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The Existence of Equilibrium Flows

Alfred Galichon†, Larry Samuelson♭, and Lucas Vernet§

September 1, 2022

Abstract Galichon, Samuelson and Vernet (2022) introduced a class of problems,
equilibrium flow problems, that nests several classical economic models such as bipar-
tite matching models, minimum-cost flow problems and hedonic pricing models. We
establish conditions for the existence of equilibrium prices in the equilibrium flow
problem, in the process generalizing Hall’s [2] theorem.
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The Existence of Equilibrium Flows

1 Introduction

Galichon, Samuelson and Vernet [1] introduced a class of problems, equilibrium flow
problems, that nests several classical economic models such as bipartite matching mod-
els, minimum-cost flow problems and hedonic pricing models. This paper establishes
conditions for the existence of equilibrium prices in the equilibrium flow problem,
generalizing Hall’s [2] theorem.

2 Equilibrium Flow Problem

This section duplicates the presentation of the equilibrium flow problem in Galichon,
Samuelson and Vernet [1].

2.1 Formulation

Network. Consider a network (Z,A) where Z is a finite set of nodes and A ⊆ Z×Z
is the set of directed arcs. If xy ∈ A, we say that xy is the arc from x ∈ Z to y ∈ Z,
and we say that x is the starting point of the arc, while y is its end point. We assume
that there is no arc in A whose starting point coincides with the end point. We
describe the network with an |A| × |Z| arc-node incidence matrix matrix ∇, defined
by letting, for xy ∈ A and z ∈ Z

∇xy,z = 1{z=y} − 1{z=x}.

We thus have ∇xy,z = 1 if xy is an arc ending at z, and ∇xy,z = −1 if xy is an arc
beginning at z. Otherwise ∇xy,z = 0.

Prices, connection functions. Let p ∈ R
Z be a price vector, where we interpret

pz as the price at node z. To have a concrete description, though we do not require
this interpretation, one may consider a trader operating on node xy, who is able to
purchase one unit of a commodity at node x, ship it along arc xy toward node y,
and resell it at node y. Given the resale price at node y, there is a certain threshold
value of the price at node x such that the trader is indifferent between engaging in
the trade or not. This value is an increasing and continuous function of the price at
node y, and can be expressed as Gxy(py), where for each arc xy ∈ A, the function
Gxy : R → R is continuous and increasing, and called the connection function.1 Hence,
if px > Gxy(py), the purchase price at node x is excessive, and the trader will not

1This is related to the idea of a Galois connections, which explains the choice of the letter G;
see Nöldeke and Samuelson [4].

1



engage in the trade. On the contrary, if px < Gxy(py), the purchase price is strictly
below indifference level and positive rent can be made from the trade on the arc xy.

Our framework allows for any situation where the per-unit rent Πxy(px, py)
of the trade on arc xy is a continuous and possibly nonlinear function of px and py,
increasing in the resale price py and decreasing in the purchase price px. In that case,
Gxy(py) is implicitly defined from Πxy by Gxy(py) = Πxy(., py)

−1(0), or equivalently,
Πxy(Gxy(py), py) = 0.

We refer to an equilibrium flow problem as a triple (Z,A, G).

Exiting flow, internal flow, mass balance. Let q ∈ R
Z with

∑

z∈Z qz = 0 attach
a net flow to each node z ∈ Z. If qz > 0, then the net quantity |qz| must flow into
node z, while qz < 0 indicates that the net quantity |qz| must flow away from node z.
Hence, we call q the vector of exiting flows. We let µ ∈ R

A
+ be the vector of internal

flows along arcs, so that µxy is the flow through arc xy. The feasibility condition
connecting these notions is that, for any z ∈ Z0, the total internal flow that arrives
at z minus the total internal flow that leaves z equals the exiting flow at z, that is

∑

x:xz∈A

µxz −
∑

y:zy∈A

µzy = qz,

which we call the mass balance equation, and which can be rewritten as

∇⊺µ = q. (1)

The interpretation of these flows will depend on the application of the equilibrium
flow problem. The flows may represent quantities of commodities, volumes of traffic,
assignments of objects, matches of individuals, and so on.

