribution by computing the counterfactual marriage distribution in 1987/88

had the Social Security Student Benefit Program not been eliminated by using our paramet-

ric and the Parameter-Free approaches. Using causal effect estimates from the education

literature, and our estimates of aid eligibility computed from the 1986 Current Population

Survey, we construct a counterfactual distribution of available single men and women by age

and education. We show that in this counterfactual scenario, there will be around 17,000

(3%) fewer marriages among high school graduates and 10,000 (3%) more marriages among

college graduates in 1987/88. Interestingly, marriages between college educated men and

high school educated women would also increase by around 4000 (2.7%) while the change for

4Recipients need to be not married and enrolled in college fulltime. The financial aid is provided up until
the semester the recipient turns 22 years of age.
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marriages between college educated women and high school educated men is negligible. This

is probably due to the social norms of men preferring spouses who are not more educated

than themselves, which is embedded in the preference parameters.

Our paper relates to the literature on matching functions used by demographers, e.g.

Qian and Preston (1993) and Schoen (1981). However, as we argue above, these matching

functions lack behavioral micro-foundation. We look for such foundations in the two-sided

matching literature, starting from the canonical models of matching with transferable utility,

e.g. Koopmans and Beckmann (1957), Shapley and Shubik (1971), and Becker (1973), and

non transferable utility, e.g. Gale and Shapley (1962). In particular, we rely on recent

advances on the structural estimation of these models, which exploits heterogeneity in tastes

for identification purposes, e.g Dagsvik (2000), Menzel (2015), and Choo and Siow (2006b).

We argue that these models share a common structure, that revolves around an aggregate

matching function and a system of nonlinear equations. These models, and their variants,

provides us with a behaviorally coherent matching function, as pointed out in Choo and

Siow (2006b), Choo and Siow (2006a), Chiappori, Salanié, and Weiss (2017) and Mourifié

(2018).

However, we also go beyond the TU and NTU cases. We argue in Section 2.2 that this

structure can be found in a variety of models. Therefore, our paper also relates to the

literature on matching with imperfectly transferable utility, e.g. Galichon, Kominers, and

Weber (2019), and search and matching model, e.g. Shimer and Smith (2000) and Goussé,

Jacquemet, and Robin (2017). To the best of our knowledge, ours is the first paper to point

out that the matching function structure is found in a surprisingly large number of models.

We provide the complete econometric toolbox to take these models to the data. In

particular, we show how to estimate parametric versions of these models using a nested or

MPEC approach. Thus our paper relates to the MPEC literature, e.g. Dubé, Fox, and

Su (2012), Su and Judd (2012) and Pang, Su, and Lee (2015). We show how conduct

counterfactual experiments by using both the parametric and Parameter-Free approaches,

and provide a number of computational techniques to ensure tractability.

Organization of the paper. Section 2 introduces and characterizes matching function

equilibrium models with partial assignment. Section 3 outlines the estimation by maximum
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likelihood and provides an analytic expression for the gradient of the log-likelihood. We

also provide the formulas for computing the confidence intervals of the parameter estimates

in models with homogeneous matching functions. Section 4 outlines the Parameter-Free

approach for estimating the counterfactual equilibrium for a subclass of matching function

equilibrium models. Section 5 illustrates our approaches by investigating the impact of the

elimination of the Social Security Student Benefit Program in 1982 on the marriage market

in the United States. Section 6 concludes. All proofs of our main results can be found in the

Appendix. Additional results, numerical experiments, details about the data construction

and additional figures are available in the Online Appendix.

2 Matching Function Equilibrium Models with partial

assignment

In this section, we show that many behavioural models in the matching literatures can be

characterized by an aggregate matching function and a system of nonlinear equations. We

focus on situations in which we allow for unassigned agents, and provide a formal definition

for this class of matching models, that we label matching function equilibrium models with

partial assignment. The full assignment case (in which unassigned agents are not allowed) is

dealt with in Chen et al. (2020). We then recall the general proof of existence and uniqueness

of the equilibrium in these models.

Consider a general marriage market where two populations of men (indexed by i ∈ I)

and women (indexed by j ∈ J) meet and may form heterosexual pairs.5 We assume that

men (resp. women) can be gathered in groups of similar characteristics, or types, x ∈ X
(resp. y ∈ Y), with |X | (resp. |Y|) denoting the number of types for men (resp. women).

The total mass of men of type x (resp. women of type y) is denoted nx (resp. my). We

define the sets, X0 = X ∪ {0}, and Y0 = Y ∪ {0}, which include singlehood as an option.

The set of married pairs is given by XY = X × Y, and the set of household types, XY0 =

X × Y∪X×{0}∪{0}×Y . The mass of marriages between men of type x and women of type

5The setup and notations can be adapted to any two-sided one-to-one matching markets, e.g., replacing
men by workers and women by firms.
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y is denoted by µxy, while the mass of single men of type x and the mass of single women

of type y are denoted by µx0 and µ0y, respectively. We can now define matching function

equilibrium models with partial assignment below.

2.1 Definition

In the partial assignment case, one shall assume that µxy is a deterministic function of the

masses of unassigned type x and y agents, denoted µx0 and µ0y, respectively.

Definition 1. Matching function equilibrium with partial assignment

A matching function equilibrium model with partial assignment determines the mass of xy

pairs, µxy, and the masses of unassigned agents, µx0 and µ0y, by an aggregate matching

function (or generalized gravity equation) which relates the former to the latter by

µxy =Mxy(µx0, µ0y) (1)

where µx0 and µ0y are determined by a system of nonlinear accounting equations,

{
nx = µx0 +

∑
y∈Y Mxy(µx0, µ0y), ∀x ∈ X

my = µ0y +
∑

x∈X Mxy(µx0, µ0y), ∀y ∈ Y . (2)

Note that the matching equilibrium in these models is fully characterized by the system

of nonlinear equations (2) with unknowns (µx0, µ0y).

We now provide some examples to show that the defined matching function equilibrium

model encompasses many behavioural models in the matching and related literatures.

2.2 Examples

a) A model of search and matching.

Consider the search and matching model of Shimer and Smith (2000). Adapting notation

and setting to allow for discrete types, Equation (1) (from page 347) of the paper reads
∑

y∈Y µxy = ρ/δ
∑

y∈Y µx0µ0yA(x, y), where A is an indicator function which equals one if

man x who meets woman y agree to match, and ρ and δ denote the meeting and separation
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rates, respectively. Thus, the aggregate matching function is

M(µx0, µ0y) =
ρ

δ
µx0µ0yA(x, y) (3)

which must satisfy the accounting equations in (2). This approach has been successfully

applied to the marriage market by Goussé, Jacquemet, and Robin (2017), with a similar

aggregate matching function.

b) Models of matching with Non Transferable Utility (NTU).

Many models of two-sided matching describe markets in which agents have heterogenous

preferences over their potential partners and face a choice problem with random utility

shocks. In a Non-Transferable Utility (NTU) framework, it is assumed that when a man of

type x and woman of type y decide to match, they receive payoffs αxy and γxy, respectively, as

well as an idiosyncratic component which is often assumed to enter additively. In this NTU

setting, Dagsvik (2000) and Menzel (2015) provide a tractable expression for the aggregate

matching function when the number of market participants grows large. Equation (4.3) (on

page 925) of Menzel (2015) reads,

M(µx0, µ0y) = µx0µ0y exp(αxy + γxy). (4)

Galichon and Hsieh (2017) study a similar NTU model but introduce the novel solution

concept of equilibrium under rationing-by-waiting and study its properties.

c) Models with Transferable Utility (TU).

The previous expression is remarkably similar to the well-known aggregate matching function

obtained in the seminal contribution of Choo and Siow (2006b) in the Transferable Utility

setting. In this case, αxy and γxy represent pre-transfer utilities, where the equilibrium payoff

of man i of type x, married with a woman of type y, is ui = αxy − τxy + ǫiy. The equilibrium

payoff is the sum of a systematic component (Uxy ≡ αxy−τxy, where τxy is the transfer from
the type x man to the type y woman) and an idiosyncratic part (ǫ). Similarly, the payoff of

woman j of type y, married to a man of type x, is vj = γxy + τxy + ηiy where the systematic
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part is denoted Vxy. Choo and Siow (2006b) adopts an extreme value random utility model

of McFadden (1974), and show that the systematic components of equilibrium payoffs can be

recovered from the observed matching probabilities, that is Uxy = log
µxy

µx0
and Vxy = log

µxy

µ0y
.

Let Φxy = αxy + γxy denote the total surplus from a (x, y) match. It follows from Equation

(11) (on page 181) of that paper,

M(µx0, µ0y) =
√
µx0µ0y exp(

Φxy

2
) (5)

This matching function has several interesting properties: it is homogenenous of degree

1, satisfying constant returns to scale, and the effect of µx0 and µ0y is symmetric.

d) Models with Imperfectly Transferable Utility (ITU).

Building on this literature, Galichon, Kominers, and Weber (2019) (GKW hereafter) provide

a general framework for matching with Imperfectly Transferable Utility, that encompass

both the classical fully- and non-transferable utility settings6. In particular, they show

that in equilibrium, the systematic utilities, Uxy and Vxy, satisfy a key feasibility condition,

Dxy(Uxy, Vxy) = 0. Among the properties of the distance function D, it is worth noting that

D(u + a, v + a) = a + D(u, v). Hence, when taste shocks are assumed to be logit (as in

Choo and Siow (2006b)), the feasibility condition rewrites as, Dxy(logµxy− log µx0, log µxy−
log µ0y) = 0, which combined with the property on D, gives

M(µx0, µ0y) = exp
(
−Dxy(− log µx0,− logµ0y)

)
. (6)

This matching function also satisfies homogeneity of degree 1 but not necessarily symmetry

in µx0 and µ0y.

e) Harmonic mean matching function.

