
HAL Id: hal-03627120
https://sciencespo.hal.science/hal-03627120

Preprint submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Split-panel jackknife estimation of fixed-effect models
Geert Dhaene, Koen Jochmans

To cite this version:
Geert Dhaene, Koen Jochmans. Split-panel jackknife estimation of fixed-effect models. 2010. �hal-
03627120�

https://sciencespo.hal.science/hal-03627120
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Split-panel jackknife estimation of fixed-effect models

Geert Dhaene∗

K.U. Leuven

Koen Jochmans†

CORE

This version: January 2010

Abstract

We propose a jackknife for reducing the order of the bias of maximum likelihood
estimates of nonlinear dynamic fixed-effect panel models. In its simplest form, the
half-panel jackknife, the estimator is just 2θ̂ − θ1/2, where θ̂ is the MLE from the
full panel and θ1/2 is the average of the two half-panel MLEs, each using T/2 time
periods and all N cross-sectional units. This estimator eliminates the first-order
bias of θ̂. The order of the bias is further reduced if two partitions of the panel are
used, for example, two half-panels and three 1/3-panels, and the corresponding
MLEs. On further partitioning the panel, any order of bias reduction can be
achieved. The split-panel jackknife estimators are asymptotically normal, centered
at the true value, with variance equal to that of the MLE under asymptotics where
T is allowed to grow slowly with N . In analogous fashion, the split-panel jackknife
reduces the bias of the profile likelihood and the bias of marginal-effect estimates.
Simulations in fixed-effect dynamic discrete-choice models with small T show that
the split-panel jackknife effectively reduces the bias and mean-squared error of the
MLE, and yields confidence intervals with much better coverage.
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1 Introduction

Fixed effects in panel data models in general cause the maximum likelihood estimator

of the parameters of interest to be inconsistent if the length of the panel, T , remains

fixed while the number of cross-sectional units, N , grows large. This is the incidental

parameter problem, first noted by Neyman and Scott (1948). Lancaster (2000) gives

a review. For certain models, it is possible to separate the estimation of the fixed

effects from inference about the common parameters, for example, by conditioning on

a sufficient statistic, as in logit models (Rasch, 1961; Andersen, 1970; Chamberlain,

1980), or by using moment conditions that are free of fixed effects, as in the dynamic

linear model (Anderson and Hsiao, 1981, 1982).1 However, these approaches are model

specific and give no direct guidance to estimating average effects. A general solution to

the incidental parameter problem does not exist and seems impossible due to the lack

of point identification in certain models (Chamberlain, 2010; Honoré and Tamer, 2006)

or singularity of the information matrix (Hahn, 2001; Magnac, 2004).

A recent strand in the literature, aiming at greater generality, looks for estimators

that reduce the inconsistency (or asymptotic bias) of the MLE by an order of magnitude,

that is, from O(T−1) down to O(T−2).2 Lancaster (2000, 2002), Woutersen (2002),

Arellano (2003), and Arellano and Bonhomme (2009) argued that a suitably modified

likelihood or score function approximately separates the estimation of the fixed effects

from the estimation of the common parameters. Arellano and Hahn (2006, 2007) and

Bester and Hansen (2009) proposed modifications to the profile likelihood that remove

its leading bias term relative to a target likelihood that is free of fixed effects. Hahn and

Newey (2004) and Hahn and Kuersteiner (2004) derived the leading term in an expansion

of the bias of the MLE as T grows and constructed an estimator of it. Alternatively,

as shown by Hahn and Newey (2004) for i.i.d. panel data, an estimate of the leading

bias term may also be obtained by applying a delete-one panel jackknife, extending

Quenouille (1956). All these approaches lead to estimates that are first-order unbiased

and, unlike the MLE, have an asymptotic distribution that is correctly centered as N

and T grow at the same rate.3

We propose a split-panel jackknife (SPJ) for reducing the bias of the MLE in dynamic

1See Chamberlain (1984) and Arellano and Honoré (2001) for surveys.
2Arellano and Hahn (2007) give an overview of currently existing results.
3There has been a similar development in the statistics literature on inference in the presence

of nuisance parameters. See, for example, Cox and Reid (1987) and Sweeting (1987) on the role
of information orthogonality, and Firth (1993), Severini (2000), Li, Lindsay, and Waterman (2003),
Sartori (2003), and Pace and Salvan (2006) on modified profile likelihoods and score functions.
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models, adapting ideas of Quenouille (1949), who was interested in reducing the bias

of estimates from time series, to the panel setting. The jackknife exploits the property

that the bias of the MLE can be expanded in powers of T−1.4 By comparing the

MLE from the full sample with ML estimates computed from subsamples, an estimate

of the bias up to a chosen order is obtained. In a panel setting with fixed effects,

the subsamples are subpanels with fewer observations along the time dimension. In

its simplest form, the panel is split into two non-overlapping half-panels, each with

T/2 time periods and all N cross-sectional units. If θ1/2 is the average of the ML

estimates corresponding to the half-panels and θ̂ is the MLE from the full panel, then

the bias of θ̂ is roughly half of the bias of θ1/2 and, therefore, is estimated by θ1/2 − θ̂.
Subtracting this estimate from θ̂ gives the half-panel jackknife estimator, 2θ̂ − θ1/2,

which is first-order unbiased. Its asymptotic distribution is normal, correctly centered,

and has variance equal to that of the MLE, if N/T 3 → 0 as N, T →∞. By partitioning

the panel further, an appropriately weighted average of subpanel ML estimates admits

any order of bias reduction without inflating the asymptotic variance. An h-order SPJ

estimator has bias O(T−h−1) and is asymptotically normal and efficient if N/T 2h+1 → 0

as N, T → ∞. We give an asymptotic characterization of the transformation that the

SPJ induces on the remaining bias terms, similar to the characterization of Adams, Gray,

and Watkins (1971) in a cross-sectional framework with i.i.d. data, and derive a simple

rule for selecting the partitions that minimize the impact of jackknifing on the remaining

bias. For standard errors and confidence sets, we propose to use the bootstrap or the

jackknife where resampling or subsampling occurs over the cross-sectional units.5 The

SPJ may be applied in analogous fashion to bias-correct the likelihood. The maximizer of

the jackknifed profile loglikelihood inherits the bias reduction induced on the likelihood

and, under asymptotics where N, T → ∞ and T is allowed to grow slowly with N ,

is equivalent to the SPJ applied to the MLE. Similarly, the SPJ yields bias-corrected

estimates of average marginal and other effects, where the averaging is over the fixed

effects.

In Section 2 we introduce the panel model of interest and some notation. The SPJ

correction to the MLE is developed in Section 3. Sections 4 and 5 deal with corrections

to the profile likelihood and to average effect estimates, respectively. The results of a

Monte Carlo application to dynamic discrete-choice models are reported in Section 6.

4Miller (1974) contains a review on the jackknife. See also Shao and Tu (1995).
5In a cross-sectional framework, Brillinger (1964) and Reeds (1978) showed that the estimate ob-

tained by jackknifing the MLE has the same asymptotic distribution as the MLE and that the jackknife
estimate of variance is consistent.
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Section 7 concludes. An appendix contains the proofs.

2 Framework and assumptions

Let the data be zit ≡ (yit, xit), where i = 1, ..., N and t = 1, ..., T . We make the following

assumption.

Assumption 1. For all i, the processes zit = (yit, xit) are stationary and alpha mixing,

with mixing coefficients that decrease at an exponential rate, and are independent across

i. The conditional density of yit, given xit (relative to some dominating measure), is

f(yit|xit; θ0, αi0), where (θ0, αi0) is the unique maximizer of E log f(yit|xit; θ, αi) over the

Euclidean parameter space Θ×A and is interior to it.

Assumption 1 allows xit to contain lagged values of yit and of covariates, thus accom-

modating dynamic panel data. It also allows feedback of y on covariates. The variables

yit, xit and the parameters θ, αi may be vectors. Our interest lies in estimating θ0.

Let fit(θ, αi) ≡ f(yit|xit; θ, αi). The MLE of θ0 is

θ̂ ≡ arg max
θ
l̂(θ), l̂(θ) ≡ 1

NT

N∑
i=1

T∑
t=1

log fit(θ, α̂i(θ)),

where α̂i(θ) ≡ arg maxαi

1
T

∑T
t=1 log fit(θ, αi) and l̂(θ) is the profile loglikelihood, nor-

malized by the number of observations. For fixed T , θ̂ is generally inconsistent for θ0,

that is, θT ≡ plimN→∞θ̂ 6= θ0 (Neyman and Scott, 1948) due to the presence of incidental

parameters, α1, ..., αN . This is because, under regularity conditions,

θT = arg max
θ
lT (θ), lT (θ) ≡ E log fit(θ, α̂i(θ)),

where E(·) denotes limN→∞
1
N

∑N
i=1 E(·), while

θ0 = arg max
θ
l0(θ), l0(θ) ≡ E log fit(θ, αi(θ)),

where αi(θ) ≡ arg maxαi
E log fit(θ, αi). Therefore, with α̂i(θ) 6= αi(θ), the maximands

lT (θ) and l0(θ) are different and so, in general, are their maximizers.

We make the following assumptions about the asymptotic bias, θT − θ0, and about

the large N, T distribution of θ̂. Let sit(θ) ≡ ∂ log fit(θ, αi(θ))/∂θ, sit ≡ sit(θ0), and

Ω ≡ [E(sits
′
it)]
−1.
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Assumption 2. θT exists and, as T →∞,

θT = θ0 +
B1

T
+
B2

T 2
+ ...+

Bk

T k
+ o

(
T−k

)
, (2.1)

where k is a positive integer and B1, ..., Bk are constants.