2.2 Equilibrium

Equilibrium flow. The triple (q, µ, p) ∈ R
Z ×R

A
+ ×R

Z is an equilibrium outcome
if it satisfies three conditions. The first condition is the conservation of the flow given
by the mass balance equation (1). The second condition is that there there is no
positive rent on any arc, that is:

px ≥ Gxy (py) ∀xy ∈ A.

Our third condition is that arcs with negative rents carry no flow. Hence µxy >
0 =⇒ px ≤ Gxy (py), which combines with no-positive-rent requirement to yield
µxy > 0 =⇒ px = Gxy (p). This is a complementary slackness condition, which can
be written

∑

xy∈A

µxy (px −Gxy (py)) = 0.

2



The interpretation of these rent conditions will again depend on the application. In
some cases, they will be the counterparts of zero-profit conditions in markets with
entry, while in other cases they will play the role of incentive constraints.

In summary, we define:

Definition 1 (Equilibrium Flow Outcome). The triple (q, µ, p) ∈ R
Z ×R

A
+ ×R

Z

is an equilibrium outcome when the following conditions are met:

(i) ∇⊺µ = q
(ii) px ≥ Gxy (py) ∀xy ∈ A
(iii)

∑

xy∈A µxy (px −Gxy (py)) = 0.

The first condition implies
∑

z∈Z qz = 0. Notice that if p satisfies condition (ii), then
setting q = 0 and µ = 0 ensures that the remaining conditions are satisfied. Indeed,
if (q, µ, p) is a equilibrium flow outcome, then so is (λq, λµ, p) for any nonnegative
scalar λ. Hence, there will either be no equilibrium flow outcome (if there is no p
satisfying condition (ii)) or there will be multiple equilibrium flows outcomes.

3 Existence of Equilibrium

We fix a vector of exit flows q (with
∑

z∈Z qz = 0) and ask whether there exists a
price vector p and flow µ such that (q, µ, p) is an equilibrium of the equilibrium flow
problem.

3.1 Feasibility Conditions

For a subset B of Z, an arc xy is said to be outward if x ∈ B and y /∈ B. A subset B
of Z is called retaining if there is no arc outward of B. Hence, subset B is retaining
if and only if

∇1B ≥ 0.

Our existence result obviously requires some feasibility condition. In the
extreme, one cannot find an equilibrium flow in a network with no arcs (and nontrivial
q). We state the feasibility condition in terms of retaining sets.

Assumption 1. If B is a retaining set, then q(B) =
∑

z∈B qz ≥ 0.

Assumption 1 serves its intended purpose of ensuring it is at least possible
to construct a flow that transports the goods in the network from their origins to
their destinations:

Lemma 1. Let q ∈ R
Z be such that

∑

z∈Z qz = 0. Then the following statements are
equivalent.

[1.1] There exists µ ∈ R
A
+ such that q = ∇⊤µ.

[1.2] For each B retaining subset of Z, one has q (B) ≥ 0.

3



Proof That [1.1] implies [1.2] is straightforward: If there is no arc from a node in B
to a node in Z\B, then mass can only enter into B, and so we must have q (B) ≥ 0.

To show the converse, we exploit Hoffman’s [3] circulation theorem. For any
subset B ⊂ Z, letO (B) = {xy ∈ A : x ∈ B, y /∈ B}, and I (B) = {xy ∈ A : x /∈ B, y ∈ B}
be respectively the set of outward and inward arcs of B. Hoffman’s theorem states
that, given q ∈ R

Z with
∑

z∈Z qz = 0 and µ and µ in R
A
+ there exists µ ∈ R

A
+ such

that
∇⊺µ = q and µ ≤ µ ≤ µ

if and only if for all subsets B of Z, one has

∑

z∈B

qz ≤
∑

a∈I(B)

µa −
∑

a∈O(B)

µ
a
.

This result is usually stated for q = 0, but the adaptation to nonzero q straightforward.
With this result in hand, let µa = +∞ and µ

a
= 0, so that we can rewrite Hoffman’s

condition as the requirement that for all sets B̃ that have no inbound links,

q(B̃) ≤ 0.