Schoen (1981) analyzes the marriage market using a matching function which is based on

the harmonic mean. Interestingly, the ITU-logit framework introduced above allows us

6For a study of ITU settings using revealed preferences techniques instead of matching functions, see
Cherchye et al. (2017).
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to recover a micro-founded version of that matching function. Assume that whenever a

man of type x is matched with a woman of type y, they bargain to split their income

(normalized to 2) into private consumption for the man and the woman denoted by (caxy)

and (cbxy), respectively. Assume that the utility payoffs received by the man and the

woman are u = αxy + τxy log c
a
xy and v = γxy + τxy log c

b
xy, respectively. Assuming the

budget constraint is caxy + cbxy ≤ 2, one can verify that the distance function is given by

Dxy(u, v) = τxy log
(
(exp ((u− αxy)/τxy) + exp

(
(v − γxy)/τxy

)
)/2

)
, so by equation (6) gives

us the matching function

M(µx0, µ0y) =



exp

(
−αxy

τxy

)

2
× µ

−1/τxy

x0 +
exp

(
−αxy

τxy

)

2
× µ

−1/τxy
0y



−τxy

(7)

Whenever τxy = 1, we recover the harmonic mean matching function, as in Equation 1 (on

page 281) in Qian (1998) (up to some multiplicative constants).

f) Models with peer effects.

Mourifié and Siow (2017) assumes that the utility of man i of type x, matched with a woman

of type y, is given by αxy−τxy+ψx lnµxy+ ǫiy, where αxy is the pre-transfer utility from the

match, τxy is the transfer made by the man to its partner, and ǫiy an idiosyncratic component

drawn from an Extreme Value Type-I distribution. Similarly, the payoff for woman j of type

y, matched with a man of type x is, γxy + τxy +Ψy lnµxy + ηxj. This is exactly the model of

Choo and Siow (2006b), except for the introduction of the peer effects terms, ψx lnµxy and

Ψy lnµxy. Further computation yields

M(µx0, µ0y) = µ
axy
x0 µ

bxy
0y exp

(
Φxy

2− ψx −Ψy

)
, (8)

the Cobb Douglas aggregate matching function. If we impose the restrictions, axy = a,

bxy = b, and a + b = 1, we recover the matching function of Chiappori, Salanié, and Weiss

(2017). Note that in its general formulation, this matching function does not satisfy homo-

geneity of degree 1 nor symmetry.
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2.3 Existence and Uniqueness

Under mild conditions on the matching function, there exists a unique equilibrium matching

with partial assignment. These conditions are as follows:

Assumption 1. The aggregate matching function, Mxy

(
µx0, µ0y

)
, satisfies the following

three conditions

(i) Mxy :
(
µx0, µ0y

)
7→Mxy

(
µx0, µ0y

)
is continuous.

(ii) Mxy :
(
µx0, µ0y

)
7→Mxy

(
µx0, µ0y

)
is weakly isotone.

(iii) For each µx0 > 0, limµ0y→0+ Mxy

(
µx0, µ0y

)
= 0. Similarly, for each µ0y > 0,

limµx0→0+ Mxy

(
µx0, µ0y

)
= 0.

In section 2.2, we provided several examples of aggregate matching functions borrowed

from the matching literature. It is easy to show that conditions (i)-(iii) are met in all

examples. It turns out that these very mild conditions on Mxy are sufficient to prove the

existence and uniqueness result in Theorem 1 below. This extends a result in GKW beyond

the case when the matching function is homogenous of degree 1. We complement this result

with an algorithm which provides an efficient way of solving these equations.

Theorem 1 (Galichon, Kominers, and Weber (2019)). Under Definition 1 and Assump-

tion 1, there exists a unique equilibrium matching with partial assignment, given by µ∗
xy =

Mxy(µ
∗
x0, µ

∗
0y), for any x ∈ X and y ∈ Y, where the pair of vectors (µ∗

x0)x∈X and (µ∗
0y)y∈Y is

the unique solution to the system

{
nx = µx0 +

∑
y∈Y Mxy(µx0, µ0y)

my = µ0y +
∑

x∈X Mxy(µx0, µ0y)
.

Proof. See Appendix A.

The proof of existence is constructive. It relies on an iterative procedure that we call

Iterative Projective Fitting procedure (IPFP), which has been used in various fields under

different names (see Galichon, Kominers, and Weber (2015))7. GKW introduce this algo-

rithm in their ITU-logit setting. The proof of uniqueness relies on Berry, Gandhi, and Haile

7For instance it is also known as the RAS algorithm (Kruithof (1937); see also Idel (2016)).
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(2013). Because this algorithm turns out to be very useful in practice, we provide a formal

description of it below.

Algorithm 1. The Generalized Iterative Projection Fitting Procedure (Galichon, Kominers,

and Weber (2015)) works as follow

Step 0 Fix the initial value of µ0y, at µ
0
0y = my.

Step 2t+ 1 Keep the values µ2t
0y fixed. For each x ∈ X , solve for the value, µ2t+1

x0 of

µx0, such that the equality,
∑

y∈Y Mxy(µx0, µ
2t
0y) + µx0 = nx holds.

Step 2t+ 2 Keep the values µ2t+1
x0 fixed. For each y ∈ Y, solve for the value, µ2t+2

0y

of µ0y, such that equality,
∑

x∈X Mxy(µ
2t+1
x0 , µ0y) + µ0y = my holds.

The algorithm terminates when, supy |µ2t+2
0y −µ2t

0y| < ǫ, where ǫ is a sufficiently small positive

value.

3 Maximum Likelihood Estimation

In this section, we show how to conduct parametric inference on the matching function equi-

librium models with partial assignment, and how the structural parameters can be estimated

using maximum likelihood. To reduce computational time, we provide an analytic expression

for the gradient of the likelihood, as well as formulas to compute confidence intervals when

the matching function is homogeneous of degree 1.

Let us assume that Mxy belongs to a parametric family Mθ
xy, where there is a unique

value, θ0 which rationalizes the observed data. Our goal is to estimate the parameters θ0 in

Mθ
xy. Note that for given masses nx and my, denoted by (n,m), and a given parameter θ, we

can obtain the (unique) equilibrium masses of singles (µx0, µ0y) (using Algorithm 1). We can

then compute the predicted mass of marriages between type x men, and type y women, µθ
xy,

using our aggregate matching function Mθ
xy. These quantities are all we need to construct a

likelihood.

12



3.1 The Likelihood

We first define the probability of forming a match pair (x, y) ∈ XY0-type of household.

Using the quantities (µx0, µ0y), we define the vector of model predicted matching frequencies,

Πxy(θ, n,m) as

Πxy(θ, n,m) =
Mθ

xy(µx0, µ0y)

1′Mθ
xy(µx0, µ0y)

(9)

for all xy ∈ XY0, where 1′Mθ
xy(µx0, µ0y) is the predicted total number of households. If we

observe the matching, µ̂ = (µ̂xy, µ̂x0, µ̂0y) from the data, then the log-likelihood is given by,

l
(
µ̂|θ, µx0, µ0y, n,m

)
=

∑

xy∈XY0

µ̂xy log Πxy (θ, n,m) . (10)

In practice, n and m are replaced by their efficient estimator n̂, and m̂ that can be com-

puted from the observed matching, (µ̂xy, µ̂x0, µ̂0y). Hence, the maximum likelihood estimator

solves the following problem

max
θ,µx0,µ0y

l
(
µ̂, n̂, m̂|θ, µx0, µ0y

)
, (11)

subject to

{
n̂x = µx0 +

∑
y∈Y M

θ
xy(µx0, µ0y)

m̂y = µ0y +
∑

x∈X M
θ
xy(µx0, µ0y)

.

We rewrite the constraints as G(θ, µx0, µ0y) = 0. We propose two computational approaches

to solve this estimation problem.

3.2 Computation

3.2.1 The nested approach

The first approach is to get rid of the constraints, G(θ, µx0, µ0y) = 0, and maximize over µx0

and µ0y by solving for the equilibrium (µθ
x0, µ

θ
0y), for any value of θ. From Theorem 1 above,

we know that such an equilibrium always exists and is unique. From these unique values of

µθ
x0 and µθ

0y, µ
θ
xy is deduced from Mθ

xy and the log-likelihood can be computed.

Estimation proceeds as follow: (i) fix a value of θ ; (ii) solve the system of equations

(2) and obtain the unique µθ
x0 and µθ

0y ; (iii) deduce µθ
xy from Mθ

xy(µ
θ
x0, µ

θ
0y) and compute

13



Πxy(θ, n,m) according to (9) ; (iv) compute the log-likelihood in Equation (10).

This approach has the advantage that by construction, µθ
x0 and µ

θ
0y solves G(θ, µx0, µ0y) =

0 for any value of θ. Hence, we can apply the Implicit Function Theorem to compute the

gradient of the unconstrained likelihood, l (µ̂, n̂, m̂|θ). Most of the current available methods

update the parameters θ at each iteration using the gradient of the objective function.

Numerical approximation of the gradient may be very time consuming since evaluating the

log-likelihood requires that we solve the system of equations (2). In Theorem 2 below, we

provide an analytic expression of the gradient, which is particularly useful for applied work.

Theorem 2 (Gradient of the log-likelihood). Let Nh denote the predicted number of house-

holds. Then, the derivative of the predicted frequency of a match pair (x, y) ∈ XY0-type

household with respect to θk is given by,

∂θkΠxy =
∂θkµxy

Nh
+

µxy

Nh ×Nh

∑

xy∈XY0

∂θkµxy

where ∂θkµxy = ∂µx0
Mθ

xy

(
µθ
x0, µ

θ
0y

)
∂θkµx0 + ∂µ0y

Mθ
xy

(
µθ
x0, µ

θ
0y

)
∂θkµ0y + ∂θkMxy

(
µθ
x0, µ

θ
0y

)
,

whenever xy ∈ XY, and (
∂θkµx0

∂θkµ0y

)
= ∆−1

(
ck

dk

)

otherwise, where ckx = −∑
y∈Y ∂θkMxy

(
µθ
x0, µ

θ
0y

)
, and dky = −∑

x∈X ∂θkMxy

(
µθ
x0, µ

θ
0y

)
, and

∆ is expressed blockwise by

∆ =


diag(1 +

∑θ
y∈Y ∂µx0

Mθ
xy)

(
∂µ0y

Mθ
xy

)
xy(

∂µx0
Mθ

xy

)
yx

diag(1 +
∑

x∈X ∂µ0y
Mθ

xy)


 . (12)

Proof. See Appendix A.