Assumption 3. Ω exists and, as N, T →∞,

θ̂ − θT =
Ω

NT

N∑
i=1

T∑
t=1

sit + op
(
(NT )−1/2

)
. (2.2)

Assumption 2 is the key requirement for the split-panel jackknife to reduce the asymp-

totic bias of θ̂ from O(T−1) to a smaller order. Hahn and Kuersteiner (2004) give

conditions under which (2.1) holds for k = 1. Assumptions 1–3 imply that

√
NT (θ̂ − θT )

d→ N (0,Ω) as N, T →∞.

For example, if N/T → κ, then
√
NT (θ̂−θ0)

d→ N (B1

√
κ,Ω). Thus, while θ̂ is consistent

for θ0 as N, T →∞, it is asymptotically incorrectly centered when T grows at the same

rate as N or more slowly (Hahn and Kuersteiner, 2004).6 Under Assumptions 1–3,

jackknifing θ̂ will asymptotically re-center the estimate at θ0, even when T grows slowly

with N .

One may view the asymptotic bias of θ̂ as resulting from the inconsistency of l̂(θ)

for l0(θ), i.e. lT (θ) = plimN→∞l̂(θ) 6= l0(θ), which suggests that one may also jackknife

l̂(θ) instead of θ̂. We make the following assumptions, analogous to Assumptions 2

and 3, about the asymptotic bias lT (θ)− l0(θ) and about the large N, T distribution of

the profile score, ŝ(θ) ≡ ∂l̂(θ)/∂θ. Let sT (θ) ≡ plimN→∞ŝ(θ), s0(θ) ≡ ∂l0(θ)/∂θ, and

Ω(θ) ≡ [E
∑∞

j=−∞Cov(sit(θ), sit−j(θ))]
−1. Note that s0(θ0) = 0 and that Ω(θ0) = Ω =

−[∂s0(θ)/∂θ
′]θ=θ0 .

Assumption 4. There is a neighborhood of θ0 where lT (θ) exists and, as T →∞,

lT (θ) = l0(θ) +
C1(θ)

T
+
C2(θ)

T 2
+ ...+

Ck(θ)

T k
+ o

(
T−k

)
, (2.3)

where k is a positive integer and C1, ..., Ck are functions, each with a bounded derivative.

6This also occurs in dynamic linear models (Hahn and Kuersteiner, 2002; Alvarez and Arellano,
2003) and in nonlinear models with i.i.d. data (Hahn and Newey, 2004).
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Assumption 5. There is a neighborhood of θ0 where Ω(θ) and sT (θ) exist and, as

N, T →∞,

ŝ(θ)− sT (θ) =
1

NT

N∑
i=1

T∑
t=1

(
sit(θ)− s0(θ)

)
+ op

(
(NT )−1/2

)
.

Arellano and Hahn (2006) give conditions under which (2.3) holds for k = 1. Under

Assumptions 1 and 4–5, jackknifing l̂(θ) will asymptotically re-center its maximizer at

θ0, even when T grows slowly with N .

3 Bias correction of the MLE

We derive the split-panel jackknife estimator as a weighted average of the MLE and

MLEs defined by subpanels. A subpanel is defined as a proper subset S  {1, ..., T}
such that the elements of S are consecutive integers and |S| ≥ Tmin, where Tmin is the

least T for which θT exists.7 The MLE corresponding to a subpanel S is

θ̂S ≡ arg max
θ
l̂S(θ) , l̂S(θ) ≡ 1

N |S|

N∑
i=1

∑
t∈S

log fit(θ, α̂iS(θ)),

where α̂iS(θ) ≡ arg maxαi

1
|S|
∑

t∈S log fit(θ, αi).

Since subpanels by their definition preserve the time-series structure of the full panel,

stationarity implies plimN→∞θ̂S = θ|S| and, as |S| → ∞, θ|S|can be expanded as in (2.1),

with |S| replacing T . By taking a suitable weighted average of θ̂ and MLEs defined by

subpanels, one or more of the leading terms of the bias of θ̂ can be eliminated. There

are many different ways to achieve this, and, as a result, a whole range of bias-corrected

estimators is obtained.

The SPJ can be seen as transforming B1, ..., Bk into 0, ..., 0, B′h+1, ..., B
′
k, thus (i)

eliminating the first h terms of the bias of θ̂ and (ii) transforming the higher-order bias

terms that are not eliminated. We derive this transformation explicitly. Naturally, the

SPJ estimators can be classified by the order of bias correction achieved, h. Estimators

with the same h can be further classified as to whether or not the large N, T variance

is inflated (and, if so, by how much) and by the implied coefficients of the higher-order

bias terms that are not eliminated, B′h+1, ..., B
′
k. These coefficients are always larger (in

absolute value) than Bh+1, ..., Bk, respectively. For SPJ estimators that do not inflate

7We use |A| to denote the cardinality of A when A is a set, the absolute value when A is a real
number, and the determinant when A is a square matrix.
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the large N, T variance, there is a lower bound on B′h+1, ..., B
′
k. This bound increases

rapidly with h and is attained under a very simple rule for selecting the subpanels.

When one is prepared to accept variance inflation, there exist SPJ estimators that

reduce the bias further either by further increasing the order of bias correction, h, or by

reducing B′h+1, ..., B
′
k. Although the variance inflation may be substantial, so may be

the additional bias reduction, especially when T is very small and hence the bias of θ̂ is

likely to be large.

Our estimators are motivated by asymptotic arguments that involve both N →
∞ and T → ∞. We have no theoretical results for fixed T . Nevertheless, because

our asymptotics will allow T to grow very slowly with N , they are intended to give a

reasonable approximation to the properties of the estimators in applications where T

may be (though need not be) small compared to N .

3.1 First-order bias correction

Suppose for a moment that T is even. Partition {1, ..., T} into two half-panels, S1 ≡
{1, ..., T/2} and S2 ≡ {T/2+1, ..., T}, and let θ1/2 ≡ 1

2
(θ̂S1+θ̂S2). Clearly, plimN→∞θ1/2 =

θT/2 and so, the half-panel jackknife estimator

θ̂1/2 ≡ 2θ̂ − θ1/2 (3.1)

has an asymptotic bias

plimN→∞θ̂1/2 − θ0 = −2
B2

T 2
− 6

B3

T 3
− ...− (2k − 2)

Bk

T k
+ o

(
T−k

)
= O(T−2)

if (2.1) holds with k ≥ 2. That is, θ̂1/2 is a first-order bias-corrected estimator of θ0; it

is free of bias up to O(T−2). Assumptions 1 and 3 imply

√
NT

(
θ̂ − θT

θ1/2 − θT/2

)
d→ N

(
0,

(
Ω Ω
Ω Ω

))
as N, T →∞,

and, in turn,
√
NT (θ̂1/2 − 2θT + θT/2)

d→ N (0,Ω). Thus, θ̂1/2 has the same large

N, T variance as θ̂. Under asymptotics where N, T → ∞ and N/T 3 → 0, we have√
NT (2θT − θT/2 − θ0) =

√
NTO(T−2)→ 0. Therefore,

√
NT (θ̂1/2 − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 3 → 0.

6



Thus, θ̂1/2 is asymptotically correctly centered at θ0 whenever T grows faster than N1/3.8

These properties carry over to a more general class of SPJ estimators.

Let g ≥ 2 be an integer. For T ≥ gTmin, let S ≡ {S1, ..., Sg} be a collection of

non-overlapping subpanels such that ∪S∈SS = {1, ..., T} and the sequence minS∈S |S|/T
is bounded away from zero. Define the SPJ estimator

θ̂S ≡
g

g − 1
θ̂ − 1

g − 1
θS , θS ≡

∑
S∈S

|S|
T
θ̂S.

Theorem 1. Let Assumptions 1 and 2 hold. If k = 1, then plimN→∞θ̂S = θ0 + o (T−1).

If k ≥ 2, then

plimN→∞θ̂S = θ0 +
B′2
T 2

+
B′3
T 3

+ ...+
B′k
T k

+ o
(
T−k

)
where

B′j ≡
g − T j−1

∑
S∈S |S|1−j

g − 1
Bj = O(1),

sign(B′j) = −sign(Bj), and |B′j| ≥ |Bj|
∑j−1

m=1 g
m. If Assumptions 1, 2, and 3 hold for

some k ≥ 2, then

√
NT (θ̂S − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 3 → 0. (3.2)

Theorem 1 requires the collection of subpanels, S, to be a partition of {1, ..., T}. This

condition is not needed for bias correction but is required for not inflating the large

N, T variance of θ̂S . When (in an asymptotically non-negligible sense) S does not

cover {1, ..., T} or when some subpanels intersect, the large N, T variance of θ̂S (with

θS suitably redefined as
∑

S∈ S |S|θ̂S/
∑

S∈S |S|) exceeds Ω. We will state this more

precisely in Subsection 3.3.

While θ̂S eliminates the first-order bias of θ̂ without increasing the large N, T vari-

ance, this happens at the cost of increasing the magnitude of the higher-order bias

terms, since
∑j−1

m=1 g
m > 1 for j ≥ 2. For a given g, any higher-order bias coefficient, B′j,

is minimized (in absolute value) if and only if
∑

S∈S |S|1−j is minimized. This occurs

if and only if the subpanels S ∈ S have approximately equal length, that is, for all

8Clearly, under the same asymptotics, 2θ̂−θ̂S is also correctly centered and free of bias up to O(T−2)
for any subpanel S with |S| = T/2. This estimator bears resemblance to an estimator suggested by Hu
(2002, pp. 2512–2513), although she seems to be using an estimate based on T/2 randomly selected
time periods instead of θ̂S . Whether such an approach reduces the asymptotic bias of θ̂ is unclear, since
the random selection alters the dependency structure of the data and hence may affect the coefficients
in (2.1). Further, unlike θ̂1/2, an estimator of the form 2θ̂ − θ̂S has inflated large N,T variance, equal
to 2Ω.
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S ∈ S, either |S| = bT/gc or |S| = dT/ge. Thus, within the class θ̂S with given g, the

equal-length SPJ estimator

θ̂1/g ≡
g

g − 1
θ̂ − 1

g − 1
θ1/g, θ1/g ≡

∑
S∈S

|S|
T
θ̂S,

where |S| = bT/gc or |S| = dT/ge for all S ∈ S,

minimizes all higher-order bias terms. The subscript 1/g indicates that each subpanel

is approximately a fraction 1/g of the full panel.9 It follows from Theorem 1 that θ̂1/g

has second-order bias −gB2/T
2. Hence, within the class θ̂S , all higher-order bias terms

are minimized by the half-panel jackknife estimator,

θ̂1/2 ≡ 2θ̂ − θ1/2, θ1/2 ≡
|S1|
T
θ̂S1 +

|S2|
T
θ̂S2 ,

where S1 = {1, ..., bT/2c} or S1 = {1, ..., dT/2e}, and S2 = {1, ..., T}\S1,

which slightly generalizes (3.1) in that T is allowed to be odd. This provides a theoretical

justification for using the half-panel jackknife—of course, within the confines of the class

θ̂S . As will be shown in Subsection 3.2, the higher-order bias terms of θ̂1/2 can be further

eliminated up to some order determined by T .

The half-panel jackknife estimator is very easy to compute. All that is needed

are three maximum likelihood estimates. When N is large, as is often the case in

microeconometric panels, a computationally efficient algorithm for obtaining maximum

likelihood estimates will exploit the sparsity of the Hessian matrix, as, for example, in

Hall (1978). Furthermore, once θ̂ and α̂1, ..., α̂N are computed, they are good starting

values for computing θ̂S1 and α̂1S1 , ..., α̂NS1 ; in turn, 2θ̂−θ̂S1 and 2α̂1−α̂1S1 , ..., 2α̂N−α̂NS1

are good starting values for computing θ̂S2 and α̂1S2 , ..., α̂NS2 .
10

The half-panel jackknife may be seen as an automatic way of estimating and removing

the first-order bias of θ̂. Unlike the analytically bias-corrected estimator of Hahn and

Kuersteiner (2004), it avoids the need of a plug-in estimate for estimating the leading

term of θT − θ0, and with it the need to choose smoothing parameters. Both estimators

have zero first-order bias and have the same limiting distribution as N, T → ∞ and

N/T 3 → 0. However, their second-order biases will generally be different. While the

SPJ inflates the magnitude of all remaining bias terms, the analytical bias correction

9When T is not divisible by g, there are several ways to split the panel into g approximately equal-
length subpanels, all yielding estimators θ̂1/g with the same bias. Averaging θ̂1/g over all possible
choices of S removes any arbitrariness arising from a particular choice of S but does not affect the bias.

10For sufficiently large T , the Newton-Raphson algorithm, starting from the values mentioned, con-
verges in one iteration.
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alters those terms through the use of the MLE as a plug-in estimate. Presumably, the

use of an iterative procedure, as in Hahn and Newey (2004), will leave the second-order

bias term unaffected.

The jackknife, as a method for bias reduction, originated in the seminal work of

Quenouille (1949, 1956). Quenouille (1949) argued that, in a time series context, the

first-order bias of the sample autocorrelation coefficient, say ρ̂, is eliminated by using

two half-series to form 2ρ̂− ρ1/2, in obvious notation. Quenouille (1956) observed that,

when an estimator Tn, based on n i.i.d. observations, has bias O(n−1), the estimator

nTn − (n− 1)T n−1 (later termed the delete-one jackknife estimator), where T n−1 is the

average of the n statistics Tn−1, often has bias O(n−2). The half-panel jackknife is the

natural extension of Quenouille’s (1949) half-series jackknife to fixed-effect panel data,

just as Hahn and Newey’s (2004) panel jackknife extends Quenouille’s (1956) delete-one

jackknife to fixed-effect panel data that are i.i.d. across time.

The jackknife is a much more powerful bias-reducing device in fixed-effect panels

than in a single time series or single cross-section framework, where it was originally

used. If N/T → ∞, the squared bias dominates in the asymptotic mean squared error

of θ̂, which is O(N−1T−1) + O(T−2). The jackknife, operating on the dominant term,

reduces the asymptotic MSE to O(N−1T−1) +O(T−4). By contrast, in a time series or

a cross-section setting, it leaves the asymptotic MSE unchanged at O(T−1) or O(N−1).

3.2 Higher-order bias correction

As shown, a suitable linear combination of the MLE and a weighted average of non-

overlapping subpanel MLEs removes the first-order bias of the MLE without large N, T

variance inflation. The use of two half-panels gives the least second- and higher-order

bias terms. Continuing the arguments, we find that they yield second- and higher-order

bias corrections.11 A suitable linear combination of the MLE and two weighted averages

of MLEs, each one associated with a collection of non-overlapping subpanels, removes

the first- and second-order bias without large N, T variance inflation. The use of two

half-panels and three 1/3-panels gives the least third- and higher-order bias terms. And

so on.

To see how the SPJ can eliminate the second-order bias of θ̂, suppose for a moment

that T is divisible by 2 and 3, and let G = {2, 3}. Then the estimator θ̂1/G = (1 +a1/2 +

11With i.i.d. cross-sectional data, Quenouille (1956) already noted that a second-order bias correction
is obtained by re-applying the delete-one jackknife, with slight modification, to nTn−(n−1)Tn−1. The
idea was later generalized to higher-order corrections by Schucany, Gray, and Owen (1971).
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a1/3)θ̂− a1/2θ1/2− a1/3θ1/3 has zero first- and second-order biases if a1/2 and a1/3 satisfy(
1 + a1/2 + a1/3

T
−
a1/2

T/2
−
a1/3

T/3

)
B1 = 0,(

1 + a1/2 + a1/3

T 2
−

a1/2

(T/2)2
−

a1/3

(T/3)2

)
B2 = 0,

regardless of B1 and B2. This gives a1/2 = 3, a1/3 = −1, and

θ̂1/G ≡ 3θ̂ − 3θ1/2 + θ1/3, G = {2, 3}.

θ̂1/G has an asymptotic bias

plimN→∞θ̂1/G − θ0 = 6
B3

T 3
+ 36

B4

T 4
+ ...+ (3− 3× 2k + 3k)

Bk

T k
+ o

(
T−k

)
= O(T−3)

if (2.1) holds with k ≥ 3. Further, by the arguments given earlier,
√
NT (θ̂1/G − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 5 → 0.

That is, θ̂1/G has the same large N, T variance as Ω and is asymptotically correctly

centered at θ0 when T grows faster than N1/5.

We now introduce SPJ estimators that remove the bias terms of θ̂ up to order h ≤ k,

without inflating the large N, T variance. Let G ≡ {g1, ..., gh} be a non-empty set of

integers, with 2 ≤ g1 < ... < gh. For T ≥ ghTmin and each g ∈ G, let Sg be a collection

of g non-overlapping subpanels such that ∪S∈SgS = {1, ..., T} and, for all S ∈ Sg,
|S| = bT/gc or |S| = dT/ge. Let A be the h× h matrix with elements

Ars ≡
∑
S∈Sgs

(
T

|S|

)r−1

, r, s = 1, ..., h,

and let a1/gr be the rth element of (1− ι′A−1ι)−1A−1ι, where ι is the h× 1 summation

vector. Define the SPJ estimator

θ̂1/G ≡

(
1 +

∑
g∈G

a1/g

)
θ̂ −

∑
g∈G

a1/gθ1/g, θ1/g ≡
∑
S∈Sg

|S|
T
θ̂S. (3.3)

To describe the higher-order bias of θ̂1/G, let

bj(G) ≡ (−1)hg1...gh
∑

k1,...,kh≥0
k1+...+kh≤j−h−1

gk11 ...g
kh
h , j = 1, 2, ..., (3.4)

with the standard convention that empty sums and products are 0 and 1, respectively,

so that bj(G) = 0 for j ≤ h = |G|, and bj(∅) = 1 for all j ≥ 1.
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Theorem 2. (i) Let Assumptions 1 and 2 hold for some k ≥ h. If k = h, then

plimN→∞θ̂1/G = θ0 + o
(
T−h

)
. If k > h, then

plimN→∞θ̂1/G = θ0 +
B′h+1(G)

T h+1
+ ...+

B′k(G)

T k
+ o

(
T−k

)
(3.5)

where B′j(G) = bj(G)Bj +O(T−1). (ii) If Assumptions 1, 2, and 3 hold for some k > h,

then √
NT (θ̂1/G − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 2h+1 → 0. (3.6)

As the result shows, the SPJ estimator defined in (3.3) eliminates the low-order bias

terms of the MLE without large N, T variance inflation and, hence, is correctly centered

at θ0 under slow T asymptotics. However, this occurs at the cost of increasing the higher-

order bias terms that are not eliminated, roughly by a factor of bj(G).12 For given h,

the factors bj(G) all have the same sign, regardless of G and j. The sign alternates in

h. For any given h, |bj(G)| is minimal for all j > h if and only if G = {2, 3, ..., h + 1}.
This choice of G is the SPJ that we tend to recommend because (i) it eliminates the

low-order bias terms of the MLE at the least possible increase of the higher-order bias

terms and (ii) it attains the Cramér-Rao bound under slow T asymptotics, whereas the

MLE only attains this bound when T grows faster than N , i.e., when N/T → 0. Even

with this optimal choice of G, the factors bj(G) increase rapidly as h grows. Table 1

gives the first few values. The elements on the main diagonal of the table are the leading

non-zero bias factors, bh+1(G) = (−1)h(h+ 1)!, h = 0, 1, ...

Table 1: Higher-order bias factors of the SPJ

b1(·) b2(·) b3(·) b4(·) b5(·)
θ̂ 1 1 1 1 1

θ̂1/2 0 −2 −6 −14 −30

θ̂1/{2,3} 0 0 6 36 150

θ̂1/{2,...,4} 0 0 0 −24 −240

θ̂1/{2,...,5} 0 0 0 0 120

Regarding the choice of h, extending the arguments given above would suggest choos-

ing h = bT/Tminc − 1, which is the largest value for which the SPJ estimator (3.3) is

defined. However, we do not recommend this choice except, perhaps, when T is rela-

tively small, for at least three reasons. First, in the asymptotics, we kept h fixed while

12When T increases in multiples of the least common multiple of g1, ..., gl, (3.5) holds with B′j(G)
exactly equal to bj(G)Bj .
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T →∞, so we have no justification for letting h grow large with T . Second, as T →∞,

the bias of θ̂ (and that of any fixed-h SPJ estimator) vanishes, and so does the gain in

terms of (higher-order) bias reduction. Third, the choice of h should also be guided by

variance considerations. Our analysis yields the same first-order asymptotic variance for

all SPJ estimators 3.3) and the MLE. However, just as the SPJ affects the bias terms of

all orders, it also affects the higher-order variance terms. To shed light on this question,

higher-order asymptotic variance calculations would be required, which are beyond the

scope of this paper.

3.3 Bias correction with overlapping subpanels

The SPJ estimator defined in (3.3) uses h collections of non-overlapping subpanels to

eliminate the first h bias terms of θ̂. The same can be achieved by using collections

of overlapping subpanels. Subpanel overlap has two main effects: (i) it permits the

higher-order bias coefficients B′h+1, ..., B
′
k to be substantially smaller than is otherwise

possible; (ii) it increases the large N, T variance. Thus, a trade-off between high-order

bias reduction and large N, T variance minimization arises (though see the remark at

the end of this subsection).

To fix ideas, suppose T is divisible by g, a rational number strictly between 1 and

2. Let S1 and S2 be subpanels such that S1 ∪ S2 = {1, ..., T} and |S1| = |S2| = T/g.

Consider the SPJ estimator

θ̂1/g ≡
g

g − 1
θ̂ − 1

g − 1
θ1/g, θ1/g ≡

1

2
(θ̂S1 + θ̂S2), (3.7)

where, as before, the subscript 1/g indicates that each subpanel uses a fraction 1/g of

the full panel. This estimator has asymptotic bias

plimN→∞θ̂1/g − θ0 = −gB2

T 2
− g(1 + g)

B3

T 3
− ...− g(1 + g + ...+ gk−2)

Bk

T k
+ o

(
T−k

)
.

Each term of this bias is smaller (in magnitude) than the corresponding bias term of

θ̂1/2. As g decreases from 2 to 1, the overlap between the subpanels increases and the

higher-order bias coefficients B′j = −g
∑j−2

h=0 g
hBj decrease to (1− j)Bj (in magnitude).

Regarding the large N, T variance, a simple calculation gives

√
NT

(
θ̂ − θT

θ1/g − θT/g

)
d→ N

(
0,

(
Ω Ω

Ω g(3−g)
2

Ω

))
as N, T →∞,

and hence
√
NT

(
θ̂1/g − θ0

)
d→ N

(
0,

g

2(g − 1)
Ω

)
as N, T →∞ and N/T 3 → 0.

12



As g decreases from 2 to 1, the large N, T variance of θ̂1/g increases from Ω to ∞.

We now consider SPJ estimators where there may be collections of non-overlapping

subpanels and collections of two overlapping subpanels. Let 0 ≤ o ≤ h, 1 ≤ h, and

G ≡ {g1, ..., gh}, where 1 < g1 < ... < go < 2 ≤ go+1 < ... < gh and go+1, ..., gh

are integers. For T ≥ ghTmin and T large enough such that dT/ge 6= dT/g′e for all

distinct g, g′ ∈ G, let, for each g ∈ G, Sg be a collection of subpanels such that (i)

∪S∈SgS = {1, ..., T}; (ii) if g < 2, then Sg consists of two subpanels, each with dT/ge
elements; (iii) if g ≥ 2, Sg consists of g non-overlapping subpanels and, for all S ∈ Sg,
|S| = bT/gc or |S| = dT/ge. Define the SPJ estimator

θ̂1/G ≡

(
1 +

∑
g∈G

a1/g

)
θ̂ −

∑
g∈G

a1/gθ1/g, θ1/g ≡
∑
S∈Sg

|S|∑
S∈Sg
|S|

θ̂S, (3.8)

where a1/gr is the rth element of (1 − ι′A−1ι)−1A−1ι and A is the h × h matrix with

elements

Ars ≡
∑

S∈Sgs
(T/|S|)r−1∑

S∈Sgs
|S|/T

, r, s = 1, ..., h. (3.9)

Note that, when o = 0, θ̂1/G reduces to the SPJ estimator given in (3.3). Let b(G) be

as in (3.4), and let

dT (G) ≡ 1 + (1− ι′A−1ι)−2ι′A′−1ΓA−1ι,

where Γ is the symmetric h× h matrix whose (r, s)th element, for r ≤ s, is

Γrs ≡
{

1
2

(A1r − 1) (2− A1s) if s ≤ o,
0 otherwise.

Theorem 3. With θ̂1/G redefined by (3.8) and (3.9), part (i) of Theorem 2 continues

to hold and, if Assumptions 1, 2, and 3 hold for some k > h, then√
NT

dT (G)
(θ̂1/G − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 2h+1 → 0, (3.10)

and d(G) ≡ limT→∞ dT (G) ≥ 1, with equality if and only if o = 0.

Overlapping subpanels allow |bj(G)| to be much smaller than is possible with collections

of non-overlapping subpanels because |bj(G)| increases rapidly in all g ∈ G. For the

same reason, the optimal choice of go+1, ..., gh, from the perspective of minimizing the

higher-order bias terms, is 2, ..., h−o+1. However, with overlapping subpanels, the large

N, T variance inflation factor, dT (G), increases very rapidly with both the number of
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collections of overlapping subpanels, o, and the number of collections of non-overlapping

subpanels, h− o. To illustrate the variance inflation, Table 2 gives the minimum value

of d(G) when there are up to two collections of overlapping subpanels (o = 1, 2) and

up to three collections of non-overlapping subpanels (h − o = 1, 2, 3), the latter with

go+1, ..., gh set equal to 2 to up to 4. The minimum of d(G) is computed over g1, ..., go,

given o, and the minimizers, g∗1, ..., g
∗
o , are also given in the table. The minimum of

d(G) increases very rapidly in o, so in practice one would hardly ever consider using

more than one collection of overlapping subpanels in combination with collections of

non-overlapping subpanels. The case without non-overlapping subpanels (o = h) is not

treated in the table (where it would correspond to G2 = ∅) because, for given o = h,

the least value of d(G) is reached as go approaches 2, implying that, for o = h = 1, 2, 3,

we have infG d(G) = 1, 9, 124.5, respectively.

Table 2: Variance inflation factors of the SPJ with overlapping subpanels

G∗1 G2

{2} {2, 3} {2, 3, 4}

{g∗1}
9
{1.5}

30.0
{1.36}

66.1
{1.30}

{g∗1, g∗2}
124.5

{1.20, 1.84}
440.2

{1.15, 1.77}
1039.7

{1.13, 1.72}
Note: The entries are the minimal variance inflation factor, d(G∗1∪
G2), and the corresponding G∗1 = arg minG1:max G1<2 d(G1 ∪ G2),
given G2 and o = |G1|.

Consideration of the variance inflation factor, while based on large N, T arguments

that may be inaccurate when T is small, suggests that the SPJ with overlapping sub-

panels should only be used in applications where N is very large and there is a great

need for bias reduction, for example, when T is very small. Note, however, that, when

Tmin < T < 2Tmin, the SPJ can only be applied if the subpanels overlap.

Subpanel overlap causes large N, T variance inflation because the time periods, t,

receive unequal weights in those θ1/g where 1 < g < 2. In principle, it is possible to

prevent variance inflation by adding to θ1/g a term, with zero probability limit, that

equalizes those weights. As an example, take g = 3/2 and suppose T is a multiple of 3

and T ≥ 3Tmin. Then

θ2/3 =
1

2
(θ̂1:2 + θ̂2:3),

where θ̂1:2 and θ̂2:3 use the first two-thirds and the last two-thirds of the time periods,
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respectively. Now consider

θ̃2/3 ≡
1

2
(θ̂1:2 + θ̂2:3) +

1

12
(θ̂1:1 − 2θ̂2:2 + θ̂3:3),

where each t receives a weight 1/T and plimN→∞θ̃2/3 = plimN→∞θ2/3 because the second

term of θ̃2/3 has zero probability limit. Hence, replacing θ2/3 with θ̃2/3 in θ̂1/G, with

unchanged weights a1/g, g ∈ G, will leave the asymptotic bias unaffected but will reduce

the large N, T variance. It is possible, for any T ≥ 2Tmin and any g ∈ (1, 2) that

divides T , to find θ̃1/g, similar to θ̃2/3, such that each t receives a weight 1/T and

plimN→∞θ̃1/g = plimN→∞θ1/g. However, the weights associated with certain subpanel

MLEs in the zero plim term may become large, especially when g is close to 1, similar

to the weights of the delete-one estimates in the ordinary jackknife. In simulations with

small T , we found that this may substantially increase the variance, so we leave the idea

for future work.

3.4 Variance estimation and confidence sets

Let θ̂1/G be an SPJ estimator of the form (3.8) and suppose Assumptions 1 to 3 hold

for some k > h. Consider asymptotics where N, T → ∞ and N/T 2h+1 → 0, so that

θ̂1/G is asymptotically normal and centered at θ0. For estimating Var(θ̂1/G) (assuming

it exists) and for constructing confidence sets for θ0, we propose to use the bootstrap,

where the i’s are resampled, or the delete-one-i jackknife.13 We assume that α1, ..., αN

are i.i.d. random draws from some distribution, thus implying that z1, ..., zN , where

zi ≡ (zi1, ..., ziT )′, are i.i.d. random vectors. The bootstrap and jackknife are then

essentially the same as in the case of i.i.d. cross-sectional data.

Write the original panel as z ≡ (z1, ..., zN) and the SPJ estimator as θ̂1/G(z). Define

a bootstrap panel as a draw z̃ ≡ (zd1 , ..., zdN
) where d1, ..., dN are i.i.d. random draws

from {1, ..., N}. Thus, the columns of z̃ are columns of z drawn with replacement. The

bootstrap distribution of θ̂1/G is the distribution of θ̂1/G(z̃), given z. Its variance is a

consistent estimate of Var(θ̂1/G) (in the sense that the ratio of estimate to estimand

converges weakly to 1) and α-probability minimum-volume ellipsoids are confidence sets

with asymptotic coverage α.

13Kapetanios (2008) suggested this version of the bootstrap for fixed-effect linear panel data models.
It is perhaps also worth noting that, under our asymptotics, the usual estimate of the asymptotic
variance of the MLE is also a consistent estimate of the asymptotic variance of the SPJ estimator (at
least when there is no subpanel overlap; otherwise, the estimate is to be multiplied by dT (G)).
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Let z−i be obtained from z on deleting its i-th column. The N quantities Nθ̂1/G(z)−
(N − 1)θ̂1/G(z−i) can then be viewed as pseudo-values, in the sense of Tukey (1958), as-

sociated with θ̂1/G. The pseudo-values are nearly independent across i and have nearly

the same distribution as θ̂1/G. The jackknife distribution of θ̂1/G is the uniform distri-

bution on the set of pseudo-values, given z. It can be used in the same way as the

bootstrap distribution to deliver a consistent estimate of Var(θ̂1/G) and asymptotically

correct α-confidence sets.

4 Bias correction of the likelihood

In Section 3 the SPJ was used to remove the low-order bias terms of θ̂. It can also

be used, in a completely analogous fashion, to remove the low-order bias terms of the

profile loglikelihood, l̂(θ).

Let T ′min be the least T for which lT (θ) exists and is non-constant.14 To remove the

first-order bias term of lT (θ) using half-panels, let T ≥ 2T ′min, suppose T is even, let

S1 ≡ {1, ..., T/2} and S2 ≡ {T/2 + 1, ..., T}, and define the half-panel jackknife profile

loglikelihood as

l̂1/2(θ) ≡ 2l̂(θ)− l1/2(θ), l1/2(θ) ≡
1

2

(
l̂S1(θ) + l̂S2(θ)

)
.

Then

plimN→∞l̂1/2(θ)− l0(θ) = −2
C2(θ)

T 2
− 6

C3(θ)

T 3
− ...− (2k − 2)

Ck(θ)

T k
+ o

(
T−k

)
= O(T−2)

if (2.3) holds with k ≥ 2. Thus, l̂1/2(θ) is free of bias up to O(T−2), and so is the

corresponding SPJ estimator,

θ̇1/2 = arg max
θ
l̂1/2(θ).

Let s1/2(θ) ≡ ∂l1/2(θ)/∂θ and ŝ1/2(θ) ≡ ∂l̂1/2(θ)/∂θ. Assumptions 1 and 5 imply that,

in a neighborhood around θ0,

√
NT

(
ŝ(θ)− sT (θ)

s1/2(θ)− sT/2(θ)

)
d→ N

(
0,

(
Ω(θ)−1 Ω(θ)−1

Ω(θ)−1 Ω(θ)−1

))
as N, T →∞,

14The values Tmin and T ′min may differ. This occurs, for example, in dynamic binary models. We
return to this point in Section 6.
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so
√
NT (ŝ1/2(θ)−s0(θ))

d→ N (0,Ω(θ)−1) as N, T →∞ and N/T 3 → 0. Hence, because

ŝ1/2(θ̇1/2) = 0 with probability approaching 1,
√
NT (θ̇1/2− θ0) is asymptotically normal

and centered at 0. Expanding ŝ1/2(θ̇1/2) = 0 gives

0 =
√
NTŝ1/2(θ0) +

√
NTĥ1/2(θ0)(θ̇1/2 − θ0) + op(1)

where ĥ1/2(θ) ≡ ∂ŝ1/2(θ)/∂θ
′ = ∂s0(θ)/∂θ

′ + op(1). So ĥ1/2(θ0) = −Ω−1 + op(1) and

√
NT (θ̇1/2 − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 3 → 0.

Under asymptotics where N, T →∞ and N/T 3 → 0, θ̂1/2 and θ̇1/2 are efficient, so they

must be asymptotically equivalent, i.e.,
√
NT (θ̂1/2 − θ̇1/2)

p→ 0.

The half-panel SPJ provides an automatic way of correcting the bias of the profile

likelihood, l̂(θ). Analytically bias-corrected profile likelihoods were proposed by Arellano

and Hahn (2006) and Bester and Hansen (2009). Relative to l̂(θ), all methods give an

improved approximation to the target likelihood, l0(θ), by removing the first-order term

of lT (θ)− l0(θ). More generally, define the SPJ profile loglikelihood by analogy to (3.8)

as

l̂1/G(θ) ≡

(
1 +

∑
g∈G

a1/g

)
l̂(θ)−

∑
g∈G

a1/gl1/g(θ), l1/g(θ) ≡
∑
S∈Sg

|S|∑
S∈Sg
|S|

l̂S(θ),

where G = {g1, ..., gh} and the collections of subpanels Sg, the matrix A, and the scalars

a1/g are as in Subsection 3.3. Then, if Assumptions 1 and 4 hold for some k ≥ h, in a

neighborhood of θ0, we have plimN→∞l̂1/G(θ) = l0(θ) + o(T−h) and, if k > h,

plimN→∞l̂1/G(θ) = l0(θ) +
C ′h+1(θ,G)

T h+1
+ ...+

C ′k(θ,G)

T k
+ o

(
T−k

)
where C ′j(θ,G) = bj(G)Cj(θ) +O(T−1). The SPJ estimator associated with l̂1/G is

θ̇1/G = arg max
θ
l̂1/G(θ),

and is free of bias up to o(T−h) if k ≥ h, and up to O(T−h−1) if k > h. If Assumptions

1, 4, and 5 hold for some k > h, then√
NT

dT (G)
(θ̇1/G − θ0)

d→ N (0,Ω) as N, T →∞ and N/T 2h+1 → 0,

and θ̇1/G and θ̂1/G are asymptotically equivalent as N, T →∞ and N/T 2h+1 → 0.
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Note that θ̇1/G is equivariant under one-to-one transformations of θ, while θ̂1/G is

not. Note, also, that applying the SPJ to the profile likelihood, l̂(θ) , is identical to

applying the SPJ to the profile score, ŝ(θ); that is, the resulting SPJ estimators of θ0

are the same.

Jackknifing the profile loglikelihood readily extends to unbalanced data. Suppose an

unbalanced panel is formed as the union of J independent balanced panels of dimen-

sions Nj ×Tj, j = 1, ..., J . Let wj = NjTj/
∑

j NjTj and let all ratios Nj/Nj′ and Tj/Tj′

be fixed as
∑

j Nj or
∑

j Tj grows. The MLE is θ̂ = arg maxθ
∑

j wj l̂j(θ), where l̂j(θ)

is the normalized profile loglikelihood from the jth balanced panel. Jackknifing l̂j(θ)

for each j as described above eliminates the low-order bias terms of l̂j(θ) and hence of∑
j wj l̂j(θ). The estimator maximizing the jackknifed version of

∑
j wj l̂j(θ) is asymp-

totically normal and correctly centered as
∑

j Nj,
∑

j Tj → ∞ with
∑

j Tj allowed to

increase slowly with
∑

j Nj. By contrast, it is not immediately clear how one should

jackknife θ̂ directly because, in general, plimP
j Nj→∞θ̂ 6=

∑
j wjθTj

. One may, however,

jackknife the asymptotically equivalent estimator
∑

j wj θ̂j, where θ̂j is the MLE from

the jth balanced panel, by jackknifing θ̂j for each j.

5 Bias correction for average effects

Suppose we are interested in the quantity µ0 defined by the moment condition

Eq(µ0, w, zit, θ0, αi0) = 0

for some known function q(·) and chosen value w, where dim q = dimµ0. This includes

averages and quantiles of marginal or non-marginal effects at fixed or observed covariate

values. For example, in the probit model Pr[yit = 1|xit] = Φ(αi0 + θ0xit), one may be

interested in the average effect (on the choice probabilities) of changing xit from w1 to

w2, µ0 ≡ E(Φ(αi0 + θ0w2) − Φ(αi0 + θ0w1)), or in the average marginal effect of xit at

observed values, µ0 ≡ θ0Eφ(αi0 + θ0xit).
15

The SPJ readily extends to this setting. A natural estimator for µ0 is the value µ̂

that solves

q̂(µ̂, θ̂) = 0, q̂(µ, θ) ≡ 1

NT

N∑
i=1

T∑
t=1

q(µ,w, zit, θ, α̂i(θ)).

15For some models the bias of average effect estimates may be negligibly small because the biases
may nearly cancel out by averaging over the cross-sectional units. See Hahn and Newey (2004) for
examples and Fernández-Val (2009) for theoretical results in the static probit model. This small bias
property does not generally hold, however, for models with dynamics (Fernández-Val, 2009).
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Whenever µ̂ has an asymptotic bias that can be expanded in integer powers of T−1, it

can be corrected for bias by jackknifing (µ̂, θ̂) or (q̂, l̂).

6 Simulations for dynamic discrete-choice models

We chose fixed-effect dynamic probit and logit models as a test case for the SPJ. When

T is small, the MLE in these models is heavily biased.16 Here, we present results for the

following probit models:

AR(1): yit = 1(αi0 + ρ0yit−1 + εit ≥ 0), εit ∼ N (0, 1),

ARX(1): yit = 1(αi0 + ρ0yit−1 + β0xit + εit ≥ 0), εit ∼ N (0, 1).

The data were generated with αi ∼ N (0, 1) and xit = .5xit−1 + uit, where uit ∼ N (0, 1).

For both models, the initial observations, yi0 and xi0, were drawn from their stationary

distributions. We set N = 500; T = 6, 9, 12, 18; ρ0 = .5, 1; β0 = .5; and ran 10,000

Monte Carlo replications at each design point, with all random variables redrawn in

each replication.

We estimated the common parameter, θ0 = ρ0 in the AR(1) and θ0 = (ρ0, β0)
′

in the ARX(1), by the MLE, θ̂; the analytically bias-corrected estimators of Hahn

and Kuersteiner (2004) and Arellano and Hahn (2006), θ̂HK and θ̇AH;17 and the SPJ

estimators θ̂1/2, θ̂1/{2,3}, θ̇1/2, and θ̇1/{2,3}, with one exception.18 When T = 6, θ̂1/{2,3} is

not defined because Tmin = 3; it was replaced by θ̂1/{3/2,2}. This is the only case where

subpanels overlap (in a given collection) and the corresponding figures in the tables

below are in italics.19 When T = 9, the subpanels {1, ..., 5} and {6, ..., 9} were used

for the SPJ estimators. The other values of T are divisible by 3/2, 2, and 3, so they

always allow equal-length subpanels in each collection. There is a positive probability

that θ̂ is indeterminate or infinite, which implies non-existence of moments and possible

numerical difficulties in computing the MLE. In the supplementary material to this

paper we characterize the data for which the MLE is indeterminate or infinite. In the

simulations, when θ̂ was either indeterminate or infinite, the data set was discarded and

16See, for example, the Monte Carlo results reported by Greene (2004) and Carro (2007).
17The bandwidth was set equal to 1 for θ̂HK and θ̇AH, and θ̇AH was implemented with the determinant-

based approach and Bartlett weights.
18Although it was not developed for dependent data, we also experimented with the delete-one panel

jackknife. Simulations indicate that its bias is O(T−1), like the bias of the MLE.
19Interestingly, T ′min = 2, so the likelihood can be jackknifed using subpanels of length 2 (plus 1

initial observation). A derivation of Tmin and T ′min is available as supplementary material.
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a new data set was generated.20 When an SPJ estimator required a subpanel MLE that

was indeterminate or infinite, it was replaced as follows: θ̂1/{2,3} and θ̂1/{3/2,2} by θ̂1/2,

and θ̂1/2 by θ̂.

Tables 3 and 4 report the biases and root mean-squared errors (RMSEs) of the

estimators, along with the coverage rates of the bootstrap 95% confidence intervals

(CI.95, based on 39 bootstrap draws).21 In both models and at all design points, all

bias-corrected estimators have less bias than the MLE. In most cases, the bias reduction

is quite substantial. The asymptotic bias orders—which are O(T−1) for θ̂; O(T−2) for

θ̂1/2, θ̇1/2, θ̂HK, and θ̇AH; and O(T−3) for θ̂1/{2,3} and θ̇1/{2,3}—appear most clearly for

the MLE and the SPJ estimators, although the bias of θ̂1/2 vanishes slightly faster than

predicted by the theory. For the analytical corrections θ̂HK and θ̇AH, in contrast, the bias

decreases somewhat too slowly as T grows. This suggests that the choice of bandwidth

required by θ̂HK and θ̇AH (set at 1 here while it should grow with T ) is of key importance.

No estimator uniformly dominates all the others in terms of bias, although θ̇1/{2,3} in

many cases has the least bias, closely followed by θ̂1/2. While the SPJ estimators are

typically somewhat more variable than the MLE, this is more than offset by the removal

of the leading bias terms, which results in much smaller RMSEs. This is in line with

the discussion in Subsection 3.1. In our designs, θ̂1/{2,3} often has a larger RMSE than

θ̂1/2. The difference, however, decreases quickly as T increases. By contrast, θ̇1/{2,3} has

a smaller RMSE than θ̇1/2, uniformly over all designs, due to its success in reducing the

bias. Interestingly, the analytically bias-corrected estimators generally have a smaller

standard deviation (not reported) than does the MLE and, hence, than do the SPJ

estimators. However, as they typically remove a smaller fraction of the bias, their

RMSE is often larger than that of the SPJ estimators; the exception is β̂HK, which has

little bias. Except in a few cases where the bias is substantial, the confidence intervals

based on the SPJ estimators have reasonable coverage rates. For θ̇1/2 and the analytical

corrections, the ratio of bias to standard deviation is typically larger, so the coverage

rates of their confidence intervals are worse. When T is not too small, however, they

are still far better than those based on the MLE.

20From the point of view of drawing inference, this is unproblematic when θ̂ is indeterminate because
then the data are uninformative. However, discarding the data when θ̂ is infinite is more problematic
because then the data may in fact be quite informative, which calls for some other approach. The whole
issue is probably empirically unimportant but has to be taken care of in simulations with small N and
T .

21A small number of bootstrap draws suffices for studying coverage rates. In applications, a larger
number should be used.
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Table 3: Probit AR(1), common parameter, N = 500

T ρ0 ρ̂ ρ̂1/2 ρ̂1/{2,3} ρ̂HK ρ̇1/2 ρ̇1/{2,3} ρ̇AH

bias
6 .5 −.616 .228 −.224 −.247 −.270 −.068 −.278
9 .5 −.400 .055 −.107 −.135 −.128 −.012 −.155

12 .5 −.297 .021 −.027 −.091 −.071 −.002 −.104
18 .5 −.197 .006 −.005 −.054 −.032 .000 −.061
6 1 −.710 .152 −.232 −.389 −.402 −.199 −.414
9 1 −.471 .019 −.111 −.243 −.207 −.062 −.261

12 1 −.354 .001 −.027 −.178 −.120 −.021 −.190
18 1 −.238 −.003 −.006 −.114 −.056 −.005 −.122

RMSE
6 .5 .620 .251 .312 .255 .278 .116 .286
9 .5 .404 .088 .171 .145 .140 .079 .163

12 .5 .301 .059 .094 .101 .086 .064 .113
18 .5 .201 .042 .058 .064 .050 .048 .071
6 1 .741 .194 .336 .395 .409 .223 .419
9 1 .475 .080 .192 .249 .216 .104 .267

12 1 .358 .062 .110 .182 .131 .074 .196
18 1 .241 .046 .069 .120 .070 .055 .128

CI.95

6 .5 .000 .491 .836 .052 .051 .893 .022
9 .5 .000 .892 .876 .305 .450 .945 .191

12 .5 .000 .937 .935 .513 .728 .948 .400
18 .5 .002 .951 .951 .720 .884 .951 .649
6 1 .000 .784 .860 .001 .002 .571 .000
9 1 .000 .945 .893 .013 .117 .894 .006

12 1 .000 .948 .939 .059 .444 .937 .036
18 1 .001 .951 .948 .210 .771 .950 .153

Italics: {3/2, 2} instead of {2, 3}.
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As average effects on the probability that yit = 1, consider

µ0 ≡ E (Φ(αi0 + ρ0)− Φ(αi0))

in the AR(1), with values µ0 = .138, .260 corresponding to ρ0 = .5, 1, and

µy0 ≡ E (Φ(αi0 + ρ0 + β0xit)− Φ(αi0 + β0xit)) , µx0 ≡ β0Eφ(αi0 + ρ0 + β0xit),

in the ARX(1), with values (µy0, µ
x
0) = (.128, .124), (.244, .105) corresponding to ρ0 =

.5, 1. We estimated µ0, µ
y
0, and µx0 by the corresponding sample average with the MLE

serving as a plug-in estimate, for example,

µ̂y ≡ 1

NT

N∑
i=1

T∑
t=1

(Φ(α̂i + ρ̂+ β̂xit)− Φ(α̂i + β̂xit))

for µy0, and the SPJ estimators, for example, µ̂y1/2 and µ̂y1/{2,3} (or µ̂y1/{3/2,2}) obtained by

jackknifing µ̂y.

Tables 5 and 6 present the biases and RMSEs of the average effect estimators. Across

the designs, the MLE-based estimates have large biases, exceeding 50% of the value of

the estimand in more than half of the cases. The SPJ, especially the second-order SPJ,

eliminates much of this bias. In addition, their RMSE is much lower. For µ0 and µy0, the

second-order SPJ uniformly dominates the first-order SPJ in terms of bias and RMSE.

For µx0 , the biases of the the SPJ estimators are very small, and the first-order SPJ has

the lowest RMSE.

Table 5: Probit AR(1), average effect, N = 500

bias RMSE
T ρ0 µ0 µ̂ µ̂1/2 µ̂1/{2,3} µ̂ µ̂1/2 µ̂1/{2,3}
6 .5 .138 −.159 −.086 −.015 .159 .088 .041
9 .5 .138 −.117 −.043 −.008 .118 .046 .025

12 .5 .138 −.092 −.025 −.003 .093 .029 .020
18 .5 .138 −.064 −.011 .000 .065 .017 .016
6 1 .260 −.218 −.137 −.052 .219 .138 .065
9 1 .260 −.167 −.079 −.034 .167 .081 .043

12 1 .260 −.134 −.050 −.017 .135 .053 .029
18 1 .260 −.096 −.025 −.005 .096 .029 .020
Italics: {3/2, 2} instead of {2, 3}.

We provide the results of further Monte Carlo experiments as supplementary ma-

terial. For the probit models, we considered the effect of decreasing N from 500 to
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Table 6: Probit ARX(1), average effects, N = 500

bias RMSE
T ρ0 µy

0 µ̂y µ̂y
1/2 µ̂y

1/{2,3} µ̂y µ̂y
1/2 µ̂y

1/{2,3}
6 .5 .128 −.154 .079 −.047 .155 .085 .080
9 .5 .128 −.097 .025 −.024 .099 .032 .044

12 .5 .128 −.071 .011 −.008 .073 .019 .026
18 .5 .128 −.047 .004 -.002 .048 .012 .017
6 1 .244 −.143 .095 −.045 .145 .102 .093
9 1 .244 −.086 .037 −.015 .088 .044 .050

12 1 .244 −.060 .022 .003 .062 .029 .032
18 1 .244 −.036 .013 .006 .038 .020 .022
T ρ0 µx

0 µ̂x µ̂x
1/2 µ̂x

1/{2,3} µ̂x µ̂x
1/2 µ̂x

1/{2,3}
6 .5 .124 .060 .003 −.019 .060 .016 .046
9 .5 .124 .039 −.003 −.009 .040 .009 .022

12 .5 .124 .029 −.003 −.003 .029 .007 .013
18 .5 .124 .019 −.002 −.002 .019 .005 .008
6 1 .105 .085 .010 −.003 .086 .020 .049
9 1 .105 .058 .005 .001 .059 .011 .023

12 1 .105 .045 .004 .003 .045 .009 .015
18 1 .105 .031 .003 .002 .031 .006 .009
Italics: {3/2, 2} instead of {2, 3}.

100, and the effect of non-stationarity by setting yi0 = 0 for all i. As expected, set-

ting N = 100 results in larger RMSE for all estimators; their biases, however, remain

virtually unaltered. As a consequence, the coverage rates of all estimators improve. Re-

garding marginal effects, the second-order SPJ is still superior in terms of bias for most

designs, but its RMSE is now often slightly larger than that of the first-order SPJ, es-

pecially in the ARX(1). When yi0 = 0, the overal pattern changes little, which suggests

that our methods are reasonably robust with respect to mild violations of the station-

arity requirement. We found that θ̂, θ̂HK, and θ̇AH generally have a somewhat smaller

bias and RMSE and slightly improved confidence intervals. For the SPJ estimates, the

effect on the bias is mixed, the first-order SPJ often being slightly more biased and the

second-order SPJ somewhat less. Their RMSEs follow the same pattern. The picture

for the marginal effect estimates changes very little.

The supplementary material also contains simulation results for dynamic logit models

using the same designs as for the probit models there. To facilitate comparison with the

probit models, the errors in the logit models were normalized to have unit variance. The

results are very similar to those for the probit models. Here too, the MLE is heavily

biased and the SPJ is very effective at bias reduction, which leads to substantially
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smaller RMSEs and improved coverage rates for the common parameters. Likewise, the

SPJ estimates of the average effects have less bias and a lower RMSE.

7 Conclusion

A split-panel jackknife estimator was derived for reducing the bias of the maximum

likelihood estimator in nonlinear dynamic panel data models with fixed effects. The

asymptotic distribution of the resulting estimates is normal and correctly centered un-

der slow T asymptotics without inflating the asymptotic variance. The SPJ implicitly

estimates the bias of the MLE up to the chosen order and, hence, can be viewed as an

automatic bias-correction method. The SPJ is conceptually and computationally very

simple as it requires only a few maximum likelihood estimates. There is no analytical

work involved. We also gave jackknife corrections to the profile loglikelihood and dis-

cussed bias correction for average effects. The extension to other extremum estimators

such as GMM is immediate, provided the asymptotic bias of the estimator or minimand

admits an expansion in powers of T−1.

Our results and subsequent recommendations are based on asymptotics where the

number of time periods grows, fast or slowly, with the number of cross-sectional units.

To refine those recommendations, more specifically about how to choose the order of

bias reduction for given N and T , higher-order approximations to the variance of the

MLE and the SPJ estimators would be of great interest. A related question is how the

first-order SPJ relates to the analytical corrections of Hahn and Kuersteiner (2004) and

Arellano and Hahn (2006) at the order O(T−2). Another challenging issue is that of

non-stationarity and, in particular, if and how the SPJ can be modified to accommodate

the inclusion of time dummies or time trends. Allowing for such effects is important in

a variety of microeconometric applications. Fixed T consistent estimators may break

down in such a situation, possibly because of the loss of point identification. See, for

example, Honoré and Kyriazidou’s (2000) estimators for dynamic discrete-choice models

and Honoré and Tamer (2006) on the lack of point identification in the presence of time

effects.

In a simulation study of dynamic binary-choice models the SPJ was found to perform

well even in short panels, showing much smaller biases and RMSEs than the MLE and

confidence intervals with, mostly, acceptable coverage rates. It would be of interest

to see how the split-panel jackknife and the various bias-corrected estimators proposed

elsewhere perform in a broader range of models.
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Appendix: Proofs

Proof of Theorem 1. Since |S|/T is bounded away from zero for all S ∈ S,

plimN→∞θS = θ0 +
k∑
j=1

∑
S∈S

|S|1−j

T
Bj + o(T−k)

= θ0 +
g

T
B1 +

k∑
j=2

∑
S∈S

|S|1−j

T
Bj + o(T−k),

where, by convention,
∑k

j=2(·) = 0 if k = 1. The result regarding plimN→∞θ̂S follows

easily, since B′j = O(1) for j = 2, ..., k because T/|S| = O(1) for all S ∈ S. Since

T/|S| > 1, we have T j−1
∑

S∈S |S|1−j > g for all j ≥ 2, so sign(B′j) = −sign(Bj). To

prove that |B′j| ≥ |Bj|
∑j−1

m=1 g
m, it suffices to show that, for j ≥ 2,

T j−1
∑
S∈S

|S|1−j − g ≥ (g − 1)

j−1∑
m=1

gm. (A.1)

By a property of the harmonic mean, for j ≥ 2,

T j−1
∑
S∈S

|S|1−j ≥ T j−1
∑
S∈S

(
T

g

)1−j

= gj,

from which (A.1) follows. As regards the asymptotic distribution of θ̂S , note that, for any

distinct S, S ′ ∈ S, because S and S ′ are disjoint,
√
NT (θ̂S − θ|S|) and

√
NT (θ̂S′ − θ|S′|)

are jointly asymptotically normal as N, T → ∞, with large N, T covariance equal to

zero. Then, from Assumptions 1 and 3 and noting that S is a partition of {1, ..., T}, it

follows that, as N, T →∞,

√
NT

(
θ̂ − θT

θS − plimN→∞θS

)
d→ N

(
0,

(
Ω Ω
Ω Ω

))

and, in turn,
√
NT (θ̂S − plimN→∞θ̂S)

d→ N (0,Ω). If, in addition, N/T 3 → 0, then√
NT (plimN→∞θ̂S − θ0) =

√
NTO(T−2)→ 0 and (3.2) follows.

Proof of Theorem 2. For all g ∈ G,

plimN→∞θ1/g = θ0 +
k∑
j=1

∑
S∈Sg

|S|1−j

T
Bj + o(T−k).
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Hence

plimN→∞θ̂1/G = θ0 +
k∑
j=1

(1 +
∑
g∈G

a1/g

)
1

T j
−
∑
g∈G

a1/g

∑
S∈Sg

|S|1−j

T

Bj + o(T−k)

= θ0 +
k∑
j=1

cj(G)Bj

T j
+ o(T−k),

where

cj(G) ≡ 1 +
∑
g∈G

a1/g

1−
∑
S∈Sg

T j−1|S|1−j


= (1− ι′A−1ι)−1 −
∑
g∈G

a1/g

∑
S∈Sg

T j−1|S|1−j

= (1− ι′A−1ι)−1 −
l∑

r=1

a1/gr

∑
S∈Sgr

T j−1|S|1−j

= (1− ι′A−1ι)−1

1−
l∑

r=1

(
l∑

s=1

Ars

) ∑
S∈Sgr

T j−1|S|1−j
 , (A.2)

and Ars is the (r, s)th element of A−1. For j ≤ l,

cj(G) = (1− ι′A−1ι)−1

(
1−

l∑
r=1

(
l∑

s=1

Ars

)
Ajr

)

= (1− ι′A−1ι)−1

(
1−

l∑
s=1

l∑
r=1

AjrA
rs

)
= 0.

This proves that plimN→∞θ̂1/G = θ0 + o
(
T−l
)

if k = l. Now consider the case k > l.

We need to show that cj(G) = bj(G) + O(T−1) for l < j ≤ k. For all g ∈ G and all

S ∈ Sg, T |S|−1 = g + O(T−1), and, for r = 1, ..., k,
∑

S∈Sg
T r−1|S|1−r = gr + O(T−1).

Hence A = A + O(T−1), where A is the l × l matrix with elements Ars = grs . Let

27



πj ≡ (gj1, ..., g
j
l )
′. From (A.2), for l < j ≤ k,

cj(G) = (1− ι′A−1ι)−1

(
1−

l∑
r=1

(
l∑

s=1

Ars

)
gjr

)
+O(T−1)

= (1− ι′A−1ι)−1
(
1− π′jA−1ι

)
+O(T−1)

=

|A|−1

∣∣∣∣ A ι
π′j 1

∣∣∣∣
|A|−1

∣∣∣∣ A ι
ι′ 1

∣∣∣∣ +O(T−1) = (−1)l
|Vj|
|V |

+O(T−1),

where ι is an l × 1 vector of ones and

|V | =
∣∣∣∣ 1 ι′

ι A′

∣∣∣∣ , Vj =

∣∣∣∣ ι′ 1
A′ πj

∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
1 ι′ 1
ι A′ πj

∣∣∣∣∣∣ .
|V | is a Vandermonde determinant given by

|V | =
∏

0≤p<q≤l

(gq − gp), g0 ≡ 1.

Noting that the first row of Vl+1 is (00, 01, ..., 0l+1), |Vl+1| is also a Vandermonde deter-

minant, given by

|Vl+1| =
∏

−1≤p<q≤l

(gq − gp) = |V |
∏

1≤q≤l

gq, g−1 ≡ 0.

For j > l+ 1, by the Jacobi-Trudi identity (see, e.g., Littlewood, 1958, pp. 88), |Vj| can

be written as the product of |Vl+1| and a homogeneous product sum of g−1, g0, ..., gl,

|Vj| = |Vl+1|
∑

k−1,k0,...,kl≥0
k−1+k0+...+kl=j−l−1

g
k−1

−1 g
k0
0 ...g

kl
l = |Vl+1|

∑
k1,...,kl≥0

k1+...+kl≤j−l−1

gk11 ...g
kl
l ,

which also holds for j = l + 1. On collecting results, cj(G) = bj(G) + O(T−1) for

l < j ≤ k. The asymptotic distribution of θ̂1/G, under the asymptotics considered,

follows along the lines of the proof of Theorem 1.

Proof of Theorem 3. The first part is proved along the same lines as in Theorem 2.

We have

plimN→∞θ̂1/G = θ0 +
k∑
j=1

cj(G)Bj

T j
+ o(T−k),
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where now

cj(G) ≡ 1 +
∑
g∈G

a1/g

1−
∑
S∈Sg

T j|S|1−j∑
S∈Sg
|S|


= (1− ι′A−1ι)−1

1−
l∑

r=1

(
l∑

s=1

Ars

) ∑
S∈Sgr

T j|S|1−j∑
S∈Sgr

|S|

 .

For j ≤ l, cj(G) = 0. Consider the case k > l. For all g ∈ G and r = 1, ..., k,∑
S∈Sg

T r|S|1−r∑
S∈Sg
|S|

=
T∑

S∈Sg
|S|

∑
S∈Sg

T r−1|S|1−r =
g∑
S∈Sg

1
gr−1

∑
S∈Sg

1 +O(T−1)

= gr +O(T−1).

Hence, A = A +O(T−1) and, for l < j ≤ k,

cj(G) = (1− ι′A−1ι)−1
(
1− π′jA−1ι

)
+O(T−1),

where πj ≡ (gj1, ..., g
j
l )
′. By the proof of Theorem 2, cj(G) = bj(G) + O(T−1) for

l < j ≤ k, thus completing the proof of the first part. We now derive the asymptotic

distribution of θ̂1/G. For any subpanels S and S ′ such that, as T →∞, T−1|S| → s > 0,

T−1|S ′| → s′ > 0, and T−1|S ∩ S ′| → s∩ ≥ 0, we have

Avar

(
θ̂S
θ̂S′

)
=

(
1/s s∩/(ss

′)
s∩/(ss

′) 1/s′

)
⊗ Ω, (A.3)

where Avar(·) denotes the large N, T variance. Now consider θ1/g = 1
2
(θ̂S1 + θ̂S2) and

θ1/g′ = 1
2
(θ̂S′1 + θ̂S′2), where 1 < g < g′ < 2 and 1 ∈ S1 ∩ S ′1. Then T−1|S1| = T−1|S2| →

1/g, T−1|S ′1| = T−1|S ′2| → 1/g′, T−1|S1 ∩ S2| → (2 − g)/g, T−1|S ′1 ∩ S ′2| → (2 − g′)/g′,
T−1|S1∩S ′1| = T−1|S2∩S ′2| → 1/g′, and T−1|S1∩S ′2| = T−1|S2∩S ′1| → (g+g′−gg′)/(gg′).
Application of (A.3) gives

Avar


θ̂S1

θ̂S2

θ̂S′1
θ̂S′2

 =


g g(2− g) g g + g′ − gg′

g(2− g) g g + g′ − gg′ g
g g + g′ − gg′ g′ g′(2− g′)

g + g′ − gg′ g g′(2− g′) g′

⊗ Ω,

and so

Avar

(
θ1/g

θ1/g′

)
=

1

2

(
g(3− g) 2g + g′ − gg′

2g + g′ − gg′ g′(3− g′)

)
⊗ Ω.
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Let θ1/G ≡ (θ1/g1 , ..., θ1/gl
). Then Avar(vec θ1/G) = V ⊗ Ω, where vec(·) is the stack

operator and V is the symmetric l × l matrix whose (r, s)th element, for r ≤ s, is

Vrs ≡
{
gr + 1

2
(gs − grgs) if s ≤ o,

1 otherwise.

Therefore, θ̂1/G = (1 − ι′A−1ι)−1(θ̂ − θ1/GA
−1ι) is asymptotically normally distributed,

centered at θ0, and has large N, T variance

Avar(θ̂1/G) = (1− ι′A−1ι)−2(1− 2ι′A−1ι+ ι′A′−1VA−1ι)Ω

=

(
1 +

ι′A′−1 (V − ιι′) A−1ι

(1− ι′A−1ι)2

)
Ω = d(G)Ω,

since V − ιι′ = Γ. The proof is completed by showing that, if o ≥ 1, the leading o × o
submatrix of Γ is positive definite. Let Lo be 2 times this submatrix, so that

Lo =

(
Lo−1 λo−1

λ′o−1 λoo

)
,

where

λo−1 ≡

 g1 − 1
...

go−1 − 1

 (2− go) , λoo ≡ (go − 1) (2− go) .

The (r, s)-th element of L−1
o−1, for r ≤ s, is

Lrso−1 =



gr+1−gr−1

(gr−gr−1)(gr+1−gr)
if r = s < o− 1,

2−go−2

(go−1−go−2)(2−go−1)
if r = s = o− 1,

− 1
gr+1−gr

if r = s− 1,

0 otherwise,

where g0 ≡ 1. Hence

λ′o−1L
−1
o−1λo−1 = (2− go)2

(
o−2∑
r=1

hr +
(go−1 − 1)2 (2− go−2)

(go−1 − go−2) (2− go−1)

)
,

where

hr =
(gr − 1)2 (gr+1 − gr−1)

(gr − gr−1) (gr+1 − gr)
− 2

(gr − 1) (gr+1 − 1)

gr+1 − gr

= (gr − 1)

(
gr−1 − 1

gr − gr−1

− gr+1 − 1

gr+1 − gr

)
.

30



After some algebra,
∑o−2

r=1 hr = − (go−1−1)(go−2−1)
go−1−go−2

, and so

λoo − λ′o−1L
−1
o−1λo−1 =

(go − go−1) (2− go)
2− go−1

.

The determinant of Lo is

|Lo| = |Lo−1|
(
λoo − λ′o−1L

−1
o−1λo−1

)
= (2− go)

o∏
r=1

(gr − gr−1) ,

by induction. Clearly, 0 < |Lo| < |Lo−1| < ... < |L1| < 1. All leading submatrices of Lo

have a positive determinant, so Lo is positive definite.
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