We then argue that this condition is equivalent to the second condition in Lemma 1.
Call a set with no inbound links repelling. The result then follows from noting that
the set B ⊂ Z is retaining if and only if Bc is repelling, and for any set B,

q(B) + q(Bc) = 0.

Remark 1 (Hall’s marriage theorem). Lemma 1 implies Hall’s [2] marriage the-
orem. To see this, assume we are in the bipartite case to which Hall’s lemma applies.
Hence, Z = X ∪ Y and A ⊆ X × Y .

From Lemma 1, we then have that q is attainable if and only if for all
retaining sets B, one has q (B) ≥ 0. That is, for all retaining sets B, one has

q (B ∩ X c) + q (B ∩ X ) ≥ 0.

Therefore for all subsets B of Z\X and for all B′ in X , then

[B ⊂ Z\X , B′ ⊂ X , B ∪ B′ retaining ] =⇒ [q (B) ≥ −q (B′)]. (2)

Now let B′ ⊂ X and let B be the set of nodes z in Y with the property that there is
an arc from a node in B to z. Then by construction B ∪ B′ is retaining, and so (2)
gives

q (B) ≥ −q (B′) ,

which is Hall’s marriage theorem.
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We make an additional, technical feasibility assumption.

Assumption 2. For each z ∈ Z, either qz > 0 or there exists a path from z to a
node y ∈ Z with qy > 0.

To see why we refer to this as a technical assumption, notice that it is automatically
satisfied if qz > 0, and is implied by Assumption 1 if qz < 0. However, Assumption
1 is compatible with the existence of a node z with qz = 0 that fails Assumption 2.
In this case, it is impossible for an equilibrium to exhibit flow through node z, and
we can without loss of generality eliminate node z from the network. Assumption 2
thus ensures that there are no obviously irrelevant nodes in the network. We could
accommodate such nodes, but then would require another step in our equilibrium
construction, to attach prices to such nodes.

3.2 A Profitability Condition

Assumption 1 ensures that there exists a flow capable of moving goods from their
sources to their destinations. However, in equilibrium the flow must make use of
only zero-rent arcs and there must be no positive-rent arcs. We accordingly require
a condition on the profitability of arcs.

For x and y in Z, we introduce the reduced connection G̃xy (py) as

G̃xy (py) = sup
x0=x,x1,x2,...,xk+1=y

xℓxℓ+1∈A

Gxx1
◦Gx1x2

◦ ... ◦Gxky (py)

which can either be finite or +∞ if this quantity is unbounded. We shall take the
convention that G̃xy (py) = −∞ if there is no directed path between x and y.

We say that the collection of nodes (x0, x1, . . . xk+1) is a loop if it contains
k + 1 distinct nodes and x0 = xk+1 =: x. We assume:

Assumption 3. If (x0, x1, . . . , xk+1) is a loop, then p > Gxx1
◦ Gx1x2

◦ ... ◦ Gxkx (p)
for all p.

Assumption 3 ensures there is no way to achieve positive rents by moving
flow through a loop, with no net change in the allocation. If such a loop existed,
continual movement along this loop would constitute a money pump, giving rise to
infinite rents. Equivalently, if Assumption 3 fails, then it may be impossible to assign
prices to nodes in such a way as to ensure the absence of positive-rent arcs.

3.3 The Existence Result

Lemma 1 ensures that it is possible to transport the required mass from sources to
targets. Assumption 3 ensures that it is possible to attach prices to nodes so that
there are no positive-rent arcs. In equilibrium, we require some coordination between
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these two constructions, in that equilibrium flow must transport the required mass
from sources to targets using only zero-rent arcs. It would accordingly be no surprise
if addition conditions were required to ensure the existence of an equilibrium flow.
However, these assumptions suffice:

Theorem 1. Let Assumptions 1-3 hold. Then there exists an equilibrium flow.

The proof of this result, occupying Sections (3.4)–(3.6), associates the equi-
librium flow problem with an associated bipartite matching problem, and then ex-
ploits existence results for the bipartite matching problem. This association may be
useful for other purposes.

3.4 Equilibrium Flows and Bipartite Solutions

Given an equilibrium flow problem, define the source nodes as X = {x ∈ Z : qx < 0}
and the target nodes as Y = {y ∈ Z : qy > 0}. We now associate with the equilibrium
flow problem (Z,A, G) the bipartite imperfectly transferable utility matching problem
(X ,Y , G̃).

Lemma 2. Fix a profile of exit flows q with
∑

z∈Z qz = 0. Then there exits an
equilibrium (q, µ, p) for the equilibrium flow problem (Z,A, G) if and only if there
exists an equilibrium (q, µ̃, p̃) for the associated bipartite problem (X ,Y , G̃) such that
p and p̃ agree on X and Y.

Proof. First, let (q, µ, p) be a solution to the equilibrium flow problem. We derive
a corresponding bipartite solution.

First, we have for x ∈ X and y ∈ Y that

px ≥ G̃xy (py) .

Indeed, for any path x = x0, x1, x2, ..., xk+1 = y from x to y, we have (from the
no-positive-rent equilibrium condition) pxk

≥ Gxkxk+1

(

pxk+1

)

and thus

px ≥ Gxx1
◦Gx1x2

◦ ... ◦Gxky (py) .

Taking the maximum over paths from x to y, we have px ≥ G̃xy (py).
By the flow decomposition theorem, one can write

µ =
∑

p∈Π

µp +
∑

l∈L

µl

where µp is the flow associated with path p, and µl is the flow associated with loop l,
Π is the set of paths, and L is the set of loops. Clearly µl = 0 for any loop l, otherwise
the assumption of absence of profitable loop would be violated.
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Consider Πxy, which is the set of paths beginning at x and ending at y. Let
µ̃xy =

∑

p∈Πxy
µp. It is straightforward that for all x ∈ X and y ∈ Y we have

∑

x∈Y µ̃xy = nx
∑

x∈X µ̃xy = my.

In addition, we have that µ̃xy > 0 implies that there is a path (x0, x1, x2, ..., xk+1)
from x (= x0) to y (= xk+1) along which the flow is strictly positive. Thus, along this
path, pxℓ

= Gxℓxℓ+1

(

pxℓ+1

)

and thus

px = Gxx1
◦Gx1x2

◦ ... ◦Gxky (py) ;

but as px ≥ G̃xy (py) ≥ Gxx1
◦ Gx1x2

◦ ... ◦ Gxky (py), it follow that equality holds
everywhere and thus

px = G̃xy (py) .

Therefore we have the an equilibrium (q, µ̃, p̃) for the bipartite problem, i.e., satisfying:

∑

x∈Y µ̃xy = nx
∑

x∈X µ̃xy = my

p̃x ≥ G̃xy (p̃y)

µ̃xy > 0 =⇒ p̃x = G̃xy (p̃y)

. (3)

For the reverse direction of the proof, suppose (q, µ̃, p̃) is an equilibrium of
the bipartite solution

(

p∗x, p
∗
y

)

, and hence satisfies (3). To find an associated equilib-
rium (q, µ, p) of the equilibrium flow problem, we retain the specification of q, let µ
be any flow consistent with µ̃, and define an iterative procedure that generates the
prices p. For the initial step, we let

p0z =

{

p̃z if z ∈ X ∪ Y
−∞ otherwise

,

with the induction step given by

pt+1
x = max

{

ptx, max
y:xy∈A

{

Gxy

(

pty
)}

}

.

We then complete the argument with the the following lemma:

Lemma 3. for t large enough (but finite), (q, µ, pt) an equilibrium of the equilibrium
flow problem.

Proof. We establish this result in a series of steps:

7



1. After a finite number of steps, ptz > −∞ for all z.

To see this, let d (x y) be the length of the shortest path from x to y. Then
we have ptx = maxy∈Y maxx y:l(x y)≤tGx y (py). Hence, if there is a directed
path of length at most k from z to Y , then the price of z will become finite after
in at most k steps. As a result, all prices will be updated after

max
z

min
y∈Y

d (z, y) ,

and so after a finite number of step, ptz > −∞ for all z.

2. The price of a node y ∈ Y is never updated by the algorithm.

Assume that one updates y ∈ Y at some step. Then there is a chain y  y′

from y to some y′ ∈ Y with py < Gy y′ (py′). Let x ∈ X be an element of
X such that πxy > 0. One has px = G̃xy (py), thus px < G̃xy ◦ Gy y′ (py′) =
Gx y′ (py′) ≤ G̃xy′ (py′), a contradiction.

3. There exists a T such that for all t > T the algorithm is stationary .

We construct an updating digraph as follows: at t = 0, the graph has no edge.
At t > 0, if pt+1

x < maxy:xy∈A
{

Gxy

(

pty
)}

, then we pick up one y that attains the
maximum (resolving ties arbitrarily) and we add a directed arc from x to y. It
is a direct consequence of Assumption 3 that this digraph is a forest. Because
there are only a finite number of possible forests, the updating process must
stop within finite many steps.

4. For all x ∈ X , pTx = p∗x.

By contradiction, if there exists a x such that pTx 6= p∗x when the algorithm is
stationary then:

• If pTx > p∗x, then there exists a path x  y such that pTx = Gx y (py) >
p∗x = maxy′∈Y G̃xy′ (py′) > Gx y (py), contradiction.

• If pTx < p∗x, then there is a y ∈ Y and a path x  y such that p∗x =
Gx y (py). Moving along path x  y, take the last z such that pTz 6=
G̃zy (py), and z′ be its successor. One has by definition pTz < G̃zy (py) =

Gzz′

(

G̃z′y (py)
)

= Gzz′
(

pTz′
)

, which contradicts the fact that the algorithm

has reached stationarity.

This completes the proof of Lemma 2.

3.5 Bipartite Existence Result

Lemma 4. If the bipartite problem satisfies Hall’s condition, then there exists an
equilibrium flow for the bipartite network.
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Proof. Let nx and my be two vectors on X and Y which sum to the same amount.
Our interpretation is that nx identifies the mass at each node x ∈ X that must be
transported away from x, and ny identifies the mass at each node y ∈ Y that must be
transported to y. The requirement that these vectors have the same sum is equivalent
to the condition

∑

z∈Z qz = 0 in the equilibrium flow problem.
Consider A ⊆ X × Y , and assume Hall’s conditions are satisfied: for all

K ⊆ X ,
∑

x∈K

nx ≥
∑

y∈Y

my1{∀x:xy∈A,x∈K}.

This condition would be automatically satisfied if the network is fully connected, i.e.,
if A = X × Y , but we allow the network to be incomplete.

The strategy is to exploit existence results for complete bipartite networks.
Toward this end, we fix an integer n > 0, we extend the set of arcs A to the set X ×Y
by letting, for each x ∈ (X × Y) \ A

Gxy(py) = py − n.

We now consider a matching on the complete graph. If this matching directs flow
along the arc x ∈ (X × Y) \ A, then we must have px = py − n. We then argue that
for sufficiently large n, flow along any such arc is so unprofitable that the equilibrium
will not exhibit such flow. This will ensure that the equilibrium is also an equilibrium
of the problem with the set of arcs A.

Hence, let
(

µE
xy, px, py

)

be such that

(i)
∑

y µ
E
xy = nx and

∑

x µ
E
xy = my,

(ii) px ≥ Gxy (py) for all x ∈ X , y ∈ Y
(iii) µE

xy > 0 implies px = Gxy (py) if xy ∈ A, and px = py − n otherwise.
(iv) p0 = 0 for some ground node 0 ∈ X ∪ Y

The existence of this matching follows from Proposition 6 of Nöldeke and Samuelson.
The key to applying this proposition is to note that the function Gxy(py) is increasing,
continuous, and as py varies, sweeps out the entire real line.

Consider a directed graph on Z = X ∪ Y whose set of arcs is

A∗ = {xy ∈ A} ∪
{

yx : x ∈ X , y ∈ Y , µE
xy > 0

}

We show the following intermediate result:

Lemma 5. Assume x∗y∗ /∈ A and µE
x∗y∗ > 0. There exists no partition Z into A and

B in such a way that y∗ ∈ A, x∗ ∈ B and there are no arcs of A∗ from B to A.

9



Proof. We show the lemma by contradiction. Suppose such partition existed, and
denote AX = A ∩ X , AY = A ∩ Y , and BX and BY in a similar fashion.

Because there are no arcs from BX to AY , Hall’s conditions imply that
nx

(

AX
)

≥ my

(

AY
)

.
Now, because there are no arcs from BY to AX , the existence of µE implies

that nx

(

BX
)

≥ my

(

BY
)

.
Summing the previous two inequalities yields nx (X ) ≥ my (Y), but as this

holds as an equality, we get an equality in the two previous inequalities. Thus
nx

(

AX
)

= my

(

AY
)

and nx

(

BX
)

= my

(

BY
)

.
Now nx

(

AX
)

=
∑

x∈AX

∑

y∈Y µE
xy, but for x ∈ AX and y ∈ BY , µE

xy = 0
otherwise there would be an arc of A∗ from B to A. Hence

nx

(

AX
)

=
∑

x∈AX

∑

y∈AY

µE
xy

Comparing with

nY

(

AY
)

=
∑

x∈X

∑

y∈AY

µE
xy

yields a difference of
∑

x∈BX

∑

y∈AY

µE
xy,

and hence for all x ∈ BX and y ∈ AY , µE
xy = 0, which contradicts x∗ ∈ BX , y∗ ∈ AY

and µE
x∗y∗ > 0. This contradiction proves the claim.

The proof of Lemma 4 is then completed by the following lemma.

Lemma 6. For n large enough, µE
x∗y∗ > 0 implies x∗y∗ ∈ A.

Proof. We prove the result in the following manner. Start by taking A = {y∗} and
B = Z\ {y∗}. Then there must be an arc from B to A. Call z the origin point of that
arc, and repeat with A = {y∗, z} and B = Z\ {y∗, z}, and so on, until x∗ is chosen.
We end up with a path from x∗ to y∗. Calling z0 = y∗, z1, ..., zK = x∗ that path,
we have that py∗ ≤ Gy∗z1 ◦ ... ◦ GzK−1zK (px∗) where for yx ∈ A∗\A, one has defined
Gyx = G−1

xy . However, µ
E
x∗y∗ > 0 would imply px∗ = Gx∗y∗ (py∗) = py∗ − n. Hence, we

have

py∗ ≤ Gy∗z1 ◦ ... ◦GzK−1zK (px∗) (4)

py∗ = px∗ + n. (5)

10



Equation (5) shows that as n grows, py∗ − px∗ diverges. We show that this gives a
contradiction, establishing the theorem. Write py∗ − px∗ as

py∗ − px∗ = py∗ − pz1 (1)

+ pz1 − pz2 (2)

+ pz2 − pz3 (3)

+ pz3 − pz4 (4)

+ pz4 − pz5 (5)

+ pz5 − pz6 (6)
...

+ pzK − px∗ (·).

The terms with odd numbers correspond to arcs from X to Y , and are contained in
A. (The final · is an odd-numbered term.) The terms with even numbers are arcs
from Y to X , contained in A∗ \ A. Suppose first that as n grows, py∗ approaches
a limit. This imposes a lower bound on pz1 (since z1y

∗ ∈ A and hence we need
nonpositive rent on this arc). Since flow moves along arc z1z2, this in turn ensures
either that there is a lower bound on pz2 (if the arc z1z2 ∈ A) or that pz2 diverges
to +∞ (if z1z2 6∈ A). Continuing in this fashion, it cannot be the case that px∗

diverges to −∞, a contradiction. A similar argument can be constructed, beginning
from the assumption that px∗ approaches a limit as n grows large, and yet a similar
construction ensures that it cannot be the case that py∗ → +∞ and px∗ → −∞.

It remains to preclude the possibilities that px∗ and py∗ both approach +∞ or
both approach −∞, which is done in Appendix A. this ensures we have an equilibrium
involving only arcs in A, which is to say that we have an equilibrium flow.

This completes the proof of Lemma 4.

3.6 Closing the Ring

The proof of Theorem 1 is then completed by the following:

Lemma 7. The network (Z,A) and exit flow satisfy

q(B) ≥ 0

for all retaining B if and only if the associated bipartite matching problem (X ,Y)
together with the exit flow q satisfies Hall’s marriage condition.

Proof. First, suppose q(B) ≥ 0 for all retaining sets. Suppose X̃ ∪ Ỹ is a subset
of X × Y for which, in the bipartite matching problem, there are no arcs from nodes
in X̃ to nodes outside Ỹ . In the network flow problem, define a sequence of sets by
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letting Z1 = X̃ ∪ Ỹ , letting Z2 be the union of Z1 and any node that is the endpoint
of an arc whose origin lies in Z1; letting Z2 be the union of Z1 and any node that is
the endpoint of an arc whose origin lies in Z1, and so on. This sequence terminates
(since the set Z of nodes is finite) in a set Z∗ that is retaining (otherwise the process
would not terminate) and hence satisfies q(Z) ≥ 0. Moreover, Z∗ contains no node
z for which q(z) > 0 that is not contained in Ỹ (since otherwise there would be a
link in the bipartite matching problem from some node in X̃ to a node outside Ỹ , a
contradiction). Then we have

0 ≤ q(Z∗) ≤ q(X̃ ∪ Ỹ ),

giving Hall’s condition.
Second, for the other direction, let Z̃ be a retaining set. Then

q(Z̃) = q((X ∩ Z̃) ∪ (Y ∩ Z̃))

Because Z is retaining, in the bipartite problem there are no links from X ∩ Z̃ to
Y ∩ Z̃. Hence, Hall’s condition gives q((X ∩ Z̃) ∪ (Y ∩ Z̃)), establishing the needed
result.

A Appendix: Completion of Proof of Lemma 6

We present the argument for the case in which both approach +∞, with the other
case being analogous. If px∗ and py∗ both approach +∞, then we can divide X into
disjoint sets X and X and can divide Y into disjoint sets Y and Y such that the
prices in X and Y diverge and the prices in X and Y do not diverge. The sets X and
Y are nonempty, because they contain x∗ and y∗. The set X is nonempty because
it contains the ground node p0. There must be no arcs in A from X to Y (since
otherwise such an arc would generate positive rent, a contradiction. There must exist
no flow from nodes in X to nodes in Y (since these arcs earn negative rent). Any flow
from X to Y must occur along arcs in A, since otherwise the arc must earn negative
rent. Hall’s condition must then hold for the system whose nodes are X and Y, and
then must separately hold the system whose nodes are X and Y.

Intuitively, we now repeat the previous existence argument separately for
each of these systems, with one ground p

0
for the system whose nodes are X and

Y and one ground node p0 for the system whose nodes are X and Y . This gives
us an equilibrium for each system separately. We cannot be sure that we have an
equilibrium of the combines systems, since there may be arcs in A from X to Y .
However, if we set p

0
sufficiently low and p0 sufficiently high, these arcs will carry no

flow, and we will indeed have an equilibrium.
To make this argument precise we note that given any sets X and Y satisfy-

ing Hall’s condition, we can partition these sets into ((X1,Y1), (X2,Y2), . . . , (Xn,Yn))
with the property that Hall’s condition holds separately for each pair (Xk,Yk), and
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the are no arcs in A from any Xk to Yj for j > k. Now we start at the bottom and use
our basic argument to fix a price at a ground node p0(1) in X1 and find an equilibrium
of the system (X1,Y1). In particular, we cannot have prices diverge when we get to
the last step of this argument, since otherwise we could have decomposed (X1,Y1)
further. Next, we fix a ground node p0(2) in X2 and repeat the same construction
in (X2,Y2). This gives us an equilibrium for (X2,Y2), and moreover, by making p0(2)
sufficiently large, we can ensure that there is no positive rent on any arc in A from
a node in X2 to a node in Y1 (recall that by construction there are no arcs from X1

to Y2), ensuring that together, we have an equilibrium for the system consisting of
X1 ∪ X2 and Y1 ∪ Y2.

2 We then continue in this fashion.
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