3.2.2 The MPEC approach

In our second approach, we rewrite Problem (11) as the Lagrangian

min
λ∈Rk

max
u∈Rk ,θ∈Rd

l (θ, u, v) + λG
(
θ, µx0, µ0y

)

14



where λ is the Lagrange multiplier associated with the constraint G (θ, u, v) = 0, and u =

(− log(µx0))x∈X , and v = (− log(µ0y))y∈Y . The first order conditions are therefore

Z1 (θ, u, v, λ) = 0 = ∂θl (θ, u, v) + λ∂θG (θ, u, v) ,

Z2 (θ, u, v, λ) = 0 = ∂u,vl (θ, u, v) + λ∂u,vG (θ, u, v) , and

Z3 (θ, u, v, λ) = 0 = G (θ, u, v) ,

which defines a map Z,

R
d × R

|X | × R
|Y| × R

|X |+|Y| → R
d × R

|X | × R
|Y| × R

|X |+|Y|

(θ, u, v, λ) → Z = (Z1 (θ, u, v, λ) , Z2 (θ, u, v, λ) , Z3 (θ, u, v, λ)).

Maximizing the likelihood is equivalent to finding the root of Z. In general, numerical

methods will require the knowledge of the Jacobian of Z, which is given by:

JZ =




∂2θ l (θ, u, v) + λ∂2θG (θ, u, v) ∂θ∂u,vl (θ, u, v) + λ∂θ∂u,vG (θ, u, v) ∂θG (θ, u, v)

∂θ∂u,vl (θ, u, v) + λ∂θ∂uvG (θ, u, v) ∂2u,vl (θ, u, v) + λ∂2u,vG (θ, u, v) ∂u,vG (θ, u, v)

∂θG (θ, u, v) ∂u,vG (θ, u, v) 0




(13)

We discuss the advantages and disadvantages of each approach in Online Appendix B.1, and

provide numerical experiments as well.

3.3 Estimation in large markets

In this section, we shall discuss the difference between homogeneous and non-homogeneous

models in terms of estimation, and provide formulas to compute the confidence intervals for

the homogenous case.

3.3.1 Homogeneous and non-homogeneous matching functions

Recall that in equilibrium, the scarcity constraints from equation (2) are satisfied, that is

nx = µ∗
x0 +

∑
y∈Y Mxy

(
µ∗
x0, µ

∗
0y

)
and my = µ∗

0y +
∑

x∈X Mxy

(
µ∗
x0, µ

∗
0y

)
for some matching

15



function Mxy. Consider the equivalent system of equations, with rescaled quantities, i.e

nx

K
=
µ∗
x0

K
+
∑

y∈Y

M̃xy

(
µ∗
x0

K
,
µ∗
0y

K

)
and

my

K
=
µ∗
0y

K
+

∑

x∈X

M̃xy

(
µ∗
x0

K
,
µ∗
0y

K

)

where we introduce the new matching function M̃xy(a, b) ≡ 1
K
Mxy (Ka,Kb), for any given

K > 0. When the model is homogeneous, M̃ = M for any K > 0. However, in the

non-homogeneous case, there is no guarantee that even when K grows large, the matching

function M̃ will converge to a non trivial stable matching function M̄ . In addition, homoge-

neous models allow us to work with quantities that can be interpreted as frequencies instead

of masses. Indeed, take K = N⋆, the total number of household in equilibrium. Hence

nx

N⋆
=
µ∗
x0

N⋆
+
∑

y∈Y

Mxy

(
µ∗
x0

N⋆
,
µ∗
0y

N⋆

)
and

my

N⋆
=
µ∗
0y

N⋆
+
∑

x∈X

Mxy

(
µ∗
x0

N⋆
,
µ∗
0y

N⋆

)
. (14)

Let ζx = nx

N∗
and ζy =

my

N∗
. Then (π∗

x0, π
∗
0y) = (

µ∗

x0

N∗
,
µ∗

0y

N∗
) is the unique solution to the system of

equation AM(πx0, π0y) = ζ.8 In this case, the key novelty is that the inputs of the aggregate

matching function are interpreted as the frequencies of single men of type x and single women

of type y in the population of households instead of masses, while the output is interpreted

as the frequency of married couples of type xy in the population of households instead of the

mass. This is no longer the case with non-homogeneous models, as there is no guarantee that

the output of the aggregate matching function can be interpreted as matching frequencies

when the inputs are also frequencies. Intuitively, this is also the reason why we can only

compute confidence intervals for homogeneous models, which we provide in the next section.

In practice, homogeneous models imply that we observe the matching frequencies π̂ from

the data and estimate θ by maximum likelihood where the likelihood is given by,

l (π̂|θ, ζ) =
∑

xy∈XY0

π̂xy log Πxy (θ, ζ) , (15)

and ζ will be replaced by its estimator Aπ̂. This does not change the estimation, as Πxy (θ, ζ)

8For convenience, we rewrite the system of equations in (2) as AM(µ
x0, µ0y) =

(
nx

my

)
, where A is an

(|X |+ |Y|)× (|X ||Y|+ |X |+ |Y|) matrix.
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is homogeneous of degree 0 in ζ by the homogeneity property. It means that in the homoge-

nous case, working with the observed π̂ is sufficient to carry on estimation, which is not

the case in the non-homogeneous setting, where we must work with µ̂. Asymptotically,

the noise added by π̂ is normally distributed around π, so that N1/2 (π̂ − π) ∼ N (0, Vπ),

where Vπ = diag (π) − ππ′. However, in the non-homogeneous case, we have instead,

N1/2 (µ̂− µ) ∼ N (0, Vµ) , where Vµ = diag (Nµ)− µµ′.

3.3.2 Confidence intervals for homogeneous models

We now provide formulas to compute confidence intervals estimates when the matching

function is homogeneous of degree 1. Note that these formulas are provided in Galichon,

Kominers, and Weber (2019) for imperfectly transferable utility matching models with logit

heterogeneity in taste. In that paper, it is shown that such models lead to a matching

function that is homogeneous of degree 1, as recalled in Section 2.2(d). Therefore, if we can

show that any matching function that is homogeneous of degree 1 is in fact equivalent to a

matching model with ITU and logit unobserved heterogeneity as introduced in GKW, then

we can make use of their results. This is proven in the following theorem.

Theorem 3. (i) Consider an ITU-logit model as introduced in GKW. Then, the associated

aggregate matching function is homogenous of degree 1. (ii) Consider a matching function

equilibrium model and assume that its aggregate matching function satisfies Assumption 1

and homogeneity of degree 1. Then, this is equivalent to a matching model with ITU and

logit unobserved heterogeneity as introduced in GKW.

Proof. See Appendix A.

The equivalence between the matching function equilibrium models with homogeneity of

degree 1 and ITU-logit models in GKW suggests that we can simply make use of GKW’s

results for computing confidence intervals. Note that in this case, ζ is estimated by Aπ̂ and

thus, as noted earlier, doing so introduces additional noise in the estimates of θ, so that the

computation of the variance-covariance matrix of θ cannot rely on the standard formulas. For

the sake of clarity, we reproduce the results from GKW to compute the variance-covariance

matrix Vθ in close form, and give a detailed proof of the result.
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Theorem 4 (Confidence Intervals). When θ is estimated by maximum likelihood as described

in Section 3 and homogeneity is satisfied, then Vθ = (I11)
−1 + I−1

11 I12AVπA
′I ′

12I−1
11 where we

denote I11 = − (Dθ log Π)
′ diag (π) (Dθ log Π), and I12 = (Dθ log Π)

′ diag (π) (Dζ log Π) and

Vπ = diag (π)− ππ′.

Proof. See appendix A.

Note that Dθ log Π and Dζ log Π have analytic expressions, which we give in the proof.

4 Estimation of Counterfactuals

One key advantage of estimating behavioural structural model is that it allows researchers

to conduct counterfactual experiments for policy analysis. This is particularly relevant in

the context of the marriage market, as researchers are often interested in how the marriage

distribution changes in response to a change in the number of available individuals due to

policy changes, such as changes to birth control policies, tax policies, divorce laws, financial

aid program, and so on.

In this section, we introduce two methods to conduct counterfactual experiments: (i) the

parametric approach, which relies on previously estimated structural parameters; (ii) the

parameter-free approach, which works whenever the matching functions are homogeneous

and multiplicatively separable in parameters.

With some abuse of notation, let the marriage distribution and available individuals at the

observed equilibrium be denoted µ∗ = (µ∗
xy, µ

∗
x0, µ

∗
0y) and (nx, my) for all x ∈ X and y ∈ Y .

Consider a counterfactual policy change that shifts the number of available individuals from

nx and my to n′
x and m′

y for all x ∈ X and y ∈ Y , while leaving the parameter θ unchanged.

One main goal in the counterfactual analysis is to estimate the new equilibrium marriage

distribution, denoted by µ∗′ = (µ∗′
xy, µ

∗′
x0, µ

∗′
0y), under the counterfactual available individuals,

(n′
x, m

′
y).
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4.1 The Parametric Approach

The parametric approach for the counterfactual analysis in the structural econometrics lit-

erature follows a two-step procedure: (i) estimate the parameters, θ̂, from the observed

matches µ∗, by using the proposed nested or MPEC approaches in Section 3 ; (ii) compute

the counterfactual equilibrium unmarrieds (µ∗′
x0, µ

∗′
0y) under (n′

x, m
′
y) by solving the system

(16) below and obtain the counterfactual equilibrium matches µ∗′
xy using µ

∗′
xy =M θ̂

xy(µ
∗′
x0, µ

∗′
0y).

{
n′
x = µx0 +

∑
y∈Y M

θ̂
xy(µx0, µ0y)

m′
y = µ0y +

∑
x∈X M

θ̂
xy(µx0, µ0y)

(16)

Note that the existence and uniqueness results in Section 2 ensure that there is a unique

solution to the system (16), and therefore, we have a unique prediction for the marriage

distribution in the counterfactual case. The main advantage of the parametric approach is its

generality. It applies to all matching function equilibrium models that satisfy the conditions

given in Definition 1. However, as we see the simulation results in Online Appendix B.1,

estimating the parameters θ̂ using the nested and MPEC approaches involves solving the

nonlinear system (16) at each iteration. Moreover, the time for solving the nonlinear system

(16) and the number of iterations required increase with the market size. Therefore, the

estimation procedure can be computationally intensive and thus very time consuming, in

particular when the market size is getting large.

4.2 The Parameter-Free Approach

In this section, we propose an alternative new approach, what we call the Parameter-Free

approach, to compute counterfactuals in the context of matching function equilibrium models

defined by Definition 1. We show that although the parameter-free approach applies only

to a subset of models in which the associated matching functions take the multiplicative

homogeneous form, it has a computational advantage as it only requires solving the system

(2) once. We begin by making two more restrictions on the matching functions:

Assumption 2. The matching function is multiplicatively separable in parameters with the

form Mθ
xy(µx0, µ0y) = f(θ)g(µx0, µ0y).
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Assumption 3. The matching functionMθ
xy(µx0, µ0y) is a homogeneous function in (µx0, µ0y).

Assumption 2 restricts the matching function to be multiplicatively separable in pa-

rameters, while Assumption 3 further restricts the matching function to be a homogeneous

function. The two assumptions seems to be restrictive, but it is easy to check that most

examples in Section 2.2 satisfy these assumptions.

Our parameter-free approach uses the ratio of the marriage distribution at the counter-

factual equilibrium relative to that at the observed equilibrium. In particular, it consists

of two steps. In the first step, by Assumptions 2 and 3, we show that the ratio of the

matching function Mθ
xy(µx0, µ0y) evaluated at the counterfactual equilibrium relative to the

observed equilibrium is free of model parameters. In the second step, we substitute this

ratio of matches into the system (2) to generate a system in terms of ratios of unmarrieds

at the counterfactual equilibrium relative to the observed equilibrium. This new system

of equations in terms of ratios of unmarrieds at the two equilibria is also free of model

parameters. We show that this new system has a unique solution in terms of the ratio of un-

marrieds. We subsequently use this equilibrium ratio of unmarrieds to calculate the changes

in the matching distributions between the observed and counterfactual equilibria. We now

formally present these two steps.

Let us introduce the notation z̃ = z′/z, which for any variable z denotes the ratio of the

counterfactual equilibrium quantities to the observed quantities. Consider taking the ratio

of matching function, µxy = Mθ
xy(µx0, µ0y), evaluated at (µ∗′

x0, µ
∗′
0y) under the counterfactual

equilibrium and (µ∗
x0, µ

∗
0y) under the observed equilibrium, which yields

µ̃xy =
µ∗′
xy

µ∗
xy

=
Mθ

xy(µ
∗′
x0, µ

∗′
0y)

Mθ
xy(µ

∗
x0, µ

∗
0y)

=
g(µ∗′

x0, µ
∗′
0y)

g(µ∗
x0, µ

∗
0y)

= g(µ̃x0, µ̃0y), (17)

where the third equality is derived from Assumption 2 and the fourth equality is from the

homogenous Assumption 3.

We next introduce µ̃xy into the system (2) by expressing them in terms of ratios of coun-

terfactual quantities relative to observed quantities, (µ̃xy, µ̃x0, µ̃0y, ñx, m̃y). Recall the system

(2), i.e nx = µx0 +
∑

y∈Y M
θ
xy(µx0, µ0y) and my = µ0y +

∑
x∈X M

θ
xy(µx0, µ0y). Evaluating the

system at the quantities under both counterfactual and observed equilibria, dividing them,
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and substituting (17) into it, we obtain

{
ñx = px0µ̃x0 +

∑
y∈Y pxy · g(µ̃x0, µ̃0y)

m̃y = q0yµ̃0y +
∑

x∈X qxy · g(µ̃x0, µ̃0y)
, (18)

where the parameters px0 = µ∗
x0/nx and pxy = µ∗

xy/nx are the observed equilibrium probabil-

ities that men of type x remain single and marry with type a woman of type y, respectively.

Similarly, q0y = µ∗
0y/my and qxy = µ∗

xy/my are the probabilities that type y women remain

single and marry type x men, respectively. This new system of equations is free of the param-

eters θ. This system has |X |+ |Y| number of nonlinear equations with |X |+ |Y| unknowns
(µ̃x0, µ̃0y). If there exists a unique solution for (µ̃x0, µ̃0y) in the new system (18), we can then

obtain (µ̃x0, µ̃0y) by solving the system only once. Using the obtained (µ̃x0, µ̃0y), the new

counterfactual equilibrium quantities, (µ∗′
x0, µ

∗′
0y, µ

∗′
xy) can be computed accordingly from the

definition, z̃ ≡ z′/z, and equation (17).

The final issue left for our approach to work is to show that the system (18) has a unique

solution in (µ̃x0, µ̃0y). Indeed, we show that under Assumptions 1 , 2, and 3, there exist a

unique solution in (µ̃x0, µ̃0y) for the system (2). This result is formally stated in Theorem 5.

Theorem 5. Under Assumptions 1, 2, and 3, there exists a unique solution of the system

(18) with unknowns (µ̃x0, µ̃0y) for all x ∈ X and y ∈ Y.

Proof. See Appendix A.

The proof of existence relies on a revised procedure based on Algorithm 1, while the proof

of uniqueness similarly relies on Berry, Gandhi, and Haile (2013).

The estimation procedure of our parameter-free approach works as follows: (i) compute

the changes (ñx, m̃y), and the probabilities (px0, pxy) and (qx0, qxy), and then obtain µ̃xy using

(17) ; (ii) compute the changes in unmarrieds (µ̃x0, µ̃0y) by solving (18), and then compute

(µ∗′
x0, µ

∗′
0y, µ

∗′
xy) accordingly.

Our approach highlights a previously undocumented new property in the matching liter-

ature, that ratios in the equilibrium numbers of unmarried men and women can be inferred

from the observed matching equilibrium by using the system (18), which themselves are free

of the model parameters for some class of matching models. The first paper that proposed
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this ‘hat’ approach is Eaton, Dekle, and Kortum (2007). While this approach is quite com-

monly used in the trade literature, it does not typically generate a transformed model that

is free of structural parameters. Unlike our case here, parameters such as the elasticity of

substitution typically remain in the ‘hat’ model and these parameters need to be calibrated

or estimated.

Note that comparing to the parametric approach, the parameter-free approach has an

advantage in terms of computational time as it does not require the estimation of model

parameters. However, it is also worth noting that the parameter-free approach only applies to

models whose associated matching functions are homogeneous and multiplicatively separable

in parameters. It seems that the two assumptions are restrictive, but most matching in

examples of Section 2.2 satisfy these two assumptions and our parameter-free approach

applies to the models. For example, it is trivial to show that matching functions in the TU

models of CS, NTU models of Menzel, and BLP models are homogeneous and multiplicatively

separable in parameters.

5 Empirical Application - The 1982 Elimination of the

Social Security Student Benefit Program

The goal in this section is to investigate how the elimination of the Social Security Student

Benefit Program in 1982 has affected the 1987/88 age-education marriage distributions in the

United States. We do so by employing the CS matching model and the proposed parametric

and parameter-free approaches to counterfactual analysis.

5.1 The background

Under the 1939 Amendments to the Social Security Act, the children of deceased, disabled,

and retired Social Security beneficiaries could receive Social Security payments until they

reach the age of eighteen. In 1965, these payments were extended to persons up to twenty two

years of age still enrolled as full-time college students. The Social Security student benefits

were paid to eligible college students as monthly lump sums. The benefits were extremely
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Figure 1: Number of beneficiaries and average monthly benefits payment
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Panel (a): Number of social security beneficiaries and college student beneficiaries; Panel (b): Average
monthly benefit payment. Source: Social Security Administration (SSA) Research Note #11.

generous, especially considering the cost of public four-year colleges and universities at that

time.9 In the peak year of 1977, there were about 900, 000 benefit recipients. In the peak

pay-out year of 1981, about $2.4 billion were paid as student benefits.10

In 1981, Congress voted to eliminate the Social Security Student Benefits Program from

1982 onwards.11 Since then, the number of student benefit recipients and the program

spending dropped dramatically. As shown in Figure 1a, the number of student beneficiaries

dropped from around 760, 000 in 1981 to 84, 000 recipients in 1986. The number of college

student beneficiaries is estimated to have dropped from about 600, 000 to 66, 000 recipients in

1986.12 The amount paid to eligible students was reduced immediately after the elimination

of the program in 1981 (see Figure 1b). The average monthly payment fell substantially

from about $196 million in 1981 to $26 million in 1986.

Except for the introduction of the Pell Grant program in the early 1970’s and the various

9The average annual benefit in 1980 paid to a child of deceased parent was $6, 700 while the average
tuition and fees for public four-year colleges and universities was $1, 900.

10These statistics are obtained from “Research Note #11: The History of Social Security Student Benefits
published by the Historian’s Office”.

11According to the ‘Social Security Administration Research Note #11’, “Benefits paid to post-secondary
students ages 18-21 are to be phased-out; The phase-out is to be completed by April 1985; Benefits to
elementary and/or secondary school students older than 18, are to end in August 1982.”

12We do not have access to annual share of college student beneficiaries. According to a 1977 Social
Security Administration (SSA) survey, about 79% student beneficiaries are in post-secondary institutions.
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G.I. Bills, the elimination of the Social Security Student Benefit program is the largest policy

change in financial aid for college students. The impacts of various financial aid programs

on students’ college attendance and completion has been well studied in the literature.13 For

the Social Security Student Benefit program, Dynarski (2003) found that the elimination

of the program has had a large significant causal effect on students’ college attendance and

completion. It is well known that education is a primary attribute in the marriage market.

The marriage matching distribution has important implications on fertility and population

growth, labor-force participation of women, income inequality, etc (see e.g., Becker (1991)).

Our goal is to understand how the 1982 elimination of the Social Security Student Benefit

program affects the marriage matching distribution through its impact on students’ college

attendance and completion.

5.2 The data

We attempt to answer this question by estimating the counterfactual marriage distribution in

1987/88 had the Social Security Student Benefit program not been eliminated and compare

it with the observed 1987/88 marriage matching distribution using the CS model. Since the

CS model is static, we need to choose a specific year for our analysis. The year 1987/88 is

sufficiently far along after the policy change to allow those most affected by the policy to

reach a marriageable age. The elimination of aid in 1982 would most likely affect the then

and soon-to-be high school seniors. It will also affect those individuals attending college and

those who were considering going to college in the near future.14

For this exercise, we require three data inputs:

i) the observed number of available single men and women by age and education as a

result of the elimination of the financial aid program, (nx, my), for all x ∈ X and y ∈ Y ,

13See e.g., Manski and Wise (1983) and Kane (1994) on Pell grant introduced in 1973, Reyes (1997) on
the Middle Income Student Assistance Act, which eliminated the income cutoff for the Guaranteed Student
Loan, and Angrist (1993) on War II G.I. Bills, which provided a generous monthly stipend to veterans in
college.

