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This article proposes a generalized notion of extreme multivariate dependence between two random
vectors which relies on the extremality of the cross-covariance matrix between these two vectors.
Using a partial ordering on the cross-covariance matrices, we also generalize the notion of positive
upper dependence. We then propose a means to quantify the strength of the dependence between two
given multivariate series and to increase this strength while preserving the marginal distributions.
This allows for the design of stress-tests of the dependence between two sets of financial variables
that can be useful in portfolio management or derivatives pricing.
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1. Introduction

Extreme dependence and the closely related notion of comono-
tonicity are important concepts in various fields. They are
central in the economics of insurance (following the seminal
work of Borch (1962), Arrow (1963), and Arrow (1970)), in
economic theory (see Yaari (1987), Landsberger and Meilijson
(1994), and Schmeidler (1989)), in statistics (see Dall’Aglio
(1956), Rüschendorf (1990), Rachev (1991), Zolotarev (1983)),
as well as in financial risk management (see the book by
Malevergne and Sornette (2006) and references therein).

The notion of extreme (positive) dependence or comono-
tonicity for univariate random variables goes back to the work
of Hoeffding (1940) and Fréchet (1951). Two real random
variables (X, Y ) are comonotonic if their cumulative distri-
bution function satisfy FX,Y (x, y) = min(FX (x), FY (y)), or
equivalently if their copula C is the upper Fréchet copula
C(u1, u2) = min(u1, u2). Equivalently X and Y can be written
as nondecreasing functions of a third random variable Z . As
a consequence, comonotone variables maximize covariance
over the set of pairs with fixed marginals:

E(XY ) = sup
X̃∼X
Ỹ∼Y

E(X̃ Ỹ ), (1)

where X̃ ∼ X denotes equality in distribution between X̃
and X . Similarly, X and Y are said to have extreme negative
dependence when X and −Y have extreme positive depen-
dence. Their covariance is then minimal instead of maximal,
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and their copula is the lower Fréchet copula, C (u, v) =
max (u + v − 1, 0).

The present article aims at proposing an operational theory
of extreme dependence in the multivariate case, that is when
X and Y are random vectors. Our contribution is twofold.
First, we introduce (in definition 3.2) a generalization of the
notion of extreme dependence to the multivariate case, and
we investigate how extreme positive dependence generalizes
in this setting. We also introduce a notion of positive
extreme dependence (in definition 4.1). Next, we introduce
a measure of the strength of dependence based on an entropic
measure (in section 5). We then show how useful the concept
of extreme dependence, either in risk management or in asset
pricing, can be.

Generalizing extreme dependence. When dealing with the
multivariate case, where X and Y are random vectors in Rd ,
there is no canonical way to generalize this notion of (positive
or negative) extreme dependence and Fréchet copula. One
approach, based on the theory of Optimal Transport (see e.g.
the books Rachev and Rüschendorf (1998) and Villani (2003)),
would be to consider the following optimization problem

max
X̃∼X
Ỹ∼Y

E(X̃ · Ỹ ), (2)

where · is the scalar product in Rd . This program is a multivari-
ate extension of the covariance maximization problem (1) and
defines as extreme the distribution of the pair (X̃ , Ỹ ) solution
to the above problem. However, it does not take into account
the cross-dependence between Xi and Y j for i �= j .

A more satisfactory generalization is based on the idea that
both positive and negative extreme dependences are obtained

© 2014 Taylor & Francis
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by the maximization of the expectation of a nonzero bilinear
form in (X, Y ) over the set of couplings of X and Y (i.e. joint
distributions with fixed marginals). In other words, we consider
solutions of (2), where the scalar product is replaced by a
nonzero bilinear form. This will be our notion of multivariate
extreme dependence: random vectors X and Y are said to
exhibit extreme dependence if their cross-covariance matrix
maximizes the expected value of a nonzero bilinear form over
all the couplings of X and Y . These extreme couplings are
proposed as a generalization of Fréchet (positive and negative)
extreme dependence in the multivariate case. We provide a
natural geometric characterization of this notion by consider-
ing the covariance set, that is the set of all cross-covariance
matrices E(XY ′) for all the couplings of X and Y . We show that
X and Y have extreme dependence if and only if their cross-
covariance matrix lies on the boundary of the covariance set.

We then turn to generalizing the notion of extreme positive
dependence. One natural way to generalize extreme positive
dependence is to look for the couplings (X, Y ) having a cross-
covariance matrix Cov(X, Y ) = E(XY ′) = (E(Xi Y j ))i, j ,
which would be maximal for a certain partial (conical) ordering
on matrices. As we shall see, it turns out that extreme positive
dependence implies extreme dependence, and we characterize
the geometric locus of extreme positive dependent vectors on
the covariance set.

Stress-testing dependence. We give a method to associate
any coupling, for example any empirical coupling, with an ex-
treme coupling, by means of an entropic relaxation technique.
An algorithm is described and results concerning its imple-
mentation are given. In particular, this algorithm provides a
means to compute effectively the covariance set. We then apply
these results to build stress-tests of multivariate dependence
for portfolio management and to price derivatives on multiple
underlyings. We also propose the construction of indices of
maximal dependence, that is linear combinations of assets that
have remarkable properties of extreme dependence.

The present article is organized as follows: the next section
presents the notion of covariance set and the definition of cou-
plings with extreme dependence, as well as a characterization
of such couplings. The third section defines and characterizes
couplings with positive extreme dependence, in relation to the
notion of extreme dependence. The fourth section provides an
algorithm to compute extreme couplings and the covariance
set. An index of dependence, the affinity matrix, is utilized;
a method to associate any coupling with an extreme coupling
is described. We conclude with financial applications, namely
stress-testing portfolio allocations and options pricing, as well
as the computation of indices with extreme dependence. All
proofs are collected in Appendix B.

Notation, definitions Let P and Q be two probability dis-
tributions on R I and RJ , with finite second-order moments.
Without restricting the generality, we assume that P and Q
have null expected values, so that the second-order moments
E(Xi Y j ) are indeed covariances. �(P, Q) is the set of all
probability distributions over R I × RJ having marginals P
and Q. We refer to an element of �(P, Q) as a coupling,
understating the probabilities P and Q. If M and N belong to
MI,J (R), the set of real matrices of size I × J , their scalar
product is denoted by M · N = T r

(
M ′N

)
. If (X, Y ) ∼ π ∈

�(P, Q), we denote indifferently σX,Y or σπ the matrix with
general term E(Xi Y j ), which is the covariance between Xi and
Y j ; it is the cross-covariance matrix between X and Y . Remark
that σX,Y is the upper-right block of the variance-covariance
matrix of the vector Z = (X, Y )′, and that σX,Y is neither a
square matrix nor a symmetric matrix in general.

Moreover, we will say that a coupling π ‘projects’ onto σπ ,
interpreting the function π �→ σπ as a projection operator.

Eventually, let us recall that the subdifferential ∂ f (x0) of a
convex function on Rn at a point x0 is defined as set of vectors
v such that f (x)− f (x0) ≥ v ·(x −x0) for all x ∈ Rn . Here the
dot is the usual scalar product. It reduces to {∇ f (x0)} if f is
differentiable at x0, which is true for almost every x0 according
to the Rademacher theorem.

2. Related literature and contribution

As mentioned in the introduction, the extension to the mul-
tivariate setting of the correlation maximization problem (1)
has been tackled by several authors in order to define notions
of multivariate comonotonicity. Puccetti and Scarsini (2010)
list several possible definitions of multivariate comonotonicity,
among which one is directly related to the variational problem
(2). Namely, c-comonotonicity refers to the couplings solv-
ing problem (2): these are the optimal quadratic couplings of
Optimal Transport Theory, also called maximum correlation
couplings. This variational approach to multivariate comono-
tonicity is also the basis of Ekeland et al. (2012) and Galichon
and Henry (2012). They propose to extend the univariate notion
of comonotonicity and define the μ-comonotonicity by stating
that two vectors X and Y are μ-comonotone if there exists a
random vector U ∼ μ such that

E(X · U ) = max{E(X · Ũ ), Ũ ∼ μ},
E(Y · U ) = max{E(Y · Ũ ), Ũ ∼ μ}.

This notion of comonotonicity has the advantage of being tran-
sitive, unlike c-comonotonicity. Carlier et al. (2012) showed
that this notion of comonotonicity appeared as more grounded
in economic theory than alternative proposals because it is
directly related to Pareto efficiency.
This article aims at finding multivariate couplings which ex-
hibit a form of strong dependence, just as the previously defined
comonotonic couplings. In what follows, the couplings defined
as ‘extreme’ are comonotonic couplings (in the sense of the
c-comonotonicity) up to a linear transform of one marginal
(the c-comonotonic coupling corresponds to the identity trans-
form). In other words, an extreme coupling (X, Y ) satisfies the
variational problem

E(X ′MY ) = sup
π∈�(P,Q)

Eπ (X ′MY ). (3)

This definition of extreme dependence is broad enough to en-
compass ‘positive dependence’ as c-comonotonicity as well as
‘negative dependence’ (counter-comonotonicity in the
univariate case). Furthermore, it allows for a geometrical inter-
pretation of extreme dependence: the cross-covariance
matrix of an extreme coupling is located on the boundary of
the compact and convex set of all possible cross-covariance
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Figure 1. Example of a two-dimensional section of a covariance set.

matrices, called the covariance set. This set has been intro-
duced in Galichon and Salanié (2010) in the case with dis-
crete marginals, and generalized to the case with continuous
marginals in Dupuy and Galichon (2013). Taking advantage of
this simple interpretation, we then characterize the couplings
π which have a cross-covariance matrix σπ that are maximal
for some partial orders �.

Although the idea of generating extreme dependence by
solving problem (3) arises naturally from the theory of optimal
transport—and more generally in the theory of distributions
with given marginals, see e.g. Tiit (1992), the computation of
the covariance set has remained a difficult point until now.
The rest of the article proposes a method to compute extreme
couplings, and for any given coupling π̂ , proposes a means
to build a continuous sequence of couplings πT with π0 being
extreme and σπ1 = σπ̂ . This is done by an entropic penalization
technique, which allows for fast numerical computations and
yields a measure of strength of dependence.

3. Multivariate extreme dependence

In this section we detail the notion of multivariate extreme
dependence we propose. Consider the covariance set, the set
of cross-covariance matrices of couplings π ∈ �(P, Q):

Definition 3.1 The covariance set F (P, Q) is defined as:

F (P, Q) = {� ∈ MI,J (R) : ∃π ∈ �(P, Q),

�i j = Eπ (Xi Y j ), for all i, j}.
As �(P, Q) is a convex and compact set (see e.g. Villani

(2003), pp. 49–50), the covariance set is also a convex compact
subset of MI,J (R).

Figure 1 gives an example of the two-dimensional section
of a covariance set, meaning that only the diagonal elements

of the cross-covariance matrix are represented. P and Q are
discrete distributions on R2 with equally weighted atoms and
we look at the two component-wise covariances E(X1Y1),
E(X2Y2). The solid curve is the boundary of the covariance
set: every coupling between P and Q has component-wise
covariances located within the convex hull of this curve. The
independence coupling projects on the point (0, 0). The dots
on the x-axis represent, respectively, the minimal and maximal
covariances between X1 and Y1. These covariances would be
attained in terms of copulas by the lower and upper Fréchet
copulas. This motivates our definition of extreme dependence
couplings as couplings whose cross-covariance matrices are
on the boundary of the covariance set.

Definition 3.2 A coupling (X, Y ) ∼ π ∈ �(P, Q) has ex-
treme dependence if and only if

(
Eπ (Xi Y j )

)
i j lies on the

boundary of the covariance set F (P, Q).

The cross-covariance matrix between X and Y , σX,Y , satis-
fies

T r
(
M ′σX,Y

) = E(X ′MY ), for all M ∈ MI,J (R), (4)

which allows to reformulate the notion of extreme dependence
as follows:

Theorem 3.3 The following conditions are equivalent:

(i) (X, Y ) ∼ π ∈ � (P, Q) have extreme dependence;
(ii) there exists M ∈ MI,J (R)\{0} such that

T r
(
M ′σπ

) = sup
π̃∈�(P,Q)

T r
(
M ′σπ̃

)
,

or equivalently

Eπ (X ′MY ) = sup
π̃∈�(P,Q)

Eπ̃ (X ′MY ); (5)
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(iii) there exists M ∈ MI,J (R)\{0} and a convex func-
tion u on R I such that MY ∈ ∂u (X) holds almost
surely.

This theorem is a corollary of the characterization of opti-
mal couplings proved in Rachev and Rüschendorf (1990) and
Brenier (1991).

Thus, a coupling (X, Y ) is extreme if and only if there exists
a linear transform, namely a nontrivial matrix M , such that
(X, MY ) is a maximum correlation coupling. In dimension 1,
the interpretation is obvious: two real random variables have
extreme dependence iff there exists a scalar m �= 0 and a
nondecreasing function u such that mY = u(X). According to
the classic terminology, X and Y are said to be comonotonic
if m > 0, and anti-comonotonic otherwise.

When M = I d in (5), the optimal coupling is the optimal
transport coupling for the quadratic cost (it solves problem (2)).

4. Positive extreme dependence

The aim of this section is to propose a generalization of the
concept of Fréchet copula of upper dependence to the multi-
variate case. Copula theory fails to handle this problem.
Indeed, if CP and CQ are two copulas, the first in dimension
I (associated with distribution P) and the second in dimen-
sion J (associated with distribution Q), a natural candidate
for a copula modeling positive extreme dependence would
be Cπ (x, y) = min(CP (x1, . . . , xI ), CQ(x1, ..., xJ )). But ac-
cording to an ‘impossibility theorem’ due to Schweizer and
Sklar (1983), Cπ is a copula function if and only if CP and
CQ are themselves upper Fréchet copulas. We thus depart
from the copula approach and aim at characterizing positive
extreme dependence through the cross-covariance matrix of X
and Y . Starting from the observation that in the univariate case,
the positive extreme dependence attains maximum covariance
between X and Y over all the couplings of P and Q, we intro-
duce a conic order on the cross-covariance matrices σX,Y and
define positive extreme dependent couplings as the couplings
whose cross-covariance matrices are maximal with respect to
this order.

For a given compact convex set B ⊂ MI,J (R) such that
0 /∈ B (such a set is called a compact basis), a closed convex
cone in MI,J (R) is defined by setting:

K (B) = {y ∈ MI,J (R)|x · y ≥ 0, ∀x ∈ B}. (6)

Considering cones of this form might seem restrictive
(Appendix A gives more details on such cones), yet we provide
some examples that show that classic cones can be defined in
such a manner.

Let M1, M2 be two matrices in MI,J (R).A strict conic order
on MI,J (R) is defined by

M1 �K (B) M2 if M1 − M2 ∈ I nt (K (B)),

where I nt (K (B)) = {y ∈ MI,J (R)|x · y > 0, ∀x ∈ B} is the
interior of K (B).

Definition 4.1 Let B be a compact basis. A coupling (X, Y )

such that σX,Y is a maximal element in F (P, Q) with respect
to the strict conic order �K (B) is said to have positive extreme
dependence with respect to �K (B).

The following results characterize couplings with positive
extreme dependence in terms of maximal correlation couplings.

Theorem 4.2 The following conditions are equivalent:

(i) (X, Y ) ∼ π ∈ �(P, Q) have extreme positive
dependence with respect to �K (B)

(ii) there exists M ∈ B such that

T r
(
M ′σπ

) = sup
π̃∈�(P,Q)

T r
(
M ′σπ̃

)
,

or equivalently

Eπ (X ′MY ) = sup
π̃∈�(P,Q)

Eπ̃ (X ′MY ); (7)

(iii) there exists M ∈ B and a convex function u such
that MY ∈ ∂u (X) holds almost surely

Hence, σX,Y is maximal if and only if there exists M ∈
B such that X and MY are maximally correlated. Obviously,
this result is a close parallel to theorem 3.3 except that M
is constrained to belong to B. As a consequence the positive
extreme couplings are a particular case of extreme couplings.
The interpretation in dimension 1 is again straightforward: X
and Y have positive extreme dependence (w.r.t. the usual order
on R) iff they are comonotonic.

To better understand the relation between definitions 3.2
and 4.1, let us go back to the two-dimensional section of the
covariance set discussed in the previous section, and consider
that K (B) is the positive orthant of R2×R2. The shaded region
in figure 2 is the set of couplings dominating the coupling that
projects on the square dot, with respect to the orthant order;
as a consequence this coupling cannot have positive extreme
dependence. This intuitively explains why maximal elements
should be on the boundary of the covariance set, hence that pos-
itive extreme couplings should be extreme couplings. Maximal
elements are represented on the bold curve in figure 3. Conse-
quently, the couplings exhibiting positive extreme dependence
project on this bold portion of the boundary of the covariance
set. They form only a small part of the couplings of extreme
dependence.

To demonstrate the applicability of this approach, here are
three examples of partial orders on covariance matrices.

Example 4.3 Orthant order. Let M+
I,J (R) (resp. M++

I,J (R))
denotes the set of real I × J matrices with nonnegative coef-
ficients (resp. positive coefficients). The set B = M+

I,J (R) ∩
{M|∑i, j Mi, j = 1} is a compact basis. K (B) is easily seen
to be the set M+

I,J (R) and its interior is M++
I,J (R). Eventually

M1 � M2 iff M1 − M2 has positive coefficients: this is the
(strict) orthant order on matrices.

Example 4.4 Loewner order. Let Sn be the set of symmetric
matrices of size n×n and let S+

n and S++
n denote, respectively,

the set of nonnegative matrices in Sn and the set of definite
positive matrices in Sn . If B = {S ∈ S+

n (R)|T r(S) = 1} is the
set of semi-definite matrices with unit trace, B is a convex com-
pact subset of Mn(R) and K (B) = {M ∈ Mn(R)|T r(M ′S) ≥
0,∀S ∈ B} is the set of matrices M whose symmetric part,
M+M ′

2 , is semi-definite positive. The strict order �K (B) is then
defined as: M1 � M2 iff the symmetric part of M1 − M2 is
definite positive. This is an extension to Mn(R) of the classic
Loewner order on symmetric matrices.
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Figure 2. Shaded region: location of the couplings dominating the coupling materialized by the square dot.

Figure 3. Maximal couplings on the boundary.

The following trivial example shows that the ordering in-
duced by example 4.4 allows various positive extreme cou-
plings. A first remark is that the maximum correlation coupling
(the coupling solving (2)) is indeed positive extreme, by setting
M = I d in theorem 4.2. Consider P ