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as well as seminar participants at Crest, Ecole Polytechnique, séminaire Roy, University of Chicago,
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Abstract

We investigate in this paper the theory and econometrics of optimal matchings with com-

peting criteria. The surplus from a marriage match, for instance, may depend both on the

incomes and on the educations of the partners, as well as on characteristics that the analyst

does not observe. The social optimum must therefore trade off matching on incomes and

matching on educations. Given a flexible specification of the surplus function, we charac-

terize under mild assumptions the properties of the set of feasible matchings and of the

socially optimal matching. Then we show how data on the covariation of the types of the

partners in observed matches can be used to estimate the parameters that define social

preferences over matches. We provide both nonparametric and parametric procedures that

are very easy to use in applications.
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Introduction

Starting with Becker (1973), most of the economic theory of one-to-one matching has focused

on the case when the surplus created by a match is a function of just two numbers: the

one-dimensional types of the two partners. As is well-known, if the types of the partners

are one-dimensional and are complementary in producing surplus then the socially optimal

matches exhibit positive assortative matching. Moreover, the resulting configuration is

stable, it is in the core of the corresponding matching game, and it can be implemented by

the celebrated Gale and Shapley (1962) deferred acceptance algorithm.

While this result is both simple and powerful, its implications are also quite unrealistic.

If we focus on marriage and type is education for instance, then positive assortative matching

has the most educated woman marrying the most educated man, then the second most

educated woman marrying marrying the second most educated man, and so on. In practice

the most educated woman would weigh several criteria in deciding upon a match; even in

the frictionless world studied by theory, the social surplus her match creates may be higher

if she marries a man with less education but, say, a similar income. Income and education

are only imperfectly correlated; and the correlation patterns differ for men and women.

Then the optimal match must trade off assortative matching along these two dimensions.

This point is quite general: with multiple types, the stark predictions of the one-dimensional

case break down.

Analysts of matching have long felt the need to accommodate the imperfect assortative

matching observed in the data, of course. One possibility is to introduce search frictions, as

in Shimer and Smith (2000); but the resulting model is hard to handle, and it still implies

assortative matching, under stronger conditions. In our view, a simpler solution consists in

allowing the joint surplus of a match to incorporate heterogeneity that is unobserved by the

analyst. As explained below, this was pioneered by Choo and Siow (2006) and extended

by Chiappori, Salanié, Tillman, and Weiss (2008); a different variant, used by Chiappori,

Oreffice, and Quintana-Domeque (2009), assumes that the observed heterogeneity has a

one-dimensional index structure. Our contribution here is twofold. First, we exhibit a very
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simple nonparametric estimator of the surplus function that is at the heart of matching

models with transferable utility; second, we explore the properties of optimal or equilibrium

matchings1 and we use our results to describe an empirical strategy and to obtain parametric

estimators.

For simplicity, we use the language of the economic theory of marriage in our illustra-

tions; yet nothing we do actually depends on it. The methods proposed in this paper apply

just as well to any one-to-one matching problem—or bipartite matchings. In fact, we can

even extend them to problems in which the sets of partners are determined endogenously—

as with same-sex unions. This is investigated in Section 8, where we consider possible

extensions of our setting.

We do require, however, that utility be transferable across partners. Our primitive

function is indeed the surplus created by a match, defined as

Φ̃(x̃, ỹ)

where x̃ is the full type of a man and ỹ the full type of the woman who is his partner in this

match. A full type has components that are observed by the econometrician, and others

that are only observed by the participants on the market. We denote x the observable type

of a man, and y that of a woman.

As is well-known, this model is too general to be empirically testable: even without

unobserved heterogeneity (when x coincides with x̃ and y coincides with ỹ), any observed

assignment can be rationalized by a well-chosen surplus function. This is a consequence of

a more general theorem by Blair (1984). Echenique (2008) shows that on the other hand,

some collections of matchings are not rationalizable: if the analyst can observe identical

populations on several assignments, then these assignments must be consistent with each

other in a sense that his paper makes precise. But we are unlikely to have such data at

hand in general.
1A word on terminology: like most of the literature, we call a “match” the pairing of two partners, and

a “matching” the list of all realized matches.
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Relatedly, analysts sometimes observe several subpopulations which are matching inde-

pendently and yet have the same surplus function. Fox (2009) shows that under a “rank-

order condition” on the unobserved heterogeneity, it is then possible to identify several

important features of the surplus function, and in particular how important complementar-

ity is on various dimensions.

While analyzing complementarity is also one of our goals here, many of the applica-

tions we have in mind do not fit Fox’s assumption that there be enough variation across

subpopulations with identical surplus. Marriage markets, for instance, seem to be either

so disconnected that their surplus functions are unlikely to be similar, or too connected to

make it possible to ignore matching across markets. In this paper, we only assume that we

have data on one instance of a matching problem, such as the marriage market in the US

in the 1980s, or the market for CEOs. Our data will consist of the values of the observable

types of both partners in each realized match, and of the types of unmatched individuals.

Since the optimal/equilibrium matching is determined on the basis of both the observ-

able and the (to us) unobservable types, we will need to impose assumptions that allow

us to integrate over the distribution of the unobservable types in a manageable way. Our

aim is to start from the observable matching (the distribution of matches across observable

types) and to recover as much information as we can on the surplus function. That is, the

econometrician observes a distribution π(x, y) over the observable types of both partners in

observed matches; and he seeks to recover Φ̃.

To do this, we have to impose assumptions. First, we restrict our analysis to the case

when observable types take a finite number of values. Then we impose a separability

assumption that excludes interactions between the unobservable types of the partners in

the production of joint surplus:

Φ̃(x̃, ỹ) = Φ(x, y) + χ(x̃, y) + ξ(ỹ, x),

where the χ’s and ξ’s have conditional mean zero. One interpretation is that the surplus

created by a potential match is an unknown function of the types of the partners only,

plus preference shocks that are observed by all participants but not by the analyst—in the
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nature of unobserved heterogeneity.

This separability assumption was used by Choo and Siow (2006) and then generalized by

Chiappori, Salanié, Tillman, and Weiss (2008), who showed that the matching equilibrium

then boils down to a series of parallel discrete choice models. While this is an important

step on the way to a solution, the resulting model is still too rich to be taken to the data.

We need to restrict the distribution of unobserved heterogeneity further. To do this, we

adopt Choo and Siow (2006)’s assumption that the terms χ and ξ above are type-I extreme

values—giving the model the structure of a multinomial logit.

If the analyst is lucky enough to have very rich data, unobserved heterogeneity is almost

irrelevant and the observable matching π maximizes the observable surplus function. A bit

more formally, let P and Q denote the marginal distributions over observed types of men and

women respectively. Then if there is no unobserved heterogeneity, the observed matching

π must maximize

EπΦ(X,Y )

over the set M(P,Q) of all joint distributions π that have marginals P and Q.

On the other hand, if data is so poor that unobserved heterogeneity dominates, then the

analyst should observe something that, to him, looks like completely random matching: π

should be the product P ⊗Q of the marginal distributions. As is well known, independence

maximizes relative entropy: π = P ⊗Q minimizes the mutual information

I(π) = Eπ log
π(X,Y )

P (X)Q(Y )

over M(P,Q).

We show that under our assumptions, for any intermediate amount of unobserved het-

erogeneity, the observable matching π maximizes a straightforward linear combination of

the observable surplus and of the mutual information above:

EπΦ(X,Y )− σEπ log
π(X,Y )

P (X)Q(Y )
,

where σ measures the size of unobserved heterogeneity.
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Apart from its simplicity, this objective function has two very nice properties when

σ > 0: it is globally strictly concave, and it has an infinite derivative in zero. The former

implies that the optimal matching is unique, and the latter that all observable matches

have positive probability: 0 < π(x, y) < 1 for all (x, y). Finally, for any given Φ and σ (and

(P,Q)) the optimal matching π is much easier to compute than in the homogeneous case:

we show that the well-known Iterative Projection Fitting Procedure is easily adapted to the

structure of this problem. Since IPFP is a very fast, very stable and very simple algorithm

(known to some economists as RAS), we consider this to be another attractive property of

our method.

Under our assumptions, we prove that the surplus function over observable types Φ is

nonparametrically partially identified from the data; and that the features that are identified

hold considerable economic interest. In fact, the log-likelihood function of the observed

matches is one of the surplus functions that can rationalize the data:

Φ ≡ log π;

and we can use it to test for complementarities between any two observable dimensions of the

types of the partners, such as the education of the wife and the income of the husband. We

can also identify the relative strengths of such complementarities across different dimensions.

While this is a remarkably simple and useful result, even discrete types may take a

large number of values, making nonparametric estimation impractical—all the more so that

π is a joint distribution of types. Parametric analysis will often be necessary in practice.

Our IPFP algorithm makes maximum likelihood estimation quite simple even for nonlinear

models; but models in which the observable surplus function is linear in the parameters

turn out to have quite interesting properties. Consider, for instance, approximating the

observable surplus function with a linear expansion over some known basis functions (φk),

with unknown assorting weights Λ:

Φ(x, y) =
∑
k

Λkφk(x, y).

If the true model in fact belongs to this class, then all relevant information can be expressed

5



in terms of the mutual information I of the joint distribution of types and of the average

values of these basis functions φk across couples, which we call covariations; more formally,

the numbers

Î = Eπ̂ log
π̂(X,Y )
p̂(X)q̂(Y )

and

Ĉk = Eπ̂φ
k(X,Y )

are sufficient statistics for estimation of Λ and specification testing. This is a very significant

reduction in complexity, from the joint distribution π̂(x, y) to just these (K + 1) numbers.

We first show that if the true model was generated by the assumed basis functions,

then in the mutual information Î should be minimal given the vector of covariations Ĉ,

in a sense that we made precise. This gives us a specification test. If the test does not

reject the null hypothesis, then there exists a vector of assorting weights Λ for which the

optimal matching generates exactly these covariations; and if the true model has positive

heterogeneity (σ > 0), this vector is unique up to multiplication by a positive constant.

Moreover, we can test that a correctly specified model is homogeneous (σ = 0.)

These results lead us to propose a moment matching estimator of the assorting weights

that has very desirable properties if the model is correctly specified: it is consistent, asymp-

totically normal, and asymptotically efficient, and it is also very easy to compute as if

maximizes a globally strictly convex function. If the model may have been misspecified,

then we can still use this estimator to compute the implied joint distribution of types, and

compare it to the nonparametric estimator of π; this gives an additional test for misspeci-

fication. Moreover, we can use standard techniques to select among potential sets of basis

functions.

This paper thus proves both a negative and a positive result. The negative part is that

even if we assume separable heterogeneity with a multinomial logit structure, the model still

cannot be rejected since we can always rationalize it by the parameters Φ = log π and σ = 1

for instance. The positive part is that given any theory about the way the observable types

enter the surplus function (as embodied in a set of basis functions (φk)), we exhibit well-
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behaved estimators of the unknown parameters Λ; we can test whether heterogeneity σ > 0

is needed to rationalize the data; and we can test whether the basis functions adequately

describe matching patterns.

Our methods can also be used heuristically, to explore ways to understand what goes

on in matching markets—and how they change across time and space. Standard statistical

techniques could for instance be put to work to find the basis functions that explain the

largest share of the variation in the data. Such a methodological stance is reminiscent of

revealed preferences in consumer theory; in fact the analogy is very sharp, as the underlying

theoretical structure is the same. The theoretical work done by Hatfield and Milgrom (2005)

and Chiappori, McCann, and Nesheim (2008) also suggest exploring analogies with auctions

and hedonic models, respectively.

Our depiction of matching markets of course abstracts from many features of real-world

markets. We focus on static, frictionless markets, as in much of the literature on marriage

markets. Our data merely consists in the knowledge of “who is married to whom” at a

given date. Most models of matching on job markets, for instance, have adopted a much

more dynamic perspective, in which job flows in fact provide a lot of information on the

underlying parameters. This is hard to do on many matching markets (it would require, for

instance, a good theory of divorce) and we leave this for further work. Another recent trend

in the economic literature on matching has been to focus on matching technology, such as

platforms; on the marriage market, online dating sites are an example (see e.g. Hitsch,

Hortacsu, and Ariely (2010) and Lee (2009).) By construction, features of the matching

technology such as frictions are encompassed in our matching surplus function, which thus

reflects the social distance between the observable characteristics of two individuals, re-

flecting technological and social accessibility. In a recent paper, Echenique, Lee, and Shum

(2009) take the dual approach to both transferrable utility and non-transferrable utility

models of matching, combining homogeneity in preferences and flexible matching frictions.

Our view is that at this level of generality, it is hard to choose between the two approaches:

any particular application will have to face the standard issue of finding instruments to
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identify frictions and preferences separately (when they do not merge, as may be the case

with intercaste marriage for instance.)

Section 1 sets up the matching model we study in the paper, along with our assump-

tions on the specification of the observable surplus and the process that drives unobserved

heterogeneity. In section 2 we build on these assumptions to derive our main analytical

results, and we prove (partial) nonparametric identification in section 3. Section 4 discusses

possible empirical strategies; and it shows that the presence of heterogeneity in fact makes

the computation of the optimal matching much easier. Under the assumption that the sur-

plus function Φ is unknown up to a linear parametrization, we give our results a geometric

interpretation in section 5. Section 6 introduces our tests and estimators and derives their

asymptotic properties; and section 7 illustrates our methods on a subsample of 2008 US

Census data. We conclude by sketching extensions of our methods.

Since much of what we do uses convexity, we recall some definitions and basic results in

Appendix A. All proofs are collected in Appendix B. Finally, we should note that there are

close parallels between the analysis we develop in the present paper and familiar notions

in thermodynamics and statistical physics. E.g the social utility of a matching evokes

(minus) the internal energy of a physical system, and the standard error of unobservable

heterogeneity parallels its physical temperature. Since the analogy may prove to be as

useful to others as it was to us, we elaborate on it in Appendix C.

1 The Assignment Problem

Throughout the paper, we assume that two subpopulations M and W of equal size must be

matched, and that utility transfers between partners are unconstrained. Each man (as we

will call the members of M) must be matched with one and only one member of W (we will

call them women.) Thus we do not model the determination of the unmatched population

(the singles) in this paper; we take it as data. We elaborate on this point in our concluding

8



remarks. Note also that we assumed bipartite matching: the two subpopulations which

define admissible partners are exogenously given. This assumption can also be relaxed; see

Section 8.

Throughout the paper, we illustrate results on the education/income example sketched

in the Introduction, which we denote (ER).

1.1 Population characteristics

Each man m has characteristics x̃m, of which a subset xm is observed by the econometrician.

We call x̃m the full type and xm the observable type. Similarly, each woman w similarly

has a full type ỹw and an observable type yw.

We denote P̃ (resp. Q̃) the distribution of full types x̃ (resp. ỹ) in the subpopulation

M (resp. W ), and P (resp. Q) the distribution of observable types x (resp. y.) In observed

datasets we will have a finite number N of men and women, so that P and Q are the

empirical distributions over the types observed in the sample, {x1, ..., xN} and {y1, ..., yN}

respectively.

Take the education/income example: there a first dimension of observable types is

education E ∈ {D,G} (dropout or graduate), and a second dimension is income class R,

which takes values 1 to nR . P describes both the number of graduates among men and

the distributions of income among graduate men and among dropout men. In addition, full

types may incorporate physical characteristics, religion, and so on.

1.2 Matching

The intuitive definition of a matching is the specification of “who marries whom”: given a

man of index m ∈ {1, ..., N}, it is simply the index of the woman he marries, w = σ (m) ∈

{1, ..., N}. Imposing that each man be married to one and only one woman at a given time

translates into the requirement that σ be a permutation of {1, ..., N}. This definition is

too restrictive in so far as we would like to allow for some randomization. This could arise
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because a given type is indifferent between several partner types; or because the analyst

only observes a subset of relevant characteristics, and the unobserved heterogeneity induces

apparent randomness.

A feasible matching (or assignment) is therefore defined in all generality as a joint

distribution Π̃ over types of partners X̃ and Ỹ , such that the marginal distribution of X̃

is P̃ and the marginal distribution of Ỹ is Q̃. We denote M
(
P̃ , Q̃

)
the set of such joint

distributions.

1.3 Surplus of a match

The basic assumption of the model is that matching man m of full type x̃m and woman

w of full type ỹw generates a joint surplus Φ̃(x̃m, ỹw), where Φ̃ is a deterministic function.

Along with most of the matching literature, we assume that

Assumption (O): Observability. Each agent observes the full types x̃ and ỹ of all

men and all women, but the econometrician only observes their components x and y.

Assumption (O) rules out asymmetric information between participants in the market,

as the economics of matching with incomplete information is a subject of its own. On

the other hand, we do not really need to assume full information: Φ̃ could for instance

be reinterpreted as the expectation of a random variable conditional on x̃, ỹ, as long as all

participants evaluate it in the same way.

Matching markets are all about complementarities in the generation of surplus. If we

are to identify such complementarities between observable types, we have to exclude com-

plementarities between the unobserved components of full types. Following the insight of

Choo and Siow (2006), formalized by Chiappori, Salanié, Tillman, and Weiss (2008), we

therefore assume:
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Assumption (S): Separability. Let x̃ and x̃′ have the same observable type: x = x′.

Similarly, let ỹ and ỹ′ be such that y = y′. Then

Φ̃(x̃, ỹ) + Φ̃(x̃′, ỹ′) = Φ̃(x̃, ỹ′) + Φ̃(x̃′, ỹ).

Assumption (S) requires that conditional on observable types, the surplus exhibit no

complementarity across unobservable types. It is easy to see that imposing assumption (S)

is equivalent to requiring that the idiosyncratic surplus from a match must be additively

separable, in the following sense:

Φ̃(x̃, ỹ) = Φ(x, y) + χ (x̃, y) + ξ (ỹ, x)

with EP̃ (χ
(
X̃, y

)
|X = x) ≡ 0 and EQ̃(ξ

(
Ỹ , x

)
|Y = y) ≡ 0 for every (x, y).

Given Assumption (S), we call Φ(x, y) the observable surplus. Note that the model is

invariant if one rescales the three terms on the right-hand side by the same positive constant.

Later on we will normalize these three components.

As proved in Chiappori, Salanié, Tillman, and Weiss (2008), assumption (S) implies that

at the optimum (or equilibrium), a given individual (say, a man x̃) has a preference ξ (x̃, y)

for a particular class of observable characteristics (say y), but he is indifferent between all

partners which have the same y but a different ỹ. More precisely, the optimal matching is

characterized by two functions of observable characteristics U(x, y) and V (x, y) that sum

up to Φ(x, y) such that if a man x̃ is matched with a woman of characteristics ỹ, he will get

utility

U(x, y) + χ(x̃, y)

while his match gets utility

V (x, y) + ξ(ỹ, x).

Chiappori, Salanié, Tillman, and Weiss (2008) showed that given assumption (S), the match-

ing problem boils down to a set of single-agent choice problems for each type of man and

of woman: for instance, man x̃ is matched in equilibrium to a woman ỹ whose observable
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type y maximizes

U(x, y) + χ(x̃, y)

over all values in the support of Q.

One justification for assumption (S) would be that in a hypothetical match between

man x̃ and woman ỹ that results in a transfer of t from the man to the woman, the man

gets utility

U0(x, y) + χ0 − t

and the woman gets

V0(x, y) + ξ0 + t

with the restrictions that

χ0 + ξ0 = χ(x̃, y) + ξ(ỹ, x)

and U0 + V0 = Φ. Note that because transfers are endogenous at the optimum, U and V

may be quite different from U0 and V0.

It may be useful to resort to an analogy with the specification of demand systems, as

used for instance in empirical industrial organization. The utility a consumer with observed

type x and full type x̃ gets from consuming a product with observed characteristics y and

full characteristics ỹ can be decomposed into a sum of four terms:

U0(x, y) + χ(x̃, y) + ξ(ỹ, x) + ζ(x̃, ỹ).

The first one describes the average taste for observed product characteristics among con-

sumers of a given observed type; the second one allows for unobserved variation in taste for

observed characteristics; the third one allows for unobserved product effects; and the fourth

one is the idiosyncratic term. Assumption (S) rules out this last term. Its strength depends

on the quality of the data. There is clear evidence, for instance, that American couples

produce more surplus when the partners have similar religious background. If religious

affiliation is not in our dataset, then assumption (S) will not hold. Physical characteristics

are a more subtle case. If the dataset contains no information on them, then assumption
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(S) does not rule out a preference for good looks, nor variation in such preferences; but it

does rule out a correlation between the preference for good looks and one’s own good looks.

While assumption (S) is already quite powerful, it still allows for very complex patterns:

the covariance matrix of the χ(x̃, y) for a given man x̃ is an unwieldy object—not to mention

other distributional characteristics. To go further, we need to add more restrictions on the

specification of the components of the idiosyncratic surplus χ (x̃, y) and ξ (ỹ, x).

1.4 Specifying the idiosyncratic surplus

Following Choo and Siow (2006) and Chiappori, Salanié, Tillman, and Weiss (2008), we

introduce the following assumption2:

Assumption GUI: Gumbel Unobserved Interactions

1. The distributions of observed types P and Q are discrete, with probability mass

functions p (x) and q (y)

2. There are an infinite number of individuals with a given observable type in the pop-

ulation

3. Fix the observable characteristics x of a man, and let
(
y1, ..., ynQ

)
be the possi-

ble values of the observable characteristics of women. Then the preference shocks

χ
(
x̃, y1

)
, ..., χ (x̃, ynQ) are distributed as nQ independent and centered Gumbel (type-

I extreme value) random variables with scale factor σ1;

similarly,

4. Fix the observable characteristics y of a woman, and let
(
x1, ..., xnP

)
be the pos-

sible values of the observable characteristics of men. Then the preference shocks

ξ
(
ỹ, x1

)
, ..., ξ (ỹ, xnP ) are distributed as nP independent and centered Gumbel ran-

dom variables with scale factor σ2.
2We define the scale factor to be 1 for the standard type-I extreme value distribution, which has variance

π2/6; thus e.g. χ has variance σ2
1π

2/6.
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(GUI) underlies the standard multinomial logit model of discrete choice. We use it

for the Independence of Irrelevant Alternatives property: without it, the odds ratio of

the probability that a man with observable type x ends up in a match with a woman of

observable type y rather than with z would also depend on the types of other women, and

the model would become unmanageable.

This assumption has well-known limitations. The first one is that it does not extend di-

rectly to continuous choice. We are currently exploring alternative specifications that would

allow us to deal with continuous characteristics. It also restricts both heteroskedasticity and

correlation patterns. We discuss extensions in section 8.

Finally, part 2 of assumption (GUI) is made strictly for notational simplicity: it allows

us to replace averages with expectations. If there are, say a finite number m of members of

each observed type, then our main results in the next two sections only hold asymptotically

in m. When we describe our estimators in section 6, we of course take into account the fact

that we only have a finite sample.

Under assumptions (O), (S), and (GUI), the model is fully parametrized; its parameters

can be collected in a vector

θ = (Φ, σ1, σ2),

where Φ is the observable surplus function and σ1 (resp. σ2) is the scale factor of the

unobservable characteristics of the men (resp. of women). Without loss of generality, all

components of θ can be multiplied by any positive number; hence we shall need to impose

some normalization on θ. We return to this later.

As we will see, the total heterogeneity (σ1 + σ2) plays a key role in our results; thus we

introduce a specific notation for it:

σ = σ1 + σ2.
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2 Solving for the Optimal Matching

In this section we assume (O), (S), and (GUI), and we consider the problem of optimal

matching:

W(θ) = sup
Π̃∈M(P̃ ,Q̃)

EΠ̃Φ̃
(
X̃, Ỹ

)
. (2.1)

As the tilde signs in the formula suggest, none of the relevant quantities is observed; our

main aim in this section is to prove that the formula can be rewritten entirely in terms of

observable quantities, making inference possible. We examine first the dual, and then the

primal version of the problem.

2.1 The Dual

Let us provide some intuition before we state a formal theorem. Under (O), (S) and (GUI),

standard formulæ for the multinomial logit model give the expected utility of a man of

observable type x at the optimal matching:

E

[
max
y

(
U(x, y) + χ(X̃, y)

)
|X = x

]
= σ1 log

∑
y

exp (U(x, y)/σ1) .

Therefore the expected social surplus from the optimal matching is simply3 (adding the

equivalent formula for women of observable type y):

σ1EP log
∑
y

exp(U(X, y)/σ1) + σ2EQ log
∑
x

exp(V (x, Y )/σ2).

Now recall that U(x, y) is the mean utility of a man with observable type x who ends

up being matched to a woman with observable type y at the optimum. As in the general

development of the theory of matching, U is the value of the multiplier of the population

constraints; and as such, it (along with V ) is the unknown function in the dual program
3Since this formula may not be entirely transparent, we develop one term below:

EP log
X
y

exp(U(X, y)/σ1) =
X
x

p(x) log
X
y

exp (U(x, y)/σ1) .
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in which the expression for the social surplus above is minimized over all U, V such that

U + V ≥ Φ. We now state this as a theorem (proved in Appendix B):

Theorem 1 (Social welfare: dual version) Assume (O), (S), and (GUI). Then

W(θ) = inf
(U,V )∈A

(
σ1EP log

∑
y

exp(U(X, y)/σ1) + σ2EQ log
∑
x

exp(V (x, Y )/σ2)

)
(2.2)

where the constraint set A is defined by the inequalities

∀x, y, U(x, y) + V (x, y) ≥ Φ (x, y) .

At an optimal matching, men with observable type x will be found in matches with

women with observable types y such that U(x, y) +V (x, y) = Φ (x, y). The expected utility

of men with observable type x matched with women of observable type y is U(x, y).

2.2 The Primal

Theorem 1 also has a primal version, of course; and it is in fact our most useful result, as

it will lead directly to an empirical strategy. While deriving the theorem takes a bit more

work (again, see Appendix B), the intuition is simple. First, if there were no unobserved

heterogeneity (with σ close to zero) the optimal matching would coincide with the optimal

observable matching Π, which solves

W(θ) = sup
Π∈M(P,Q)

EΠΦ (X,Y ) .

Going to the polar opposite, in the limit when σ goes to infinity only unobserved hetero-

geneity would count; and since it is just noise, the optimal matching would simply assign

partners randomly, yielding the product measure P ⊗Q.

As it turns out, when σ takes any intermediate value the optimal matching maximizes

a weighted sum of these two extreme cases:
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Theorem 2 (Social welfare: primal version) Under the assumptions of Theorem 1

W(θ) = sup
Π∈M(P,Q)

(∑
x,y

π(x, y)Φ (x, y)− σI (Π)

)
+ σ1S(Q) + σ2S(P ), (2.3)

where S (P ) and S (Q) are the entropies of P and Q given by

S(P ) = −
∑
x

p(x) log p(x); and S(Q) = −
∑
y

p(y) log p(y);

and I(Π) is the mutual information of the joint distribution Π , given by

I(Π) =
∑
x,y

π(x, y) log
π(x, y)
p(x)q(y)

.

The mutual information I (Π) is just the Kullback-Leibler divergence of Π from the

independent product P ⊗Q to Π. It is easy to see that I is a strictly convex function of Π.

Moreover,

I(Π) = S(P ) + S(Q)− S(Π);

and since Π has marginals P and Q,

0 ≤ S(Π) ≤ S(P ) + S(Q),

so that we also have

0 ≤ I(Π) ≤ S(P ) + S(Q).

The left hand-side is an equality at any pure matching (when all π’s are 0 or 1), and the

right hand-side inequality becomes an equality when where Π = P ⊗Q.

Mutual information is a measure of the covariation of types x and y. Now P ⊗ Q is

the independent product of P and Q, which corresponds to a completely random matching

Π = P ⊗ Q. Thus a large positive I (Π) indicates that the matching Π induces strong

correlation across types; I(Π) = S (P ) + S (Q) if and only if Π = P ⊗Q. If σ is very large

then the Theorem suggests that I(Π) should be minimized, which can only occur for the

independent matching Π = P ⊗Q; whereas if σ is negligible then Π should be chosen so as

to maximize the expected observable surplus EΠΦ(X,Y ). This corroborates the intuition

given earlier.
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The optimal matchings coincide with the solutions to this maximization problem. Since

we only observe the realized Π over observable variables, Theorem 2 defines the empirical

content of the model: a combination of the parameters θ = (Φ, σ1, σ2) is identified if and

only if the solution Π depends non-trivially on it.

We already knew that θ can be rescaled by any positive constant without altering the

solution. We can now go one step further: while all components of θ figure in this theorem,

σ1 and σ2 only enter through their sum σ (the terms σ1S(Q) and σ2S(P ) do not depend

on Π and therefore do not help for identification.) Thus and as announced, σ1 and σ2 are

not separately identified: only the total heterogeneity σ is.

Accordingly, we redefine the parameter vector θ as

θ = (Φ, σ) .

Taking the limit when σ −→ 0 in Theorems 1 and 2 and denoting W0(Φ) ≡ W(Φ, 0),

we obtain as a corollary the classical duality of optimal matching:

Corollary 1 (Homogeneous social welfare) Assume (O); then

a) The value of the social optimum when θ = (Φ, 0) is given both by

W0 (Φ) = max
Π∈M(P,Q)

∑
x,y

π(x, y)Φ (x, y) , (2.4)

and by

W0 (Φ) = inf
(u,v)∈A0

(∑
x

p(x)u (x) +
∑
y

q(y)v (y)

)
(2.5)

where the constraint set A0 is given by

∀x, y, u(x) + v(y) ≥ Φ (x, y) ;

A matching (X,Y ) ∼ Π is optimal for Φ if and only if the equality

u (X) + v (Y ) = Φ (X,Y )

holds Π-almost surely, where u and v solve the optimization problem (2.5).
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Since all men with observable characteristics x have the same tastes in the homogeneous

limit, they all obtain the same utility at the optimum. The utility U(x, y) becomes a function

of x only, which we denoted u(x) above; and this is just the Lagrange multiplier on the

population constraint ∑
y

π(x, y) = p(x)

which is implicit in the notation Π ∈M(P,Q).

3 Nonparametric Identification

The results in the previous sections give a very useful description of the optimal matchings,

and they show that σ1 and σ2 cannot be identified separately. On the other hand, we have

not provided a proof of identification of the remaining parameters yet. We now set out to

do so.

First note that if σ > 0 and since mutual information I is strictly convex, the objective

function in Theorem 2 is strictly concave. Thus the optimal observable matching maximizes

a strictly concave function over a compact convex set, and it must be unique4.

Now remember that given assumptions (O) and (S), there exist two functions U(x, y) +

V (x, y) = Φ(x, y) such that the optimal matching obtains when man x̃ maximizes U(x, y)+

χ(x̃, y) over y and woman x̃ maximizes V (x, y) + ξ(ỹ, x) over x. Now if π is the observable

component of an optimal matching, and given assumption (GUI),

U(x, y) = σ1 log π(x, y) + u(x),

where

u(x) = σ1 log
∑
y

exp
(
U(x, y)
σ1

)
.

In the literature on discrete choice, u is called the inclusive value: here u(x) is the expected

utility of a man of observed type x on the marriage market. Similarly,

V (x, y) = σ2 log π(x, y) + v(y).
4Related results are given in Decker, Stephens, and McCann (2009).
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Now U and V depend on θ and are not easy to characterize as we will see; but we know

that they must sum up to Φ, so that

Φ(x, y) = σ log π(x, y) + u(x) + v(y).

In this formula u and v still depend on θ in a complex way; but they only appear in terms

that depend only on characteristics of one partner. This implies that the surplus function

Φ is identified up to an additive function of the form a (x) + b (y).

To state this more formally, define the cross-difference operator as

∆2F (x, y;x′, y′) =
(
F (x′, y′)− F (x′, y)

)
−
(
F (x, y′)− F (x, y)

)
,

for any function F of (x, y). Then:

Theorem 3 (Cross-differences are identified up to scale) Assume (O), (S), and (GUI).

Take any θ = (Φ, σ1, σ2) with σ = σ1 + σ2 > 0. Then

1. There exists a unique observable matching π which maximizes the social welfare (2.3).

2. There exists a unique 4-tuple (π, u, v, c) that solves the following system:


π (x, y) ≡ p (x) q (y) exp

(
Φ(x,y)−u(x)−v(y)−c

σ

)
,

π ∈M (P,Q)

EPu (X) = EQv (Y ) = 0.

(3.1)

u(x) and v are both finite-valued functions, and the constant c coincides with the value

of the social welfare c =W(θ).

3. The probability π defined in 2. coincides with the optimal observable matching defined

in 1.

4. As a consequence, ∆2Φ ≡ σ∆2 log π; and this is a necessary and sufficient condition

for θ to rationalize π.
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5. At the optimal matching, each possible match has positive probability:

0 < π(x, y) < 1 for all x, y such that p(x)q(y) > 0.

Given Theorem 3, the complementarity of various components of the observable types

(x, y) of the partners can be tested directly on log π, since ∆2 log π and ∆2Φ have the same

sign. Moreover, the relative strengths of complementarities along several dimensions (say

education and income on example (ER)) at a point (x, y) can be estimated by evaluating

∆2 log π for values of (x′, y′) that differ from (x, y) along these dimensions.

These results are reminiscent of those in Fox (2009), although we obtained them under

quite a different set of assumptions: we do not use variation across subpopulations, neither

does his rank-order condition apply to our model. Note also that when specialized to one-

dimensional types, our result yields that of Siow (2009), who tests complementarity of the

surplus function by examining log-supermodularity of the match distribution.

Theorem 3 immediately gives us an estimator of the observable joint surplus function

Φ:

Φ̂(x, y) = log π̂(x, y),

with π̂ an estimator of π. This estimator corresponds to an assumed σ = 1; the last

part of the Theorem shows that multiplying it by any positive factor (σ) and adding any

pair of functions of x and of y would also yield a perfectly valid estimator. The positive

scale factor σ is obviously irrelevant; the indeterminacy up to additive functions of x and

y may seem more surprising. These additive functions represent the expected utilities of

men of observed type x and women of type y on the marriage market, which could only be

identified by relating the proportion of individuals to remain single to their types; since we

are focusing on the population of matched individuals, we cannot identify them.

While u(x) and v(y) can be chosen arbitrarily, U(x, y) and V (x, y) are partially identi-

fied. To be more precise, recall the equations

U(x, y) = σ1 log π(x, y) + u(x) and V (x, y) = σ2 log π(x, y) + v(y);
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the extent to which U and V are identified is directly implied by the fact that π is identified

but neither σ1, nor σ2, nor u or v are. Therefore only ratios of the form

U(x, y1)− U(x, y2)
U(x, y3)− U(x, y4)

are point identified, with the obvious analog statement for V . Note that this only makes

sense if σ1 > 0 and π(x, y3) 6= π(x, y4); while the latter is directly testable, the former is

not.

These results have another surprising consequence: if Φ, U, V rationalize the data, then

for any µ = (µ1, µ2)� 0, the linear combination

Φµ(x, y) ≡ µ1U(x, y) + µ2V (x, y)

and the functions Uµ ≡ µ1U , Vµ ≡ µ2V also rationalize the data. This is a by-product of

assumptions (S) and (GUI).

4 Empirical and computational strategies

Theorem 3 and its corollary immediately suggest a very simple nonparametric approach. In

this discrete case, a nonparametric estimator π̂N (x, y) is readily obtained, by counting the

proportion of matches between a man of characteristics x and a woman of characteristics

y. We can pick arbitrary functions a(x) and b(y) and a number σ > 0 and define

Φ̂N (x, y) = σ log π̂N (x, y) + a(x) + b(y),

without any reference to basis functions—imposing σ = 1 on the way.

A nonparametric approach will often be unsuitable for applied purposes, when the aim

is to test for stylized facts about the matching patterns. We could, however, take this

nonparametric estimator as the basis for a parametric approach.
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4.1 Parametric approach

Suppose for instance that the researcher specifies a parametric family of observable surplus

functions (Φ(x, y;β)). Then he may choose (β̂, σ̂) to minimize a distance

‖π̂N − πβ,σ‖ ,

with πβ,σ the optimal matching given by Theorem 2. Since the problem is invariant to

rescaling, some normalization (e.g. imposing the value of σ) will be required, unless it is

already imposed by the parametrization.

An alternative approach would start from a parametric specification of the surplus

function as above and choose (β, σ) to maximize the likelihood function
N∑
i=1

log πβ.σ(xi, yi)

where each observation i is a couple. This amounts, of course, to maximizing∑
x,y

π̂N (x, y) log πβ,σ(x, y),

where the sum now runs over all (x, y) cells.

One problem with these two-step approaches is that they require solving for the optimal

matching for potentially large populations, and a large number of parameter vectors during

optimization. This may seem to be a forbidding task: there exist well-known algorithms

to find an optimal matching, and they are reasonably fast; but with large populations the

required computer resources may still be large. Fortunately, it turns out that introducing

(our type of) heterogeneity actually makes computing optimal matchings much simpler.

4.2 Computation

Choose a parameter vector θ = (Φ, σ) and return to the characterization of optimal match-

ings in equation 2.3. Dividing by σ and taking the logarithm, optimal matchings can also

be obtained by solving the following minimization program:

min
Π∈M(P,Q)

∑
x,y

π(x, y) log
π(x, y)

p(x)q(y) exp(Φ(x, y)/σ)
.
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Now define a set of probabilities r by

r(x, y) =
p(x)q(y) exp(Φ(x, y)/σ)∑
x,y p(x)q(y) exp(Φ(x, y)/σ)

;

and note that given any choice of parameters θ and known marginals (p, q), the probability

r itself is known.

Determining the optimal matchings therefore boils down to finding the joint probabilities

π with known marginals p and q which minimize the Kullback-Leibler distance to r:

∑
x,y

π(x, y) log
π(x, y)
r(x, y)

. (4.1)

Equivalently, we are looking for the Kullback-Leibler projection of r on M(P,Q).

This is a well-known problem in various fields, and algorithms to solve it have been

around for a long time. National accountants, for instance, use RAS algorithms to fill

cells of a two-dimensional table whose margins are known; here the choice of r reflects prior

notions of the correlations of the two dimensions of the table. These RAS algorithms belong

to a family called Iterative Projection Fitting Procedures (IPFP). They are very fast, and

are guaranteed to converge under weak conditions. We only describe the application of

IPFP to our model here; we direct the reader to Rüschendorf (1995) for more information.

The intuition of equation 4.1 is quite clear: the random matching, which is optimal when

σ is very large, has π(x, y) = p(x)q(y). For smaller σ’ s the probability of a match between

x and y must increase with the surplus it creates, Φ(x, y); and given our assumption (GUI)

on the distribution of unobserved heterogeneity, it should not come as a surprise that the

corresponding factor is multiplicative and exponential.

To describe the algorithm, we split π into5

π(x, y) = r(x, y) exp(−(u(x) + v(y))/σ).

The functions u and v of course will only be determined up to a common constant. The

algorithm iterates over values (uk, vk). We start from u0 ≡ −σ log p and v0 ≡ 0. Then at
5It can be shown that at the optimum π(x, y) = 0 where r(x, y) = 0.
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step (k + 1) we compute

exp(−vk+1(y)/σ) =
q(y)∑

x r(x, y) exp(−uk(x)/σ)

and

exp(−uk+1(x)/σ) =
p(x)∑

y r(x, y) exp(−vk+1(y)/σ)
.

Two remarks are in order here: first, we could just as well start from u0 ≡ 0 and v0 =

−σ log q and modify the iteration formulæ accordingly. Second and just as in other Gauss-

Seidel algorithms, it is important to update one component based on the other updated

component: the right-hand sides have uk and vk+1.

If (u, v) is a fixed point of the algorithm, then

π(x, y)
p(x)q(y)

= exp
(

Φ(x, y)− u(x)− v(y)
σ

)
.

Comparing this formula to Theorem 3 shows that u(x) and v(y) have a simple interpreta-

tion: they represent (up to a common additive constant) the expected utilities of a man of

observable characteristics x and of a woman of observable characteristics y.

Thus the IPFP algorithm gives us not only the optimal matching, but also these expected

utilities. Of course, their values depend on the normalization of θ = (Φ, σ), both because

of the scale factor σ and because Φ could be translated by a sum of a function of x and a

function of y without changing the optimal matching.

The formulæ above can be simplified further. Given data on N couples, the marginal p

assigns 1/N probability to each of (x1, . . . , xN ), and similarly for women. Define a matrix Ψ

by Ψij = exp(Φ(xi, yj)/σ), and vectors aki = exp(−uk(xi)/σ), bkj = exp(−vk(yj)/σ). Then

we end up with the shockingly simple and inexpensive formulæ for the IPFP algorithm:

bk+1 =
N

Ψ′ak
and ak+1 =

N

Ψbk+1
.

Once the iterations have converged to some (a, b), the optimal matching is simply

πij =
1
N2

Ψijaibj .
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As will be shown in our application in section 7, the IPFP algorithm is remarkably

fast. Yet it cannot substitute for the limitations of the data: even with large datasets,

nonparametric estimation must face the fact that there are many possible (x, y) cells. Take

the education-income example, and assume that we distinguish three levels of education and

five income classes. Then x and y can each take 15 different values, and there are 152 = 225

cells. For some of these cells, the estimator π̂N will be zero; but more importantly, it will

likely be rather imprecise in general, and so will any parametric estimator obtained by the

minimum distance method described above.

Among all parametric specifications of the observable surplus function Φ, linear models

are the most natural. As we will see in the next section, they also yield both illuminating

insights into the properties of the optimal matchings and an alternative, very appealing

estimation method.

5 The Semilinear Case

In this section, we assume that the analyst has chosen K basis assorting functions

φ1(x, y), ..., φK(x, y);

and that she specifies the observable surplus function ΦΛ (x, y) as a linear combination of

these basis assorting functions, with unknown assorting weights Λ ∈ RK :

Model (SLOI): Semilinear Observable Interactions. The analyst specifies the

observable surplus function as

ΦΛ(x, y) =
K∑
k=1

Λkφk(x, y) (5.1)

where the sign of each Λk is unrestricted, and not all are zero.�

Note that in the discrete case which we focus on in this paper, this specification is only

restrictive if K is small enough. Indeed, choosing K = nP × nQ and the family of basis
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functions

φij (x, y) = 1{x=xi,y=yj}

for i = 1, . . . , nP and j = 1, . . . , nQ generates all possible surplus functions.

In most applications, the analyst will want to choose a value of K that is much smaller

than nP × nQ, and so (SLOI) does restrict the specification. To return to the educa-

tion/income example (ER): we could for instance assume that a match between man m and

woman w creates a surplus that depends on the similarity of the partners in both education

and income dimensions. The corresponding specification would be (with education levels

E = (D,G) coded as (0, 1)):

Φ(xm, yw) =
∑

em=0,1;ew=0,1

Λem,ew11(Em = em, Ew = ew) +
∑

i=1,...,nr;j=1,...,nr

Λij11(Rm = i, Rw = j).

This specification only has (n2
r + 4) parameters, while an unrestricted specification would

have 4n2
r . Such an unrestricted specification would for instance allow the effect of matching

partners in income class 3 to depend on both of their education levels.

An even more restrictive, “diagonal” specification would be

Φ(xm, yw) =
∑
e=0,1

ΛEe 11(Em = Ew = e) +
∑

i=1,...,nr

ΛRi 11(Rm = Rw = i).

In this last form, it is clear that the relative importance of the Λ’s reflects the relative

importance of the criteria. Thus ΛRi measures the preference for matching partners who

are both in income class i, while ΛE0 measures the preference for matching dropouts. The

relative values of these numbers indicate how social preferences value complementarity of

incomes of partners more, relative to complementarity in educations.

In model (SLOI), the set of parameters becomes θ = (Λ, σ). If the model is correctly

specified, then Theorem 3 gives us an estimator of the assorting weights Λ and the total

heterogeneity σ6. In fact, the cross-difference operator is linear and so under (SLOI),

∆2 log π =
∆2Φ
σ

=
K∑
k=1

Λk
σ

∆2φ
k;

6Recall that σ1 and σ2 are not separately identified.
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if the cross-differences of the φk are linearly independent, as they are in both education-

income examples above, then observing π gives us the Λ’s (along with overidentifying re-

strictions.) This is a very weak requirement; having linearly dependent basis functions

would indeed be a modeling mistake. However, this estimator is likely to be very imprecise,

for the reasons discussed in section 4.

The semilinear structure underlying model (SLOI) makes it very easy to analyze optimal

matchings, as all inference can be based on only (K + 1) numbers. These numbers are

sufficient statistics for testing the model; and if we cannot reject that it is well-specified (so

that the true data-generating process satisfies (SLOI) for the set of basis functions chosen by

the analyst), then K of these numbers form a sufficient statistic for estimating θ = (Λ, σ).

We now set out to substantiate these claims.

5.1 The Covariogram

Consider a hypothetical observed matching Π; under this matching, the basis functions have

expected values

Ck(Π) =
∑
x,y

π(x, y)φk (x, y) .

We call each Ck a covariation. Take the diagonal (ER) example; then for the matching

considered,

• Cem,ew(Π) is the proportion of matches in which the man has education em and the

woman has education ew;

• Cij(Π) is the proportion of matches in which the man is in income class i and the

woman is in income class j.

Random matching, as represented by Π∞ = P⊗Q, plays a special role in our analysis, as

it obtains in the limit when heterogeneity becomes very large. We denote the corresponding

covariations Ck∞. At the polar opposite is the matching Π0 which obtains in the homogenous

28



limit σ = 0; we denote the implied covariations Ck0 (Λ). Note that C∞ does not depend on

Λ, but C0 does.

5.2 Feasible summaries

Define the function

Z(C, I,Λ, σ) = Λ · C − σI.

We know from Theorem 2 that if model (SLOI) is correctly specified, then for some θ =

(Λ, σ) the observable optimal matching maximizes Z(C(Π), I(Π),Λ, σ) over Π ∈ M(P,Q).

As in previous sections, we denote W(Λ, σ) the value of this program.

Thus in model (SLOI) the vector (C(Π),−I(Π)) summarizes all the relevant information

about a matching Π. We call each such vector a matching summary ; matching summary

vectors belong to IRK × IR−.

Given an observed matching with couples (xi, yi)Ni=1, it is of course very easy to estimate

the associated summary:

ĈkN =
N∑
i=1

φk(xi, yi) and ÎN =
N∑
i=1

log
π̂N (xi, yi)

p̂N (xi)q̂N (yi)
,

given estimators π̂N , p̂N and q̂N of the joint and marginal distributions of types.

Given population distributions P and Q, we define the set of feasible summaries F as the

set of summary vectors (C,−I) that are generated by some feasible matching Π ∈M(P,Q),

that is

F =
{

(C,−I) ∈ RK × [−S (P )− S (Q) , 0] : ∃Π ∈M(P,Q), Ck = Ck (Π) , I = I (Π)
}

The projection of F on its first K dimensions is of particular interest to us. We ac-

cordingly define the covariogram Fc as the set of covariations C that are implied by some

feasible matching; that is,

Fc=
{
C : ∃Π ∈M(P,Q), Ck = Ck (Π)

}
.
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Covariograms provide us with a nice graphical representation of the properties of a

matching. Figure 1 illustrates their relevant properties, and the reader should refer to it

as we go along. To fit it within two dimensions, we assume that there are only two basis

functions; e.g. in the (ER) example we could have

Φ(Em, Ew, Rm, Rw) = Λ111(Em = Ew) + Λ211(Rm = Rw),

so that Λ1 (resp. Λ2) measures the preference for assortative matching on educations (resp.

income classes.)

Proposition 1 The sets F and Fc are nonempty closed convex sets, and their support

functions are (Λ, σ)→W (Λ, σ) and Λ→W (Λ, 0), respectively.

As will soon become clear, the boundaries of the convex sets F and Fc have special

significance in our analysis. For now, let us simply note that the boundary of Fc exhibits

kinks when these distributions of characteristics are discrete—which is always the case in

our setting. The reason for these kinks is that in the discrete case, the optimal matching for

homogenous types is generically stable under a small perturbation of the assorting weights

Λ; starting from almost every Λ’s, a small change in Λ leaves covariations unchanged. Any

such value of Λ generates a covariation vector on a vertex of the polytope. On the other

hand, there exist a finite number of values of Λ where the optimal matching problem has

multiple solutions, with corresponding multiple covariations; each such value of Λ generates

a facet of the polytope. This is shown on Figure 1 with all λ = Λ2/Λ1 in an interval

[λi, λi+1] generating the same covariations in the homogeneous case. (We will describe the

other objects on Figure 1 as we go along.)

The heterogeneous case σ > 0 is much better-behaved. We already know from Theorem 3

that the optimal matching is unique and cannot be pure; we will see in Proposition 5 that

it is also a smooth function of the parameters, so that the kinks disappear as soon as there

is any positive amount of heterogeneity.
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Figure 1: The covariogram and related objects
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5.3 Rationalizable Summaries

For any θ = (Λ, σ) with σ > 0, denote Π(θ) the corresponding optimal matching under

(SLOI): Π(θ) maximizes Z(C(Π), I(Π), θ) over Π ∈M(P,Q). And define

C̄(θ) = C(Π(θ)), −Ī(θ) = −I(Π(θ))

the corresponding summary. These definitions are valid since by Theorem 3, the optimal

matching is unique for σ > 0. When σ = 0, for a finite number of values of Λ the optimal

matching will not be unique, and so these functions are correspondences. To simplify

notation, we treat them as functions except when it matters.

We now define the set of rationalizable summaries R as the set of (K+ 1)-uples (C,−I)

such that C = C̄(θ) and I = Ī(θ) for some parameter values θ = (Λ, σ). Equivalently, since

Π(θ) maximizes Z(C(Π), I(Π), θ) and achieves the value W(θ):

R =
{

(C,−I) : ∃ (Λ, σ) ∈ RK × R+, Λ · C − σI =W (Λ, σ)
}
.

Obviously, rationalizable summaries are feasible: R ⊂ F . In fact, since W is the support

function of F ,

Proposition 2 R is the frontier of F .

Proposition 2 points towards a specification test: given a choice of basis functions (φk)

and an observed matching (π̂N ),

1. construct the set of feasible summaries F̂N (which depends on p̂N and q̂N )

2. compute the observed summary (ĈN , ÎN )

3. and use its distance to the frontier of F̂N to compute a test statistic.

While this is correct in principle, it is a fairly cumbersome way to proceed. We now

turn to more practical approaches to inference.
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5.4 Mutual information level sets

Whether model (SLOI) is well-specified or not, the frontier of F can itself be decomposed

into sections on which the mutual information I is constant. To see this, consider a covaria-

tion vector C in the covariogram Fc. By definition, there exists a feasible matching Π such

that C = C(Π). Since the set of such matchings is defined by linear equalities and mutual

information I(.) is a strictly convex function, we can define

Ir (C) := min {I(Π) : Π ∈M(P,Q) and C = C(Π)} ;

we call Ir(C) the rationalizing mutual information of C.

By construction, the point (C,−Ir(C)) must be on the frontier of F . Since W is the

support function of F , it follows that there exists a θ = (Λ, σ) such that

W(Λ, σ) = Λ · C − σIr(C);

and for this value of the parameter vector,

C = C̄(θ) and Ir(C) = Ī(θ).

If σ > 0, then taking the Legendre-Fenchel transform and using the homogeneity of W, the

rationalizing mutual information is also

Ir (C) = sup
λ
{λ · C −W (λ, 1)} ; (5.2)

therefore Ir is a strictly convex and C1 function.

Conversely, for any mutual information 0 ≤ I ≤ S(P ) + S(Q) we define the set of

rationalizable covariations by

Rc (I) = I−1
r (I) .

Thus each set Rc(I) is a level set of the rationalizable mutual information function Ir.

Note the two limiting cases: when mutual information I is zero (corresponding to ran-

dom matching), thenRc (0) = {C∞}, where Ck∞ = Ep⊗qφ
k (X,Y ). When I = S (P )+S (Q),

Rc (S (P ) + S (Q)) consists of the extreme points of the covariogram Fc.

The following result sums up our results so far for the semilinear model:
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Proposition 3 Under (O), (S) and (GUI),

a) The social welfare function W is positive homogeneous of degree one in θ = (Λ, σ).

It is convex on RK × [0,+∞) and it is strictly convex on its interior.

b) If σ > 0, the derivatives of W at θ = (Λ, σ) are (C̄(θ),−Ī(θ)).

c) The function Ir (C) is C1 on the interior of Fc. Let θ = (Λ, σ) be such that C = C̄(θ)

and Ir(C) = Ī(θ); then
∂Ir
∂Ck

=
Λk
σ
.

d) For the homogeneous model with σ = 0, the function W0 ≡ W(., 0) has a subdiffer-

ential in Λ given by the set of K-uples

∂W0 = {C(Π)}

generated by the matchings in Π(Λ, 0). The boundary of Fc is constituted by the covariation

vectors in C̄(Λ, 0).

5.5 Inference in the Semilinear Model

Our most important result on the semilinear model is that any feasible summary (C,−I)

can be rationalized by model (SLOI), provided only that I = Ir(C); and that if C is in the

interior of Fc then the corresponding assorting weights are unique, up to a scale factor.

We already proved that if I = Ir(C), the summary (C,−I) is rationalizable. Take a

summary (C,−I) such that I 6= Ir(C). If it is a feasible summary, then by construction

I ≥ Ir(C). Assume that the inequality is strict, and θ rationalizes the summary (C,−I);

then given σ > 0,

Z(C,−Ir(C); θ) > Z(C,−I; θ),

which contradicts the optimality of Π(θ) for θ. Thus I = Ir(C) is a necessary and sufficient

condition for (C,−I) to be a rationalizable summary.

The following result, which sums up the relationships between the sets we introduced:
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Proposition 4 Under (O), (S), and (GUI),

a) The sets Rc (I) are the frontiers of nested closed and convex sets that expand from

{C∞} to Fc as mutual information I increases from 0 to S(P ) + S(Q).

b) Any point C in the interior of Fc belongs to exactly one level set Rc (I), associated

to the mutual information level I = Ir (C).

c) For any such C, define

λ(C) =
∂Ir
∂C

(C) ;

then on the tangent space to Rc (I),

dCi

dCj
= −λj(C)

λi(C)
∀i, j = 1, . . . ,K. (5.3)

d) For any C in the interior of Fc, the equations

C = C̄(θ) and I = Ī(θ)

have a solution if and only if I = Ir(C); and then the set of solutions is the half-line

θ = σ × (λ(C), 1) for σ > 0.

e) If C is on the boundary of Fc, then let λ(C) be the normal cone (the set of vectors

that are normal to ∂Fc in C); the set of solutions to the inclusion equation

C ∈ C̄(θ)

is the set of θ = (λ, 0) such that λ ∈ λ(C).

Proposition 4 is illustrated on figure 1. Note that when we fix Λ and increase σ from

0 to +∞, the summary vector (C,−I) for the optimal matching moves continuously from

(C0(Λ),−I0(Λ)) to (C∞, 0); thus part a) tells us that increasing σ for given Λ moves us

from a point on the boundary of FC to C∞. This is represented on Figure 1 by the dashed

trajectory.
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The interpretation of part c) is simplest when the matrix Λ is diagonal. With several

dimensions for types, the optimal matching must sacrifice some covariation in one dimension

to the benefit of some covariation in another. The implied sacrifice ratio, quite naturally,

is exactly the ratio of the assorting weights along these dimensions. Take for instance the

homogeneous case with only two characteristics, and set Λ11 = 1 and Λ22 = ε. Then

the function ε → C11 (1, ε) is decreasing, and the function ε → C22 (1, ε) is increasing.

Therefore, when one puts more weight on the second dimension, the covariation of the

characteristics in the second dimension increases, while the covariation on the first dimension

decreases. Quite intuitively, in the limit where all the weights are put on one dimension,

the classical Beckerian theory of positive assortative matching obtains.

Proposition 4 has direct implications for identification. Neglecting sampling variation,

let us observe π, p, q and therefore I. Then, given a model (SLOI), compute the observed

covariations C and the function Ir. The above suggests an empirical strategy (assuming

σ > 0):

• If I 6= Ir(C), we reject model (SLOI);

• If I = Ir(C), then we identify the parameters of (SLOI) as

Λ =
∂Ir
∂C

(C)

up to a scale factor.

6 Parametric Inference

We now turn to the problem of parametric inference. Our data will consist of matched

characteristics of N pairs {(x1, y1) , ..., (xN , yN )}, and our null hypothesis is that they were

generated by an optimal matching consistent with assumptions (O), (S), (GUI). Given a

proposed specification for model (SLOI) with basis functions φk, and our estimates of the

marginal distributions of types P̂N and Q̂N , we would like to test for correct specification

and to infer the values of Λ and σ which come closest to rationalizing the observed matching.
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Our empirical strategy is based on the knowledge of the matching summaries
(
Ĉ, Î

)
,

which are the sufficient statistics for our model, or of just the covariations Ĉ when
(
Ĉ, Î

)
lies on the efficient frontier, that is Î = Ir

(
Ĉ
)

. In either cases, positive homogeneity

imposes the need for a normalization of the estimator
(

Λ̂, σ̂
)

. We assume throughout that

σ > 0, which can be tested that checking whether Ĉ is on the frontier of Fc.

The normalization rule

We choose to normalize (Λ, σ) by

Normalization convention: σĪ (Λ, σ) = 1, (6.1)

although any other choice would do just as well. This one has the advantage that it relates

heterogeneity σ and mutual information I in a natural way.

By construction, Ir
(
Ĉ
)

= Ī (λ, 1) = Î if λ rationalizes the data. If the null of correct

specification Î = Ir(Ĉ) is not rejected, then Proposition 4 implies that

λ̂ =
∂Ir
∂C

(
Ĉ
)
,

and given our normalization rule,

Λ̂ =
∂ log Ir
∂C

(
Ĉ
)
. (6.2)

Our general approach will be to identify the parameter value
(
λ̂, 1
)

, and then rescale

Λ̂ =
λ̂

Î
, σ̂ =

1
Î
.

6.1 The Efficiency Bound

We start by computing the Fisher information bound of model (SLOI); then we will intro-

duce a very simple estimator that achieves it.

Given a function h of two random variables (X,Y ) which have joint cdf F , we write the

two-way ANOVA decomposition

h(X,Y ) = EFh(X,Y ) + a(X;h, F ) + b(Y ;h, F ) + ε (X,Y ;h, F ) ,
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with

a(X;h, F ) = EF (h(X,Y )|X)−EFh(X,Y ) and b(Y ;h, F ) = EF (h(X,Y )|Y )−EFh(X,Y ).

By construction, the ANOVA residue ε(X,Y ;h, F ) has zero conditional means:

EF (ε (X,Y ;h, F ) |X) = 0 and EF (ε (X,Y ;h, F ) |Y ) = 0.

The following proposition will be our fundamental tool for inference. It states that

the ANOVA residue of φk(X,Y ) under the optimal matching Π(θ) is proportional to the

score function ∂ log πθ
∂Λk

, where πθ(x, y) denotes the proportion of matches between observed

types x and y for the optimal matching in θ. We denote D the image of the interior of the

covariogram Fc by ∂Ir/∂C.

Proposition 5 (Score function) Fix σ > 0. Under (O), (S), and (GUI) the likelihood

function of model (SLOI) is infinitely differentiable with respect to Λ on σD, and its score

function is given by
∂ log πθ
∂Λk

(x, y) =
ε(x, y;φk, πθ)

σ
.

As a result, we get a very simple relationship between the Fisher information matrix,

the ANOVA residues, and the Hessian of the social welfare function at fixed σ.

Proposition 6 (Fisher information matrix) Under (O), (S), and (GUI), the Fisher

information matrix of model (SLOI)

Ikl (θ) := E

(
∂ log π
∂Λk

(X,Y )
∂ log π
∂Λl

(X,Y )
)

is proportional to the ANOVA residues on D:

Ikl (θ) :=
E
(
ε(X,Y ;φk, πθ)ε(X,Y ;φl, πθ)

)
σ2

. (6.3)

Moreover, it is also proportional to the Hessian of W on D:

∂2W
∂Λk∂Λl

(Λ, σ) = σIkl (θ) .
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6.2 The Asymptotic of Covariations

Denote

π̂N (x, y) =
1
N

N∑
n=1

1 {xn = x, yn = y}

the sample estimator of π (x, y). Standard asymptotic theory ensures the distributional

convergence

N1/2π̂N (x, y) =⇒ G (x, y)

whereG is a Gaussian process such that
∑

x,y G (x, y) = 0, var (G (x, y)) = π (x, y) (1− π (x, y)),

and for (x, y) 6= (x′, y′)

cov
(
G (x, y) , G

(
x′, y′

))
= −π (x, y)π

(
x′, y′

)
.

The basis of our investigation will be the empirical moments of φk,

ĈkN =
1
N

N∑
n=1

φk (xn, yn) =
∑
x,y

φk (x, y) π̂N (x, y) .

Let Ck denote the expectation of φk(X,Y ) under the joint limit distribution π of (X,Y ).

Then
√
N
(
ĈkN − Ck

)
=⇒ ξk (6.4)

where ξk =
∑

x,y φ
k (x, y)G (x, y). In particular,

cov
(√

N
(
ĈkN − Ck

)
,
√
N
(
Ĉ lN − C l

))
= covπ

(
φk (X,Y ) , φl (X,Y )

)
for all 1 ≤ k, l ≤ K.

6.3 Testing

Our testing strategy will be based on the comparison between

• ÎN =
∑

x,y π̂N (x, y) log π̂N (x,y)
p̂N (x)q̂N (y) , which is the mutual information measured in the

data, and
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• Îr
(
ĈN

)
which is the rationalizing mutual information computed in the estimated

model.

Assume that the model is well-specified and λ is the true value of the parameters. Then

since λ is the derivative of Ir in C,

Ir

(
ĈN

)
= Ir (C) + λ.

(
ĈN − C

)
+ o

(
N−1/2

)
thus

Ir

(
ĈN

)
= Ir (C) +N−1/2

∑
x,y

∑
k

λkφ
k (x, y)G (x, y) + o

(
N−1/2

)
while

ÎN = I +N−1/2
∑
x,y

log
π (x, y)
p (x) q (y)

G (x, y) + o
(
N−1/2

)
Our test is thus based on the fact that, under the null of correct specification,

N1/2
(
Ir

(
ĈN

)
− ÎN

)
=⇒

∑
x,y

(∑
k

λkφ
k (x, y)− log

π (x, y)
p (x) q (y)

)
G (x, y)

thus

N1/2
(
Ir

(
ĈN

)
− ÎN

)
∼ N

(
0, varπ

(∑
k

λkφ
k (X,Y )− log

π (X,Y )
p (X) q (Y )

))
.

6.4 The Moment Matching Estimator

We shall call WN (θ) the value of the social surplus at parameter θ obtained with the

empirical distributions of observable types p̂N and q̂N .

While we could use maximum-likelihood to estimate λ, the results in section 5 suggest a

much simpler method based solely on the observed covariations Ĉ. Since λ is the derivative

of Ir and Ir is the Legendre-Fenchel transform of W, we take λ̂ to minimize

λ · Ĉ −WN (λ, 1) (6.5)

over IRK . This objective function is strictly convex, so that its minimizer is unique; and as

shown in section 4, WN can be computed very efficiently with our IPFP algorithm.

40



Letting Î be the value of expression (6.5) at the optimal value λ̂, we obtain the Moment

Matching (MM) estimator, denoted Λ̂MM and σ̂MM , by setting

Λ̂MM =
λ̂

Î
, σ̂MM =

1
Î
.

If the data was actually generated by model (SLOI) with parameters
(

Λ̂MM , σ̂MM
)

, the

empirical covariations ĈN would coincide with the optimal correlations C̄
(

Λ̂MM , σ̂MM
)

.

By construction, the Moment Matching estimator assigns the assorting weights values such

that the predicted covariations coincide with the observed covariations. It is consistent and

asymptotically Gaussian, and moreover:

Theorem 4 Under (O), (S) and (GUI), if the model is correctly specified

√
N
(
λ̂N − λ

)
=⇒ I−1ξ

where ξ is the Brownian bridge characterized in (6.4) and the matrix Ikl is the Fisher

information matrix in (6.3). Therefore the MM estimator is asymptotically efficient.

7 An Illustration on US Census Data

To explore the fruitfulness of our proposed approach, we extracted data on married couples

in the US from the American Community Survey (ACS) 2008 survey of the Census Bu-

reau.The ACS collects data from a 1/100 representative sample of the US population every

year. We downloaded the “small” sample from the Minnesota Population Center (Ruggles,

Sobek, Alexander, Fitch, Goeken, Hall, King, and C.Ronnander (2008).) This contains

about 75,000 individual records. To avoid having to deal with complex marital histories, we

focus on couples which are the first marriage for both partners. At this stage of our data

selection, we had 10,466 couples. To reduce heterogeneity, we chose to focus on “young”

couples, where both partners are aged 20 to 35 and are out of school. This selection leaves

us with 1,353 couples.
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We chose to focus on the trade-off between matching on race and matching on education

levels. We recoded the education variable in the CPS so that it takes five values: high school

dropout (HSD), high school graduate (HSG), some college (SC; which includes two-year

programs) college graduate (COLL), and postgraduate (POST). Similarly, we defined four

values for race: white non hispanic, hispanic, black, and “others’.

Tables 1 and 2 describes the marginal distributions of characteristics p̂N and q̂N in the

data. The numbers in these tables are all significantly larger than 0 at the 5% level, except

for the two that are surrounded by parentheses. More than one third of hispanic men are

high school dropouts, as against fewer than 7% for the three other race categories; at the

other end of the educational ladder, close to one third of “other” men have a postgraduate

degree (10% in the population of men.) The proportions are similar for women, although

the discrepancies are less pronounced. We should also note here that our sample is not

representative of the whole US population: by construction, it is younger and it consists of

men and women in a first marriage.

Education: HS Dropout HS Graduate Some Coll. Coll. Graduate Postgraduate Total

Race:

White non hispanic 0.041 0.177 0.216 0.231 0.075 0.740

Hispanic 0.050 0.046 0.028 0.016 (0.002) 0.142

Black 0.004 0.016 0.022 0.010 0.007 0.058

Others 0.004 0.009 0.009 0.019 0.019 0.060

Total 0.099 0.248 0.275 0.276 0.103 1.000

Table 1: Marginal characteristics p̂N of husbands

The joint distribution of characteristics π̂N is quite unwieldy: even considering just race

and education, there are already 202 = 400 cells to consider for possible matches. In fact,

no fewer than 259 of these cells contain no match at all; and only 16 have more than 5,

which makes nonparametric estimates very uninformative.
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Education: HS Dropout HS Graduate Some Coll. Coll. Graduate Postgraduate Total

Race:

White non hispanic 0.024 0.145 0.239 0.245 0.090 0.744

Hispanic 0.036 0.041 0.038 0.024 0.006 0.146

Black 0.003 0.011 0.021 0.011 0.006 0.052

Others (0.002) 0.007 0.010 0.024 0.016 0.059

Total 0.066 0.205 0.307 0.305 0.118 1.000

Table 2: Marginal characteristics q̂N of wives

On the other hand, looking at endogamy on each of our two dimensions separately is

both easy and instructive. There are several measures of endogamy indices in the literature;

we could for instance define endogamy indices by the diagonal of the matrix

ÊN (x, y) =
π̂N (x, y)

p̂N (x)q̂N (y)
.

This matrix is a natural choice for us since it figures prominently in our theoretical analysis,

via the definition of mutual information

ÎN =
∑
x,y

π̂N (x, y) log ÊN (x, y).

Applying these two definitions to race gives us table 3, in which the number in each cell

is ÊN . Random matching would make all ÊN equal one in this table; in fact, they are all

significantly different from one (the 0? reflects the absence of any couple with a Hispanic

husband and a Black wife in our sample.)

The numbers on the diagonal (in bold) stand out. The ÊN numbers on the diagonal

are strikingly high, especially for Blacks and Others; but since these categories are less

numerous than whites and hispanics, they end up contributing less to mutual information.

Table 4 gives endogamy indices on education. Only one of the ÊN terms is non-

significantly different from one, and there is again a 0?. Here also the diagonal strongly

dominates, but the effect is less striking.
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Race of the wife: White non hispanic Hispanic Black Others

Race of the husband:

White non hispanic 1.27 0.21 0.17 0.24

Hispanic 0.21 5.76 0? 0.09

Black 0.24 0.35 14.68 0.21

Others 0.23 0.17 0.24 13.36

Table 3: Endogamy on races

The mutual information based on race is 0.484, while that on education is 0.264. Based

on this measure, endogamy on race trumps endogamy on education.

Wife: HSD HSG SC COLL POST

Husband:

HSD 5.89 1.75 0.63 0.15 0.13

HSG (1.04) 2.04 1.18 0.44 0.13

SC 0.49 0.81 1.57 0.86 0.50

COLL 0.08 0.31 0.65 1.77 1.62

POST 0? 0.11 0.33 1.49 3.61

Table 4: Endogamy on educations

We could apply Theorem 3 and the ∆2 operator to recover nonparametric estimates

of complementarities; but given the paucity of data in most cells, we go directly to the

semilinear specification. In order to be able to plot the covariogram in two dimensions, we

only use the two most natural basis functions:

1. similarity on races: φ1(Rm, Em, Rw, Ew) = 11(Rm = Rw);

2. similarity on educations: φ2(Rm, Em, Rw, Ew) = 11(Em = Ew).

The mean observed values of these two functions are simply the proportion of matches in
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which both partners have the same race (resp. education). They form the vector of observed

covariations

ĈN = (0.911, 0.466).

We first traced the frontier of the covariogram in (C1, C2) space, using the Munkres

algorithm to generate the optimal matching for the surplus function

λ1φ
1(Rm, Em, Rw, Ew) + λ2φ

2(Rm, Em, Rw, Ew)

and drawing 1, 000 values of (λ1, λ2) randomly from the uniform distribution on the circle

‖λ‖ = 1, for σ = 0 since we are drawing the frontier.

While the implementation of the Munkres algorithm we used is quite efficient, it still

takes 8 seconds on average to generate each optimal matching. The results are striking:

somewhat to our surprise, the frontier of the covariogram is almost a perfect square. More

detailed investigation shows that the four corners correspond to the four combination of the

signs of λ1 and λ2: their values hardly seem to matter. The reason is that the conditional

distributions of education within each race do not differ much for men and women, and that

of course the marginal distribution of races are very close. Take λ1 > 0 for instance, so that

the optimal matching would maximize matching on race if λ2 were zero. If λ2 is not in fact

zero, then it is possible to maintain the maximal matching on race while shuffling partners

so that matching on educations is also maximized (if λ2 > 0) or minimized (if λ2 < 0.)

In that sense, there is in fact little trade off between matching on race and matching on

education in the homogeneous model with σ = 0.

This is not the case any more when σ > 0. We illustrate it on Figure 2, where we plotted

the homogeneous frontier, the observed covariations ĈN and the mutual information level

set I = Ir(Ĉ) that goes through it. This curve corresponds to a mutual information of 0.588,

which is much smaller than ÎN = 0.800, the value of the nonparametric mutual information

on race and education. The difference between these two values, multiplied by N = 1, 353,

generates a misspecification test, which clearly rejects the semilinear specification at any

reasonable level. This is not surprising, as we are trying to explain 400 numbers with
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just two parameters. The values of the respective mutual informations are summarized in

Table 5.

To estimate λ̂N , we used our Moment Matching estimator, based on the IPFP algorithm.

The objective function is strictly concave, and its gradient is extremely simple, so that it

can be computed analytically to speed up the process. In fact this is hardly needed, as the

estimator obtains in less than half a second; computing the optimal matching for any value

of λ takes much less than a tenth of a second, which is about 1,000 times faster than in the

homogeneous model.

The resulting estimators (normalizing σ = 1) are

λ̂N = (2.88, 1.03).

As expected, this is also the slope of the normal vector to the mutual information level set

that goes through the observed covariations ĈN , as represented on Figure 2. The figure also

shows the covariations implied by random matching, C∞ = (0.577, 0.238), which correspond

to the mutual information level set I = 0, and an intermediate level set.

Specification Value

Nonparametric, race 0.484

Nonparametric, education 0.264

Nonparametric, race and education 0.800

Semilinear, race and education 0.588

Table 5: Mutual informations

8 Possible Extensions and Concluding Remarks

Our theory so far relies on several strong assumptions.

The multinomial logit structure Our results rely heavily on assumption (GUI); yet

it is well-known in applied econometrics that the multinomial logit model implies strong
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restrictions. Note that the assumption can be tested along the lines of the procedures

suggested by Hausman and McFadden (1984): a Hausman test based on the difference

between our estimator (or the implied matching or covariations) and an estimator that only

uses a restricted set of (x, y) types would have power against alternatives that violate IIA.

While we do not explore this here, it is also possible to obtain estimates of at least part

of the surplus function Φ within a nested logit setting. More generally, it is easy to extend

the results of the paper to the heteroskedastic case (in the form of functions σ1(x) and

σ2(y)). The expression in Theorem 1 turns into

W(θ) = inf
(U,V )∈A

(
EPσ1 (X) log

∑
y

exp(U(X, y)/σ1 (X)) + EQσ2 (Y ) log
∑
x

exp(V (x, Y )/σ2 (Y ))

)
,

(8.1)

while the expression in Theorem 2 becomes

W(θ) = sup
Π∈M(P,Q)

(∑
x,y

π(x, y) {Φ (x, y)− (σ1 (x) + σ2 (y)) log π (x, y)}

)
. (8.2)

Thus if we knew the functions σ1 and σ2, a nonparametric estimator of Φ in the het-

eroskedastic case would be

Φ̂N (x, y) = (σ1 (x) + σ2 (y)) log π̂N (x, y) + a(x) + b(y).

Typically we do not know σ1 and σ2, but we are willing to restrict their dependence on x

and y; in the nested logit case for instance, σ1 (res. σ2) would only depend on the nest of

x (resp. y), and it is enough to identify the variation of Φ within a nest.

Continuous distributions. While we have assumed discrete characteristics, we expect

the main thrust of our arguments to carry over to the case where the distributions of the

characteristics are continuous. We are working on such an extension; this will require

adapting the (GUI) assumption to one that is better-suited to continuous choice.

Single households. So far we have not allowed for unmatched individuals. In an

optimal matching, some men and/or women may remain single, as of course some must if
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there are more individuals on one side of the market. The choice of the socially optimal

matching can be broken down into the choice of the set of individuals who participate in

matches and the choice of actual matches between the selected men and women. Our theory

applies without any change to the second subproblem; that is, all of our results extend to

M and W as selected in the first subproblem.

From the point of view of statistical inference, we may lose some efficiency in doing

so; we note here that when the unobserved heterogeneity in preferences over partners is

separable from the utility of marriage itself, our method does not incur any efficiency loss.

Non-bipartite matching. Bipartite matching refers to the fact that each individual

is exogenously assigned in one category—in our terminology, husband or wife. Our analysis

in fact is very easy to extend so as to incorporate same-sex unions, and thus to rationalize

endogamy in the gender dimension.

To do so, we just need to add one (observed) characteristic, in the form of gender. If for

instance gender becomes the first dimension of the characteristics vector, then the observed

surplus has an assorting weight Λ11 < 0 that reflects the more typical preference for the

opposite sex; while heterogenous preferences χ and η will automatically take into account

the dispersion of individual preference for same-sex unions.
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A Facts from Convex Analysis

A.1 Basic results

We only sum up here the concepts we actually use in the paper; we refer the reader to

Hiriart-Urrut and Lemaréchal (2001) for a thorough exposition of the topic.

Take any set Y ⊂ IRd; then the convex hull of Y is the set of points in IRd that are

convex combinations of points in Y . We usually focus on its closure, the closed convex hull,

denoted cch (Y ).

The support function SY of Y is defined as

SY (x) = sup
y∈Y

x · y

for any x in Y . It is a convex function, and it is homogeneous of degree one. Moreover,

SY = Scch(Y ) where cch (Y ) is the closed convex hull of Y , and ∂SY (0) = cch (Y ).

A point in Y is an extreme point if it does not belong to any open line segment joining

two points of Y .

Now let u be a convex, continuous function defined on IRd. Then the gradient ∇u of u

is well-defined almost everywhere and locally bounded. If u is differentiable at x, then

u
(
x′
)
≥ u (x) +∇u (x) · (x′ − x)

for all x′ ∈ IRd. Moreover, if u is also differentiable at x′, then

(
∇u (x)−∇u

(
x′
))
·
(
x− x′

)
≥ 0.

When u is not differentiable in x, it is still subdifferentiable in the following sense. We

define ∂u (x) as

∂u (x) =
{
y ∈ IRd : ∀x′ ∈ IRd, u

(
x′
)
≥ u (x) + y · (x′ − x)

}
.

Then ∂u (x) is not empty, and it reduces to a single element if and only if u is differentiable

at x; in that case ∂u (x) = {∇u (x)}.
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A.2 Generalized Convexity

In order to make the paper self-contained, we present basic results on the theory of general-

ized convexity, sometimes called the theory of c-convex functions. This theory extends many

results from convex analysis and, in particular, duality results, to a much more general

setting. We refer to Villani (2009), p. 54–57 (or Villani (2003), pp. 86–87) for a detailed

account7.

Let ω be a function from the product of two sets X × Y to [−∞,+∞).

Definition 1 Consider any function ψ : X → (−∞,+∞]. Its generalized Legendre trans-

form ψ⊥ : X → [−∞,+∞) is defined by

ψ⊥ (y) = inf
x∈X
{ψ (x)− ω (x, y)} .

Conversely, take any function ζ : Y → [−∞,+∞); then its generalized Legendre trans-

form ζ> : X → (−∞,+∞] is defined by

ζ> (x) = sup
y∈Y
{ζ (y) + ω (x, y)} .

A function ψ is called ω-convex if it is not identically +∞ and if there exists ζ : Y →

[−∞,+∞] such that

ψ = ζ>.

Recall that the usual Legendre transform is defined as

ψ∗(y) = inf
x∈X
{ψ (x)− x · y} ;

thus it coincides with the generalized Legendre transform when ω is bilinear, and then

ω-convexity boils down to standard convexity.

Our analysis rests on the following fundamental result, which generalizes standard con-

vex analysis.
7A cautionary remark is in order here: the sign conventions vary in the literature, so our own choices

may differ from those of any given author.
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Proposition 7 For every function ψ : X → (−∞,+∞],

ψ⊥> ≤ ψ

with equality if and only if ψ is ω-convex.

Proof Take any x ∈ X ; then

ψ⊥> (x) = sup
y∈Y

inf
x′∈X

{
ψ
(
x′
)
− ω

(
x′, y

)
+ ω (x, y)

}
;

taking x′ = x shows that ψ⊥> (x) ≤ ψ (x).

Conversely, if ψ⊥> = ψ then ψ (x) = ζ> (x), with ζ = ψ⊥. But for any function ζ, the

triple transform ζ>⊥> coincides with ζ>. To see this, write

ζ>⊥> (x) = sup
y∈Y

inf
x′∈X

sup
y′∈Y

{
ζ
(
y′
)

+ ω
(
x′, y′

)
− ω

(
x′, y

)
+ ω (x, y)

}
.

Now for all x and y,

inf
x′∈X

sup
y′∈Y

{
ζ
(
y′
)

+ ω
(
x′, y′

)
− ω

(
x′, y

)}
≥ ζ (y)

as is easily seen by taking y′ = y; therefore

ζ>⊥> (x) ≥ sup
y∈Y
{ζ (y) + ω (x, y)} = ζ>(x).

Applying this to the ζ such that ψ = ζ> concludes the proof.

QED.

B Proofs

B.1 Proof of Theorem 1

In order to prove Theorem 1, some preparation is needed. For any function ũ (x̃), fix x and

use the theory of generalized convexity briefly recalled in Appendix (A.2) to define

ũ⊥ (x, y) = inf
x̃|x
{ũ (x̃)− χ (x̃, y)}
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the generalized Legendre transform of ũ with respect to χ for fixed x—the notation x̃|x

stands for “the set of values of the full type x̃ for which the observable type takes the value

x”. We define in the same manner

ṽ⊥ (x, y) = inf
ỹ|y
{ṽ (ỹ)− ξ (ỹ, x)} .

Similarly, for any two functions U (x, y) and V (x, y), we define

U> (x̃) : = sup
y
{U (x, y) + χ (x̃, y)}

V > (ỹ) : = sup
x
{V (x, y) + ξ (ỹ, x)} .

Lemma 1 Let A be the set of pairs of functions (U, V ) such that

∀x, y, U (x, y) + V (x, y) ≥ Φ (x, y) .

Then

W = inf
(U,V )∈A

{∫
U> (x̃) dP̃ (x̃) +

∫
V > (ỹ) dQ̃ (ỹ)

}
.

Proof of Lemma 1 By the Kantorovich duality theorem (Villani (2009) Theorem 5.10),

W = sup
π̃∈M(P,Q)

∫
Φ̃ (x̃, ỹ) dπ̃ (x̃, ỹ) = inf

(ũ,ṽ)∈Ã

{∫
ũ (x̃) dP̃ (x̃) +

∫
ṽ (ỹ) dQ̃ (ỹ)

}
, (B.1)

where Ã is the set of pairs of functions (ũ, ṽ) such that

∀x̃, ỹ, ũ (x̃) + ṽ (ỹ) ≥ Φ̃ (x̃, ỹ) .

Note the following two facts about the right-hand side of this equality:

1. Since

Φ̃(x̃, ỹ) = Φ(x, y) + χ (x̃, y) + ξ (ỹ, x) ,

the infimum in (B.1) can be taken over the pair of functions (ũ, ṽ) that satisfy

ũ (x̃) ≥ sup
y

{
Φ(x, y) + χ (x̃, y) + sup

ỹ|y
[ξ (ỹ, x)− ṽ(ỹ)]

}
,
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or

ũ(x̃) ≥ sup
y

{
Φ(x, y) + χ(x̃, y)− ṽ⊥(x, y).

}
At the optimum this must hold with equality. Going back to Definition 1, it follows

that ũ is χ-convex for any fixed x; and using Proposition 7, we can substitute ũ with

ũ⊥>, that is:

ũ (x̃) = sup
y

{
ũ⊥ (x, y) + χ (x̃, y)

}
.

Applying a similar argument to ṽ, the objective function can be rewritten as∫
sup
y

{
ũ⊥ (x, y) + χ (x̃, y)

}
dP̃ (x̃) +

∫
sup
x

{
ṽ⊥ (x, y) + ξ (ỹ, x)

}
dQ̃ (ỹ) .

2. Also note that the constraint of the minimization problem in (B.1) is also

∀x, y, ũ> (x, y) + ṽ⊥ (x, y) ≥ Φ (x, y)

which follows directly from the fact that

∀x̃|x, ỹ|y, ũ (x̃)− χ (x̃, y) + ṽ (ỹ)− ξ (ỹ, x) ≥ Φ (x, y) .

Now define

U (x, y) = ũ⊥ (x, y) and V (x, y) = ṽ⊥ (x, y) ;

Given points 1. and 2. above, we can rewrite the value W as

W = inf
(U,V )∈A

{∫
U> (x̃) dP̃ (x̃) +

∫
V > (ỹ) dQ̃ (ỹ)

}
.

QED.

We are now in a position to prove the theorem.

Proof of Theorem 1 Start by drawing two samples of size N of men and women from

their population distributions P and Q; we denote the corresponding values of the observed
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characteristics {x1, ..., xn} and {y1, ..., yn}. Call Pn and Qn the corresponding sample dis-

tributions; e.g. Pn assigns a mass

pk,n =
1
n

n∑
j=1

11(xj = xk)

to the value xk of observable characteristics of men. The Law of Large Numbers implies

that Pn and Qn converge in distribution to P and Q, the population distributions of the

observable types. Now we have for any possible x∫
U> (x̃) dP̃n (x̃|X = x) =

∑
i=1,..,n
xi=x

sup
j=1,...,n

{U (xi, yj) + χ (x̃i, yj)}+ o (1)

As N gets large, each of the possible values of observable characteristics of women yk

is included in the sample {y1, ..., yn}; therefore the supremum in the above expression runs

over all such possible values
{
y1, . . . , ynQ

}
. But under (GUI), conditional on X the random

variables χ
(
x̃, yk

)
are independent Gumbel random variables with scaling factor σ1, so we

get
1
σ1

∫
U> (x̃) dP̃n (x̃|X = x) = log

nQ∑
k=1

exp
(
U
(
x, yk

)
/σ1

)
+ oP (1)

hence, taking the limit and integrating over x,∫
U> (x̃) dP̃ (x̃) = σ1EP log

∑
y

exp (U (X, y) /σ1)

and similarly ∫
V > (ỹ) dQ̃ (ỹ) = σ2EQ log

∑
x

exp (V (x, Y ) /σ2) .

QED.

B.2 Proof of Theorem 2

Proof By theorem 1, we have

WN = inf
U(x,y)+V (x,y)≥Φ(x,y) ∀x,y

 σ1
∑

x p (x) log
(∑

y exp (U (x, y) /σ1)
)

+σ2
∑

y q (y) log (
∑

x exp (V (x, y) /σ2))


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for which we form the Lagrangian

WN = inf
U(x,y),V (x,y)

sup
π(x,y)≥0


σ1
∑

x p (x) log
(∑

y exp (U (x, y) /σ1)
)

+σ2
∑

y q (y) log (
∑

x exp (V (x, y) /σ2))

+
∑

x,y π (x, y) (Φ (x, y)− U (x, y)− V (x, y))


= sup

π(x,y)≥0

{∑
xy

π (x, y) Φ (x, y) + inf
U(.,.)

F (U) + inf
V (.,.)

G(V )

}
where

F (U) = σ1

∑
x

p (x) log

(∑
y

exp (U (x, y) /σ1)

)
−
∑
xy

π (x, y)U (x, y)

G(V ) = σ2

∑
y

q (y) log

(∑
x

exp (V (x, y) /σ2)

)
−
∑
xy

π (x, y)V (x, y) .

Clearly, U (., .) and V (., .) in the inner minimization problems satisfy

π (x, y) =
p (x) exp (U (x, y) /σ1)∑

y exp (U (x, y) /σ1)
=
q (y) exp (V (x, y) /σ2)∑

x exp (V (x, y) /σ2)
; (B.2)

note that these equations imply that
∑

y π (x, y) = p (x) and
∑

x π (x, y) = q (y), so that

π ∈M(P,Q). Rearranging terms,

WN = sup
π∈M(P,Q)


∑

xy π (x, y) Φ (x, y)− (σ1 + σ2)
∑

xy π (x, y) log π (x, y)

+σ1
∑

x p (x) log p (x) + σ2
∑

y q (y) log q (y)


and noticing that

∑
xy π (x, y) log π (x, y) = −S(π) = I (π)−S (P )−S (Q) gives the desired

result.

B.3 Proof of Corollary 1

Proof The result follows directly from the Kantorovich duality theorem (cf. Villani (2009),

Ch. 2); it can also be obtained by letting σ1 and σ2 tend to zero in Theorem 1 and by

noting that as σ1, σ2 → 0,

σ1EP

[
log
∑
y

[exp (U (X, y) /σ1)]

]
→ EP

[
max
y
U (X, y)

]
,

σ2EQ

[
log
∑
x

[exp (V (x, Y ) /σ2)]

]
→ EQ

[
max
x

U (x, Y )
]
.
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B.4 Proof of Proposition 1

Proof Non-emptiness is obvious. To see that Fc is convex, let Ĉ and C̃ be two feasible

cross-product matrices in Fc. Pick any α ∈ [0, 1] and consider αĈ+(1− α) C̃. By definition

of Fc, there exist π̂ and π̃ in M (P,Q) such that Ĉij = Eπ̂ [XijYij ] and C̃ij = Eπ̃ [XijYij ].

Let π̄ = απ̂ + (1− α) π̃. Then αĈij + (1− α) C̃ij = Eπ̄ [XijYij ], and π̄ ∈ M (P,Q), thus

αĈ + (1− α) C̃ ∈ Fc.

Now we prove that Fc is closed: Let Cn be a sequence in Fc converging to C ∈ IRrs,

and let πn be the associated matching. By Theorem 11.5.4 in Dudley (2002), as M (P,Q)

is uniformly tight, πn has a weakly converging subsequence in M (P,Q); call π its limit.

Then C is the cross-product associated to π, so that C ∈ Fc.

Finally, F is a closed convex set as it is the upper graph of the function Ir (C) defined

in Eq. (5.2).

B.5 Proof of Proposition 2

Proof R is the union of the subgradients ofW which was seen in Prop. 1 to be the support

function of F : hence R is the frontier of F .

B.6 Proof of Proposition 3

Proof a) Positive homogeneity and convexity of degree one follow from the fact that W is

the support function of F . Strict convexity for σ > 0 follows from the strict convexity of

I (π). Part b) follows directly from the envelope theorem. Part c) results of Ir (C) being

the Legendre transform of W (λ, 1); since the latter is strictly convex, Ir is convex on Fc,

it is C1 on its interior, and by the envelope theorem, ∂Ir
∂Ck

= λk.
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B.7 Proof of Proposition 4

Proof a) The sets Rc (I) are extreme points of the sets I−1
r ([0, I]) which are closed convex

sets. One has I−1
r ({0}) = {C∞} which corresponds to Π = P⊗Q, and I−1

r ([0, S (P ) + S (Q)]) =

Fc.

b) Clearly, Ĉ ∈ Rc
(
Ir

(
Ĉ
))

.

c) The differential form
∑

k ΛkdCk − σdI vanishes on all of F ; but since dI = 0 on

Rc (I), the form
∑

k ΛkdCk vanishes there too.

d) was proved in the text and in c) above.

e) follows from the definition of C̄.

B.8 Proof of Theorem 3

Proof 1. For σ > 0, the map π →
∑

x,y π(x, y)Φ (x, y) − σI (π) is strictly concave and

finite-valued on the convex domain M (P,Q); thus there exists a unique π ∈ M (P,Q)

maximizing (2.2).

2. Let B be the set of pairs of functions (u (x) , v (y)) such that
∑

x u (x) p (x) =∑
y v (y) q (y) = 0, and for (u, v) ∈ B, let Z be the function defined by

Z (u, v) :=
∑
x,y

p (x) q (y) exp
(

Φ (x, y)− u (x)− v (y)
σ

)
.

Introduce

pu,v (x) : =
∂ logZ (u, v)

∂u (x)
=

∑
y p (x) q (y) exp

(
Φ(x,y)−u(x)−v(y)

σ

)
∑

x,y p (x) q (y) exp
(

Φ(x,y)−u(x)−v(y)
σ

)
qu,v (y) : =

∂ logZ (u, v)
∂v (y)

=

∑
x p (x) q (y) exp

(
Φ(x,y)−u(x)−v(y)

σ

)
∑

x,y p (x) q (y) exp
(

Φ(x,y)−u(x)−v(y)
σ

)
as a result pu,v and qu,v are probability vectors. It is easy to see that Z is strictly log-convex;
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thus there exists a unique pair of functions (u, v) ∈ B such that

p = pu,v

q = qu,v.

Take this pair of functions and define c = σ logZ(u, v); then the function

π (x, y) = p (x) q (y) exp
(

Φ(x, y)− u(x)− v(y)− c
σ

)
belongs to M (P,Q).

3. Let π ∈ M (P,Q) be the solution of (2.2). From Expression (B.2) in the proof of

Theorem 1,

σ1 log π (x, y) = U (x, y) + σ1 log p (x)− σ1 log

(∑
y

exp (U (x, y) /σ1)

)

σ2 log π (x, y) = V (x, y) + σ2 log q (y)− σ2 log

(∑
x

exp (V (x, y) /σ2)

)
.

Thus, summing up:

σ log
π (x, y)
p (x) q (y)

= Φ (x, y)− ū (x)− v̄ (y)

where

ū (x) = σ2 log p (x) + σ1 log

(∑
y

exp (U (x, y) /σ1)

)

v̄ (y) = σ1 log q (y) + σ2 log

(∑
x

exp (V (x, y) /σ2)

)
.

Now take c1 =
∑

x p(x)ū(x) and c2 =
∑

y q(y)v̄(y); and define

u(x) ≡ ū(x)− c1, v(y) ≡ v̄(y)− c2.

By construction, (u, v) ∈ B. Hence π is solution of equation (3.1). It follows immediately

that c =W.
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4. The consequence is obvious; now take another Φ′ that satisfies the cross-difference

equation for some σ′ > 0, and functions u′, v′ and a constant c′ such that

u′(x) + v′(y) + c′ ≡ σ′

σ
(Φ(x, y)− u(x)− v(y)− c)− Φ′(x, y).

Since σ′∆2Φ′ ≡ σ∆2Φ, the right-hand side has zero cross-differences, and so this functional

equation has an infinity of solutions. We just need to normalize them by EPu
′(X) ≡

EQv
′(Y ) ≡ 0.

5. The fact that if p(x) and q(y) are positive then so is π(x, y) follows directly from

formula 3.1.

B.9 Proof of Proposition 5

Proof M (p, q) =
{
π (x, y) :

∑
y π (x, y) = p (x) ,

∑
x π (x, y) = q (y) , π (x, y) ≥ 0

}
. Now,

λ = Λ/σ ∈ D implies that the solution πθ belongs to the strict interior of M (p, q), so that

none of the non-negativity constraints are binding. For a given θ, the vector πθ is defined

as the maximizer of a C∞ function of θ and π with respect to π on M (p, q), thus by the

implicit function theorem, θ → πθ (x, y) is C∞ on D. By equation (3.1), we have

log
πθ (x, y)
p (x) q (y)

=
∑

k Λkφk(x, y)− uθ(x)− vθ(y)− cθ
σ

hence σ ∂ log πθ
∂Λk

(x, y) = φk (x, y)− ∂uθ(x)
∂Λk

(x)− ∂vθ(y)
∂Λk

− ∂cθ
∂Λk

. But∑
x

∂ log πθ
∂Λk

(x, y)πθ (x, y) =
∑
x

∂πθ
∂Λk

(x, y) =
∂

∂Λk

∑
x

πθ (x, y) =
∂q (y)
∂Λk

= 0,

thus for all x and y,

E

(
∂ log πθ (X,Y )

∂Λk
|X = x

)
= 0 and E

(
∂ log πθ (X,Y )

∂Λk
|Y = y

)
= 0;

hence the two-way ANOVA decomposition of φk for πθ is

φk (x, y) = σ
∂ log πθ
∂Λk

(x, y) +
∂uθ (x)
∂Λk

+
∂vθ (y)
∂Λk

+ Eπθφ
k (X,Y ) ,

and the ANOVA residue of φk for πθ is

ε(x, y;φk, πθ) = σ
∂ log πθ
∂Λk

(x, y).
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B.10 Proof of Proposition 6

Proof We have
∂W
∂Λl

(Λ, σ) = Eπθφ
l (X,Y ) ;

hence

∂2W
∂Λk∂Λl

(Λ, σ) = Eπθ

[
φl (X,Y )

∂ log πθ
∂Λk

(X,Y )
]

= σEπθ

(
∂ log πθ
∂Λk

(X,Y )
∂ log πθ
∂Λl

(X,Y )
)

= σIkl.

Moreover, since

ε(x, y;φk, πθ) = σ
∂ log πθ
∂Λk

(x, y),

we get

σ2Ikl = E
(
ε(x, y;φk, πθ)ε(x, y;φl, πθ)

)
.

B.11 Proof of Theorem 4

Proof We have λ̂N = ∂Ir
∂C , hence at first order λ̂N − λ = D2Ir.

(
ĈN − C

)
+ oP

(
1/
√
N
)

.

But Ir is the Legendre transform of W (·, 1), and therefore D2Ir =
(
D2W (·, 1)

)−1 = I−1

by Proposition 6.

C Connections to Statistical physics

There is a very close parallel between our theory and statistical physics and thermodynam-

ics. We refer to Parisi (1988) for more on statistical physics, and to Mézard and Montanari

(2009) for the connection with information theory. Let us just mention here that the social

welfare W is the analog of a total energy ; the term
∑
λkC

k is the analog of an internal

energy ; I (π) is the analog of an entropy ; the parameter σ is the analog of a temperature.

A pure matching is the equivalent of a solid state; the points of nondifferentiability of W

are analog to critical points.

Equation 3.1 is known in the mathematical physics literature as the Schrödinger-Bernstein

equation, cf. Rüschendorf and Thomsen (1998) and references therein. It was first studied
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by Erwin Schrödinger as part of his research program in time irreversibility in statistical

physics. Interestingly, it also bears some connections with his better-known “Schrödinger

equation” in quantum mechanics. In fact, as discovered by Zambrini, a dynamic formu-

lation of this equation is the Euclidian Schrödinger equation which arises in Ed Nelson’s

formulation of “stochastic mechanics,” a Euclidian analog of quantum mechanics. For more

on this topic, see Parisi (1988), Chap. 19.
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