14The year 1988 also happens to be the last year for which we have access to educational attainment
of newly weds. We also wanted to minimize the effect of other educational policy that came into effect
towards the end of the 1980s that would have confounded our results, such as ‘The Emergency Immigration
Education Act’ of 1984.
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ii) the counterfactual number of available single men and women by age and education

had the financial aid program not been eliminated, (n′
x, m

′
y), for all x ∈ X and y ∈ Y ,

iii) the observed flow of new marriages by age and education as a result of the elimination

of the financial aid program, µ.

Using these inputs, our empirical framework allows us to construct the counterfactual mar-

riage distribution, µ′, i.e. the marriage distribution by age and education had the financial

aid program not been eliminated in 1981.

Data on the flow of new marriages as a result of the financial aid program elimination (that

is, item iii)) is constructed using the 1987/88 Vital Statistics marriage records obtained from

the National Bureau of Economic Research data website.15 Before 1989, the Vital Statistics

tracks new marriages by educational attainment for 22 reporting states.16 However, from

1989 onwards, information on educational attainment of newly weds are no longer recorded.

Our analysis will focus on these 22 reporting states. We construct item i), the observed

number of available single men and women as a result of the financial aid program elimination

using the 1986 U.S. Current Population Survey (CPS) for these 22 reporting states. More

details about the data construction can be found in Online Appendix B.2.

Table 1: Numbers of available single male and female
in millions from the 1986 CPS for the 22 reporting states

Male Female
High school or less (HS) 8.79 10.41

(63.3%) (65.3%)
College (Col) 4.24 4.72

(30.5%) (29.6%)
Graduate school (GS) 0.86 0.80

(6.2%) (5.1%)
Total 13.88 15.94

Percentage of total in parenthesis

Individuals are differentiated by their age and educational attainment. We divide edu-

15Like in CS, the flow of new marriages in constructed by taking a two year average of the new marriages
in 1987 and 1988. This helps reduce the number of marriage pairs with zero new marriages.

16These 22 states include California, Connecticut, Hawaii, Illinois, Kansas, Kentucky, Louisiana, Maine,
Mississippi, Missouri, Montana, Nebraska, New Hampshire, New York, North Carolina, Rhode Island, Ten-
nessee, Utah, Vermont, Virginia, Wisconsin and Wyoming.
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cational attainment into three levels - high school diploma or less, some years of college or

college degree, and graduate school. Where convenient, we will refer to these three groups

with the abbreviation HS, Col and GS respectively. Table 1 provides count statistics for

our sample of single individuals by education in 1986. These are constructed by taking the

average of unmarried individuals from the twelve CPS monthly surveys in 1986. There are

around 16 million single women and around 14 million single men between the ages of 16 and

75 in our sample from the 22 reporting states. There are dramatically fewer single adults

with Col and GS educational attainment compared to those with HS education. Around

63% of single men and 65% of single women has qualification up to a high school diploma.

Only around 30% of single men and women have some years in a college or a college degree

and only 6% of single men and 5% of single women have post-college qualification.

Table 2: Number of marriages by education in thousands
from the 1987/88 Vital Statistics for the 22 reporting states

Female
High School College Graduate School

Male
High School 573.96 167.71 11.35
College 153.47 303.81 34.10
Graduate School 14.40 53.21 40.39

Table 2 tabulates the 1987/88 marriage distribution by education groups for the 22

reporting states. There is an average of 1.36 million marriages over this two year period.

As evident from the table, there is strong assortative matching by education groups. With

the exception of men with graduate school qualification, each of the remaining 5 groups

of single men and women are most likely to marry a spouse with the same educational

attainment. Men with graduate school qualification are more likely to marry college educated

than graduate school educated women. This pattern does not hold for women with graduate

school qualification.17

Our methodology also requires data on (n′
x, m

′
y), the supply of single men and women

had the student benefit program not been eliminated (that is, item ii) above). Since this

17With age ranging from 16 to 75 years and the 3 education groups, we have 180 types (or age-education
combination) of both men and women. Since individuals who are younger than 23 years of age rarely com-
pleted graduate school education, we exclude individuals younger than 23 with graduate school qualification.
This reduces the number of types from 180 to 173 for both men and women.
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counterfactual is unobserved to the econometrician, we use the estimates from Dynarski

(2003) to construct the counterfactual changes in available single men and women. Using

data from the CPS, Dynarski (2003) proxies the benefits eligibility by the death of a parent

during the individual’s childhood. The author employs the difference-in-differences frame-

work to analyze the impact of the elimination of the Social Security Student Benefit program

on the probability of college attendance and completion for students who were eligible to

the program. Let the causal effect on college attendance and completion be denoted by γ

and δ, respectively. Dynarski (2003) finds that eliminating the financial aid program on

average reduces the probability of attending college by about γ̂ = 24.3% and the probability

of completing any year of college by δ̂ = 16.1% for the eligible students.

Table 3: Effect on single pool had the student benefit program not been eliminated.

Age in 82 Age in 86 Aid Effects
14 18 ρ18 · γ
15 19 ρ18 · γ + ρ19 · δ
16 20 ρ18 · γ + ρ19 · δ + ρ20 · δ
17 21 ρ18 · γ + ρ19 · δ + ρ20 · δ + ρ21 · δ
18 22 ρ18 · γ + ρ19 · δ + ρ20 · δ + ρ21 · δ
19 23 ρ19 · δ + ρ20 · δ + ρ21 · δ
20 24 ρ20 · δ + ρ21 · δ
21 25 ρ21 · δ

Since these estimates are for eligible students and we do not observe actual benefit re-

cipients in our data, we need to also compute the fraction of the population who are eligible

for these benefits. The program did not differentiate between male or female recipients.

Hence, we construct the counterfactual numbers of available singles without distinguishing

their gender. Using the similar approach as in Dynarski (2003), we proxy the proportion of

age i benefit eligible individuals (males or females), ρi, by the fraction of age i individuals

whose father are deceased, retired or disable in their cohort from the 1980 U.S. census. We

assume that individuals (males or females) are in high school till they are 18 and that a

college degree takes 4 years.

Consider now a counterfactual setting where the financial aid program had not been

eliminated. Eighteen years old high school seniors in 1986 would have been fourteen years

old high schoolers in 1982 when the program was eliminated. Our estimates suggest that
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an additional ρ18γ proportion of high school graduates would have attended college had the

program not been eliminated. As for nineteen year olds in 1986, a ρ18γ fraction of these

individuals would have attended college when they were eighteen years old and ρ19δ of them

would not have dropped out of college that year. Hence, an additional (ρ18γ + ρ19δ) of the

nineteen years old high school graduates would have attended college in 1986. We repeat this

calculation for individuals aged between eighteen and twenty five years old in our 1986 supply

of single men and women. Table 3 tabulates the calculations of changes to the population

of single high school graduates by age in the counterfactual setting.

Table 4: Available number of single men and women between ages 18 and 22 (millions)

Male
CPS in 1986 Counterfactual Policy % Change

High school or less 2.52 2.36 -6.12%
College 1.23 1.39 12.50%

Female
CPS in 1986 Counterfactual Policy % Change

High school or less 2.05 1.93 -5.90%
College 1.28 1.40 9.47%

Table 4 compares the observed number of single men and women between the ages of

18 and 22 with the counterfactuals computed using the procedure just outlined. While the

estimated causal effect in Dynarski (2003) was statistically significant on those eligible for

the benefits, the overall effect of the program elimination on the number of single men and

women remains modest due to the small fraction of eligible individuals in the population.

Our calculation suggests that the number of college graduated men and women between the

ages of 18 and 22 would have increased by approximately 136,000 and 121,000 respectively.

This represents an increase of around 12.5% and 9.47% more college educated men and

women aged between the ages of 18 and 22, respectively. Figure 4 in Online Appendix B.3

shows the observed and counterfactual available single men and women by age between 16

and 22 in 1986.
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5.3 Implementations and specifications

Using the above data, we now compare the following three approaches to counterfactual

analysis.

1) The first approach is the parametric approach by using a nonparametric specification

of the CS model. Following the nonparametric approach proposed in Choo and Siow

(2006b), we first nonparametrically estimate the joint surplus Φxy in the matching func-

tion from the CS model. We then solve for the counterfactual unmarrieds (µ′
x0, µ

′
0y) by

substituting the estimated joint surpluses into the system (16), and calculate matches

µ′
xy from the matching function accordingly.

2) The second approach is the parametric approach by using a parametric specification

of the CS model. We first use the nested maximum likelihood approach proposed in

Section 3 to estimate a parameterized version of the joint surpluses Φxy in the CS

model.18 Once the joint surpluses has been estimated, we can solve for the counterfac-

tual unmarrieds and matches similarly as in the first approach.

In this appoarch, we parametrize Φxy as follows. Let the type of a man be defined as

x = (xa, xe), where xa ∈ {16, · · · , 75} (we relabel it as xa ∈ {1, · · · , 60}) denotes the

man’s age and xe ∈ {hs, col, grad} (we relabel it as xe ∈ {1, 2, 3}) denotes the man’s

education level. Similarly, we define the type of a woman as y = (ya, ye) with ya the

age of the woman relabelled as ya ∈ {1, · · · , 60} and ye her education relabelled as

ye ∈ {1, 2, 3}. Our parametric specification for Φxy is given by,

Φθ
xy = θ0 +

60∑

i=2

θma
i 1{xa = i}+

3∑

j=2

θme
j 1{xe = j}+

60∑

i=2

θwa
i 1{ya = i} +

3∑

j=2

θwe
j 1{ye = j}

+

59∑

i=1

θmwa
i 1{|xa − ya| = i} +

2∑

j=1

θmwe
j 1{|xe − ye| = j}, (19)

where the second and third terms capture the surplus from men’s traits, the fourth and

fifth terms capture the surplus from women’s traits, and the sixth and seventh terms

18We could also estimate the model using moment matching techniques. For a discussion on the use of
maximum likelihood and moment matching techniques in matching models, see Galichon and Salanié (2020).

29



capture the surplus from the interactions between the traits of men and women.19 This

specification requires us to estimate 184 parameters in θ.

3) The third approach is the parameter-free approach presented in Section 4.2. The

implementation follows the steps in Section 4.2 closely. We first derive the changes

of matches in terms of changes in unmarrieds using the matching function in CS,

µ̃xy =
√
µ̃x0µ̃0y. We then solve for (µ̃x0, µ̃0y) by substituting µ̃xy into the system (18),

and then calculate µ̃xy and the counterfactual matches, µ′
x0, µ

′
x0, µ

′
xy, accordingly.

Among the three approaches, the two parametric approaches (1) and (2) require the

estimation of the joint surpluses of each match type while the parameter-free approach

does not. Moreover, while the steps of the parametric approach (1) and the parameter-free

approach (3) differ, it is worth highlighting that the counterfactual distributions estimated

from both procedures are identical. The transformation of the matching equilibrium model

in the parameter-free approach allows us to by-pass the estimation of the non-parametric

joint marital surplus. Hence, we will focus our attention on the joint matching surpluses,

and counterfactual marriage distributions estimated using the nonparametric (approach (1))

and parametric (approach (2)) marriage surplus specifications.

5.4 The estimated joint surpluses

We report and compare the joint surpluses estimated from both approaches (1) and (2). In

Figure 2, we focus on the joint surplus estimates for high school men matched with women

with different education levels20. The subfigures in the first row display the estimated joint

surpluses for high school men at three different ages using the nonparametric specification,

while the subfigures in the second row graph the corresponding estimates coming from the

parametric specification. These figures show two main features of the estimated joint sur-

pluses of high school men: (1) the joint surplus estimates exhibit strong assortativeness in

education and age under both the nonparametric and parametric specifications. The couples

19For instance, the joint surplus for a match with man’s traits x = (xa = 6, xe = 2) and woman’s trait
y = (ya = 8, ye = 3) is given by Φxy(θ) = θ0 + θma

6
+ θme

2
+ θwa

8
+ θwe

3
+ θmwa

2
+ θmwe

1
.

20The features of the joint surplus estimates for college and graduate men are similar, and can be found
in Figures 5 and 6 in Online Appendix B.3.
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with similar education and age generally obtain the highest surplus. (2) the joint surpluses

estimated from the parametric specification are smoother than those estimated from non-

parametric specification, especially for marriages involving old GS educated women. This is

due to the fact that we observe very thin cells for the marriages between high school men

with old or GS educated women,21 which gives us imprecise nonparametric estimates for the

joint surpluses.

Figure 2: Estimated Φxy for high school men
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5.5 The changes in marriage distributions due to the policy change

We now estimate the counterfactual marriage distributions by using the two parametric

approaches (i.e. the nonparametric and parametric marriage surplus specifications). We then

compare the estimated counterfactual marriage distributions with the observed distribution

for the 22 reporting states, to obtain the changes in marriage distributions due to the Social

Security Benefit Program in 1982. While the elimination of the aid program would have

affected the marriage distribution of the whole United States, our analysis is unfortunately

21There are about 63% zero cells for the number of marriages between high school men at 25,30, or 35
years old and women older than 55 years old, and for the marriages between high school men of the three
ages with graduate school women, there are about 49.7% zero cells in the observed data.
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confined to the 22 reporting states for which we have data on the flow of new marriages by

age and education attainment.

Figure 3 displays the numbers of single individuals by age and education in both the

observed and counterfactual marriage distributions. It shows that the numbers of single

individuals in the two counterfactual marriage distributions estimated from the two spec-

ifications are similar for the HS and Col degree individuals, while the numbers for single

GS educated individuals differ in the two counterfactual distributions. This difference in

the latter is likely due to the imprecise estimates of the joint surplus involving GS edu-

cated individuals. When comparing the numbers of singles in the counterfactual marriage

distributions with those in the observed marriage distribution, we find that eliminating the

financial aid program would lead to less HS and more Col educated singles in equilibrium.

This is consistent with the impacts of the financial aid program on the available numbers of

individuals, shown in Figure 4 in Online Appendix B.3.

Figure 3: Counterfactual and observed numbers of single men and women
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Table 5 tabulates the changes to the marriage distribution by education in the counter-

factual marriage distributions estimated using both the nonparametric and parametric spec-
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ifications.22 We will use the convention HS-Col to refer to marriages between high school

educated men and college educated women. Focusing on the nonparametric specification in

the top panel of Table 5, we can see that the high degree of positive assortative matching

implies that the biggest changes happen on HS-HS and Col-Col matches: the number of HS-

HS marriages would fall by around 16798 (2.93%) matches while Col-Col marriages increase

by around 8909 (2.93%) . A large change is seen among Col-HS marriages, which would

increase by around 3985 (2.6%) compared to the modest decrease of 634 (0.38%) marriages

among HS-Col marriages. This is probably a reflection of social norms of men preferring

spouses who are not more educated than themselves, which is embedded in the preference

parameters.

In the bottom panel of Table 5, we perform the same computations as above, but using

the parametric marital surplus specification. The qualitative patterns remain similar for the

changes to the marriages between individuals with HS or/and Col education. However, the

changes in the number of the matches involving GS individuals differ significantly across the

two different specification. This is a reflection of large differences in estimates across the two

specifications in the preference parameters for GS educated individuals.

Table 5: Changes in Number of New Marriages by Education

Nonparametric Specification
Female

High School College Grad. School
High School -16798.1 (-2.93%) -634.3 (-0.38%) -31.4 (-0.28%)

Male College 3985.0 (2.60%) 8909.7 (2.93%) 189.5 (0.06%)
Grad. School 4.5 (0.03%) 86.8 (0.16%) 7.0 (0.02%)

Parametric Specification
Female

High School College Grad. School
High School -16982.6 (-2.96%) 3185.7 (1.90%) -1267.2 (-11.16%)

Male College 3432.2 (2.24%) 11749.5 (3.87%) -706.6 (-0.23%)
Grad. School 1078.3 (7.49%) -3301.8 (-6.21%) 2370.1 (5.87%)

In Online Appendix B.3, we also provide graphs that display the changes in the marriage

22Recall that the nonparametric specification and parameter-free approach provide identical estimates of
the counterfactual marriage distribution. We thus omit the results from the parameter-free approach in
Table 5.
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distribution for the four education pairs by age estimated from the nonparametric specifica-

tion.23 The graphs are consistent with the numbers reported in Table 5. In addition, they

also show some patterns in the changes of numbers between pairs with different ages.

6 Conclusion

In the context of matching models, researchers are often interested in how the equilibrium

matching distribution would change in response to a change in the structure of the market

(e.g. for marriage markets, changes in the number of available men or women). We study

this question in matching function equilibrium matching models, a class of matching models

that’s characterized by a matching function and a system of demographic constraints. We

point out that a surprisingly large number of models in the matching literature belong to

this class. In this paper, we focus on the partial assignment case. We show how one can

parametrically estimate the matching functions of these models by maximum likelihood;

we provide efficient computing techniques, an analytic expression for the gradient of the

log-likelihood, and formulas to compute confidence intervals.

We study counterfactuals from policy changes that change the number of available men

and women on the market but is assumed to leave the matching surplus parameters un-

changed. We show how to compute the counterfactual equilibrium matching distribution

when the structural parameters of the matching function have been previously estimated.

In addition, we show that for a certain subclass of matching function equilibrium models,

the counterfactual distributions are identified without estimating the structural parameters.

We illustrate our framework by analyzing the impact of the elimination of the Social Secu-

rity Student Benefit Program in 1982 on college attendance and the marriage market. We

show that, had the policy not been abandoned, there would have been around 17,000 (3%)

fewer marriages among high school graduates and 10,000 (3%) more marriages among college

graduates in 1987/88, in the 22 reporting states for which we have data.

23The results for the changes estimated from parametric specification are similar, which is omitted.
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[31] Ismael Mourifié and Aloysius Siow. “The cobb douglas marriage matching function:

Marriage matching with peer and scale effects”. In: Working Paper (2017).

[32] Jong-Shi Pang, Che-Lin Su, and Yu-Ching Lee. “A constructive approach to estimating

pure characteristics demand models with pricing”. In: Operations Research 63.3 (2015),

pp. 639–659.

[33] Zhenchao Qian. “Changes in assortative mating: The impact of age and education,

1970-1990”. In: Demography 35.3 (1998), pp. 279–292.

[34] Zhenchao Qian and Samuel H Preston. “Changes in american marriage, 1972 to 1987:

Availability and forces of attraction by age and education”. In: American Sociological

Review (1993), pp. 482–495.

[35] Suzanne Louise Reyes. “Educational opportunities and outcomes: The role of the guar-

anteed student loan”. In: Unpublished manuscript (1997).

[36] R Schoen. “The harmonic mean as the basis of a realistic two-sex marriage model.”

In: Demography 18.2 (1981), pp. 201–216.

37



[37] Lloyd S Shapley and Martin Shubik. “The Assignment game I: The core”. In: Inter-

national Journal of Game Theory 1.1 (1971), pp. 111–130.

[38] Robert Shimer and Lones Smith. “Assortative matching and search”. In: Econometrica

68.2 (2000), pp. 343–369.

[39] Aloysius Siow. “How does the marriage market clear? An empirical framework”. In:

Canadian Journal of Economics 41.4 (2008), pp. 1121–1155.

[40] Che-Lin Su and Kenneth L. Judd. “Constrained optimization approaches to estimation

of structural models”. In: Econometrica 80.5 (2012), pp. 2213–2230.

A Proofs

A.1 Proof of Theorem 1

Proof. Part (i). Proof of Existence. The proof of existence relies on Algorithm 1. See Gali-

chon, Kominers, and Weber (2019) for a full proof.

Part (ii). Proof of Uniqueness. The proof of uniqueness relies on Berry, Gandhi, and

Haile (2013). First, introduce the quantities ux = µx0 and uy = −µ0y, and construct the full

vector u = ({ux}x∈X , {uy}y∈Y). Solving the system of equations (2) is equivalent to finding

the root of the following system

σx(u) = ux +
∑

y

Mxy(ux,−uy)− nx (20)

σy(u) = uy −
∑

x

Mxy(ux,−uy) +my

Assumption 1 in Berry, Gandhi, and Haile (2013) is satisfied as σ is defined over the Cartesian

product of intervals Πx∈X [0, nx]Πy∈Y [−my, 0]. Finally, introduce σ0(u) = 1−∑
x∈X σx(u)−

∑
y∈Y σy(u).

Note that ∀z′ 6= z, σz(u) is weakly decreasing in uz′ from the weakly isotony of M , and
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that σ0(u) is strictly decreasing in uz ∀z ∈ X ∪ Y. Indeed,

σ0(u) = 1 +
∑

x

nx −
∑

y

my −
∑

x

ux −
∑

y

uy

which is strictly decreasing in any entry of the vector u. We can conclude that Assumption

2 from Berry, Gandhi, and Haile (2013) is satisfied, as well as Assumption 3 by application

of Lemma 1. Hence, σ is inverse isotone, which provides uniqueness. Indeed, assume that

σ(u) = σ(u′), so that σ(u) ≤ σ(u′) and σ(u) ≥ σ(u′) which implies by inverse isotony

that u ≤ u′ and u ≥ u′, hence u = u′. Therefore, there is a unique root u∗ to the system of

equation (20). Hence, there is a unique solution to system (2), with µ∗
x0 = u∗x and µ

∗
0y = −u∗y.

QED.

A.2 Proof of Theorem 2

Proof. The expression for ∂θkΠxy follows immediately from the fact that Πxy =
µxy

1′µxy
and

that 1′µxy =
∑

x∈X nx +
∑

y∈Y my −
∑

xy∈XY µxy.

By the Implicit Function Theorem in (2), one has

∂θkµx0 +
∑

y∈Y

(∂θkµx0∂µx0
Mxy + ∂θkµ0y∂µ0y

Mxy) = −
∑

y

∂θkMxy

∂θkµ0y +
∑

x∈X

(∂θkµx0∂µx0
Mxy + ∂θkµ0y∂µ0y

Mxy) = −
∑

x

∂θkMxy

which can be written using the expression of ∆ (12) as

∆

(
∂θkµx0

∂θkµ0y

)
=

(
ck

dk

)

and ∆ being a strictly diagonally dominant matrix, is invertible, QED.

A.3 Proof of Theorem 3

Proof. (i) First, recall that in the ITU-logit model, the aggregate matching function is given

by Mxy(µx0, µ0y) = exp
(
−Dxy(− log(µx0),− log(µ0y)

)
where the distance function Dxy is
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defined by Dxy(ux, vy) = min{z ∈ R : (ux−z, vy−z) ∈ Fxy} and where Fxy is the bargaining

set for the xy pair. By definition, Dxy(ux + a, vy + a) = Dxy(ux, vy) + a, which implies

Mxy(λµx0, λµ0y) = λMxy(µx0, µ0y).

(ii) Second, let us introduce the mapping Dxy(u, v) = − logMxy (e
−u, e−v) (in the follow-

ing, we will drop the indices for convenience). We will show that D is the distance function

associated with some proper bargaining set (see GKW for a definition) and that M is the

associated aggregate matching function when the idiosyncratic component of individual pay-

offs is logit.

Step 1. We begin by constructing the bargaining set F as follows

F = (u, v) ∈ R
2 : D(u, v) ≤ 0

Step 2. Let us show that the set F is a proper bargaining set. First, note that assumption 1

does not ensure that F is non-empty. However, this is not much of a concern in our setting:

there will simply be no match between the two corresponding individuals in equilibrium (only

a mild additional assumption is required to obtain non-emptiness: Mxy(µx0, µ0y) is bounded

below by 1 as µx0 (µ0y) approaches infinity while µ0y (µx0) is bounded below by 0 ; as a

matter of fact, it is satisfied on all of our introductory examples). Closedness follows from

the continuity of M by assumption 1 -(i). From assumption 1 -(ii), we can deduce that F is

lower comprehensive. Indeed, assume that (u, v) ∈ F . By construction, D(u, v) ≤ 0. Take

(u′, v′) with u′ ≤ u and v′ ≤ v. By weak isotonicity of M , we have D(u′, v′) ≤ D(u, v) ≤ 0,

hence (u′, v′) ∈ F . Finally, we can show that F is bounded above. Indeed, assume un → +∞
and vn bounded below, then for n large enough, M(un, vn) < 1 by assumption 1-(iii), so that

D(un, vn) > 0, that is (un, vn) /∈ F (the same reasoning applied with vn → +∞ and un

bounded below).

Step 3. Let us now show that D is the distance function associated with the bargaining set

F . The distance from the point (u, v) to the frontier is the value z such that (u − z, v − z)

belongs to the frontier of the bargaining set. By construction, D(u − z, v − z) = 0 but

homogeneity of degree one implies that D(u+ a, v+ a) = D(u, v)+ a, therefore z = D(u, v).

Step 4. GKW showed that in equilibrium, individuals receive a payoff that is the sum of
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two components: a systematic component that depends on the observable characteristics of

the partners, denoted respectively for men and women, Uxy and Vxy ; and an idiosyncratic

component ǫiy and ηxj . Assume that when a man of type x meet with a woman of type y,

they decide upon a utility wedge w and receive Uxy = −Dxy(0,−w) and Vxy = −Dxy(w, 0).

Note that the functions U and V , as defined here, explicitly represent the bargaining frontier.

Assuming logit heterogeneities, the systematic component of utility can be recovered from

the marriage patterns by the usual formulas Uxy = log
µxy

µx0
and Vxy = log

µxy

µ0y
. The equilibrium

condition in GKW is Dxy(Uxy, Vxy) = 0, that is Dxy(logµxy − log µx0, logµxy − log µ0y) = 0

which yields to the aggregate matching function

Mxy(µx0, µ0y) = exp
(
−Dxy

(
− log µx0,− logµ0y

))
= µxy

This concludes the proof.

A.4 Proof of Theorem 4

In the following, Π (θ, ζ) denotes the predicted frequencies given θ and the frequencies ζ.

We also introduce the rescaling operator Πθ(π0) = Mθ(π0)
1′Mθ(π0)

, and note thatΠ (θ, ζ) = Πθ ◦
(
AMθ

)−1
(ζ).

Part (i). A first expression. In the maximization of the log-likelihood, the first order

conditions with respect to θ are π̂′∂θ lnΠ (θ, Aπ̂) = 0 that we denote F
(
θ̂, π̂

)
= 0. From

a serie of Taylor expansions around the true value of θ and π, we can then deduce that(
θ̂ − θ

)
= − (DθF )

−1 (DπF ) (π̂ − π) where we use the notation D for the Jacobian matrix.

Note that asymptotically, N1/2 (π̂ − π) ∼ N (0, Vπ) where Vπ = diag (π) − ππ′. Hence, it

follows that

N1/2
(
θ̂ − θ

)
⇒ N (0, Vθ)

where Vθ = (DθF )
−1 (DπF ) Vπ (DπF )

′ ((DθF )
′)−1

.

Part (ii). Analytic expressions for each component. Let us begin with DθF . Note that

by definition, we have Π′1 = 1. Hence, Π′∂θi log Π = 0 and Π′∂2
θiθj

log Π+ ∂θjΠ
′∂θi log Π = 0.
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Finally, we getπ′∂2
θiθj

logΠ = −π′∂θi logΠ
′∂θj log Π so

DθF = −Dθ log Π
′diag(π)Dθ log Π

and Dθ log Π can be obtained from our results on the gradient of the log-likelihood.

We may now turn to DπF . We have

DπF := (Dθ logΠ)
′ − (Dθ log Π)

′ (DζΠ)A

where, as before, Dθ log Π appears in Theorem 2. We obtain DζΠ as

DζΠ =
(
Dπ0

Πθ
) ((

Dπ0
AMθ

)−1
)

The expressions above allow us to prove the announced formula for Vθ. We have

Vθ = (DθF )
−1 (DπF ) Vπ (DπF )

′ ((DθF )
′)−1

= T−1 (DπF ) Vπ (DπF )
′ (T ′)

−1

= T−1
(
(Dθ logΠ)

′ − (Dθ log Π)
′ (DζΠ)A

)
Vπ

(
(Dθ log Π)

′ − (Dθ log Π)
′ (DζΠ)A

)′
(T ′)

−1

= T−1
(
− (Dθ logΠ)

′ + (Dθ log Π)
′ (DζΠ)A

)
Vπ

(
A′ (DζΠ)

′ (Dθ log Π)− (Dθ log Π)
)
(T ′)

−1

= T−1 (Dθ log Π)
′ (DζΠ)AVπA

′ (DζΠ)
′ (Dθ log Π) (T

′)
−1

+H

where H = G+G′+T−1 (Dθ logΠ)
′ Vπ (Dθ logΠ) (T

′)−1 and is composed of three terms, and

two of them are symmetric. Let us start with these symmetric terms:

G = T−1 (Dθ logΠ)
′ VπA

′ (DζΠ)
′ (Dθ log Π) (T

′)
−1

this is

T−1 (Dθ log Π)
′A′diag(π) (DζΠ)

′ (Dθ log Π) (T
′)
−1−T−1 (Dθ log Π)

′ ππ′A′ (DζΠ)
′ (Dθ log Π) (T

′)
−1
.
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The first term in this sum is 0 because (Dθ log Π)
′A′ = 0. The second term is

T−1 (DθΠ)
′ diag(µ)−1µζ ′ (DζΠ)

′ (Dθ log Π) (T
′)
−1

= T−1 (DθΠ)
′ 1ζ ′ (DζΠ)

′ (Dθ log Π) (T
′)
−1

where (DθΠ)
′ 1 = 0. Hence,

H = T−1 (Dθ log Π)
′ Vπ (Dθ log Π) (T

′)
−1

= (T ′)
−1

We obtain

Vθ = (I11)
−1 + I−1

11 I12AVπA
′I ′

12I−1
11

where I11 = − (Dθ logΠ)
′ diag (π) (Dθ log Π) and I12 = (Dθ logΠ)

′ diag (π) (Dζ logΠ). This

concludes the proof.

A.5 Proof of Theorem 5

Proof. Part (i). Proof of Existence. The proof of existence relies on a revised procedure

based on Algorithm 1, which is stated below. See Galichon, Kominers, and Weber (2019)

for a full proof.

Algorithm 2. The revised Algorithm works as follow

Step 0 Fix the initial value of µ̂0j at µ̂0
0j = f̂j/q0j for all j ∈ J and µ̂i0 at

µ̂0
i0 = m̂i/pi0 for all i ∈ I.

Step 2t+ 1 Keep µ̂2t
0j for all j ∈ J fixed. Solve µ̂2t+1

i0 of µ̂i0 for all i ∈ I sequentially

such that the equality m̂y = q0yµ̂0y +
∑

x∈X qxy ·m(µ̂x0, µ̂0y), holds.

Step 2t+ 2 Keep µ̂2t+1
i0 for all i ∈ I fixed. Solve µ̂2t+2

0j of µ̂0j for all j ∈ J se-

quentially such that the equality n̂x = px0µ̂x0 +
∑

y∈Y pxy ·m(µ̂x0, µ̂0y),

holds.

The algorithm terminates when supy |µ2t+2
0y − µ2t

0y| < ǫ.

Part (ii). Proof of Uniqueness. The proof of uniqueness relies on Berry, Gandhi, and
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Haile (2013) similarly as it in the proof of Theorem 1.
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B Online Appendix

B.1 Simulations

In this section, we conduct simulations to investigate the numerical performance of the

nested and MPEC approaches for maximum likelihood estimation. In the nested approach,

it is crucial (i) to be able to solve system (2) and (ii) to do so in an efficient way, for the

sake of minimizing computation time. Therefore, we first investigate the performance of the

IPFP algorithm and Newton Descent method for solving the system (2) before turning our

attention to the nested and MPEC approaches.

B.1.1 Solving system (2) for (µθ
x0, µ

θ
0y)

Theorem 1 and Algorithm 1 address both capability and efficiency concerns of solving system

(2). However in practice, Algorithm 1 is not necessarily the most efficient way to solve for

(µθ
x0, µ

θ
0y). When the Jacobian of system (2) is known, it can be solved very efficiently using

Newton descent methods, which we recall below.

Algorithm 3. Rewrite the system of nonlinear equations (2) as σ(µ0) = 0, where µ0 =

(µx0, µ0y). The Newton’s Descent method works as follows

Step 0 Fix the initial value of µ0 at µ0
0 = (n′, m′)′.

Step t Given µt−1
0 , solve Jσ(µt−1

0 )δ = −σ(µt−1
0 ), where Jσ(µt−1

0 ) is the Jaco-

bian matrix at µt−1
0 . Update µt

0 = µt−1
0 + δ

The algorithm terminates when supy |µt+1
0 − µt

0| < ǫ.

To benchmark these different methods, we consider the Exponentially Transferable Utility

model in GKW. The aggregate matching function is given by

Mxy(µx0, µ0y) = exp(−Dxy(− log µx0,− log µ0y))

whereDxy(u, v) = τxy log ((exp((u− αxy)/τxy) + exp((v − αxy)/τxy))/2). We draw the types

x and y from two uniform distributions, assume that αxy = xy and γxy = xy, and fix

τxy = τ = 1,∀xy ∈ XY. In the experiment, we vary |X |, the number of types on the men
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side of the market, and fix |Y| = 1.5|X |. Finally, we assume that nx = my = 1, ∀x ∈ X ,

∀y ∈ Y .

Table 6 below summarizes the number of iteration and computation time averaged over

50 replications of the experiment for three numerical methods: the IPFP algorithm described

in Algorithm 1, its parallelized version, and the Newton’s method described in Algorithm 3.

Table 6: IPFP and Newton method

IPFP par. IPFP Newton
Mkt. Size Iter. Time Iter. Time Iter. Time
10 14.64 0.36 14.64 1.45 26.42 0.01
50 9.2 1.17 9.2 1.12 27.08 0.09
100 8 2.16 8 1.33 23.22 0.29
200 7 4.35 7 2.43 23.62 1.15
300 7 7.21 7 3.99 25.9 3.08
500 6 13.54 6 7.4 31.38 12.12
1000 6 40.92 6 18.32 37.56 81.53
2000 5 106.93 5 47.77 24.02 680.16
5000 5 497.02 5 199.14 26 7934.81

This table raises three comments. First, to improve the computational efficiency of the

Newton’s Descent method, we provide the analytic expression of the Jacobian matrix of

system (2). Such analytic expression is not always available, in which case the Jacobian

must be approximated numerically, which will greatly increase computation time for this

method (at least for large markets). Second, there is no guarantee of convergence when

using the Newton’s Descent Algorithm. We notice no such issues when performing this

simple experiment, but nonconvergence may well be an issue with more complex models.

For these two reasons, and since Newton’s method performs only better for smaller market,

this method is not our preferred algorithm. Furthermore, it should be added that the IPFP

Algorithm is very suitable for parallel computing. The gains are negative for small markets,

but as market size grows, we manage to reduce computation time by a factor of two. The

parallel IPFP runs on four processors (which is what is currently available on most high-

end personal computers). This suggests that performance could be further improved when

running on computing clusters.
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B.1.2 Estimation

We test the numerical performance of our maximum likelihood estimator, using the nested

and MPEC approaches. The setup of the experiments remain the same as before, but we

assume αxy = α× x× y and γxy = γ × x× y, where α and γ are arbitrarily chosen. Given

θ0 = (α, γ), we compute the equilibrium matching µθ0 using the IPFP algorithm and set

µ̂ = µθ0 . Then, we test if we are able to recover θ0 from the observed µ̂ using our maximum

likelihood estimator in this correctly specified case. The results are reported in Table 7

below.

Table 7: Estimation

Nested Approach MPEC
Mkt. Size Iter. Time % Failure Iter. Time % Failure

10 18.64 5.4 6 15.91 5.1 8
50 21.6 21.12 0 16.2 8.01 20
100 23.34 42.05 0 18.05 17.58 22
200 26.98 101.67 0 36.1 102.56 16
300 26.8 179.25 0 20.64 121.44 16
500 25.67 343.16 4 27.27 549.76 26

First, a word of caution, the nested approach we implement here relies on a simple

version of the IPFP algorithm, so its performance can be further improved using the parallel

version. It is difficult to interpret the results in Table 7. The MPEC algorithm seems to

perform better for small market sizes as it converges faster to the correct value of θ. For larger

markets, however, the IPFP approach does better in some cases, for example with 100 or 500

men. Note that the number of iterations is relatively similar across methods, but performing

one iteration can be computationally burdensome in the MPEC case. Indeed, the nested

approach only requires solving for the equilibrium matching using the IPFP algorithm and

computing the gradient as in Theorem 2. The MPEC approach, on the other hand, requires

the computation of the Jacobian matrix in equation (13), which involves second order and

cross partial derivatives. Although we do have analytic expressions for these components, it

can still be cumbersome to compute due to the size of these objects. For example, in the

case with 500 men, 750 women and two parameters, the Jacobian matrix is a 2502 × 2502

matrix. Finally, Table 7 illustrates a common issue with Newton-like methods, that is,
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non-convergence.

B.2 Data Construction

As discussed in the main text, we require three data inputs to implement our approach:

i) the number of available single men and women by age and education had the financial

aid program not been eliminated, (nx, my), for all x ∈ X and y ∈ Y ,

ii) the number of available single men and women by age and education as a result of the

elimination of the financial aid program, (nx, my), for all x ∈ X and y ∈ Y , and

iii) the flow of new marriages by age and education as a result of the elimination of the

financial aid program, µ′.

The flow of new marriages as a result of the policy change µ′ (item iii) above) is collected

from the Vital Statistics in 1987/88 obtained from the National Bureau of Economic Re-

search data website. Vital Statistics recorded the education and age of married couples until

1988 for 22 reporting states. The 22 reporting states are California, Connecticut, Hawaii, Illi-

nois, Kansas, Kentucky, Louisiana, Maine, Mississippi, Missouri, Montana, Nebraska, New

Hampshire, New York, North Carolina, Rhode Island, Tennessee, Utah, Vermont, Virginia,

Wisconsin, Wyoming.

The number of available single men and women by age and education after the policy

change, (nx, my) (item ii) above are constructed from the Integrated Public-Use Microdata

(IPUMS hereafter) files of the U.S. CPS data. The sample used in this study is the monthly

data in 1986. In order for the CPS data to match the marriage data from the Vital Statistics,

our sample comprises only of individuals from the 22 states reporting states. We take an

average of 12 monthly CPS surveys for the 22 matching states in 1986 to construct the yearly

available population vectors.

The age range studied is between 16 and 75 years old. The education information is

obtained from the variable “EDUC” in the US CPS data. The education attainment is divided

into three groups: high school graduate or less, some years of college or college graduate,

more than college. There are 180 possible age-education combinations from the 60 age
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groups and 3 education levels. We exclude 5 groups - these are individuals who are less

than 23 years of age with more than college education. This leaves us with 173 types of

men and women. The variable “marst” in IPUMS CPS data provides us with marital status

information. It distinguishes an individual either married, separated, divorced, widowed

or never married/single. We consider separated, divorced, widowed, never married/single

individuals as available single individuals in the marriage market and calculated the number

of available men and women for each type by adding the weight from each sample in the

dataset.
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B.3 Additional figures

Figure 4: Changes in available HS and Col single men and women
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b) Obs and Counterfactual Single HS Women in 87/88 
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c) Obs and Counterfactual Single Col. Men in 87/88 
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d) Obs and Counterfactual Single Col. Women in 87/88 
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These figures graph the observed and counterfactual available single men and women by ages between 16
and 22 in 1986. In the counterfactual scenario where the aid program was not eliminated, we expect there to
be more available single college graduates and fewer available single high school graduates. As expected, our
calculations create a wedge between the observed and counterfactual number of available single individuals
between the ages of eighteen and twenty five.
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Figure 5: Estimated Φxy of college men
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Figure 6: Estimated Φxy of graduate men
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Figure 7: Changes in to marriage distribution by education and age

These figures graph the changes in the marriage distribution for the four education pairs by age estimated
from the nonparametric specification. Figure 7a and 7d show the changes for HS-HS and Col-Col matches,
respectively. Consistent with the numbers reported in Table 5, Figure 7a shows that continuing the Social
Security Benefit Program would have decreased the number of HS-HS marriages for all age pairs. Strong
positive assortative matching by age also means that the biggest decrease is experienced by similarly aged
young couples. The decrease becomes smaller as the age gap between husbands and wives increases. We
see a similar but opposite effect amongst Col-Col marriages. The continuation of the financial aid program
would have increased the number of new Col-Col marriages in 1987/88. The biggest increase would occur
among similarly aged young couples. Figure 7b graphs the changes for new HS-Col marriages. Unlike the
changes in HS-HS and Col-Col marriages, the CS model predicts that the increase in the number of single
Col individuals and the decrease in the number of HS individuals would benefit young men and disadvantage
older men with HS qualification. More specifically, marriages for young men between the ages of 18 to 21
with HS qualification would increase. However the model also predicts that marriages for men with HS
qualification, older than 21 years old would fall. As for changes in new Col-HS marriages, Figure 7c suggests
an overall increase for all age pairs. The biggest increase is experienced by young single women with HS
qualifications.
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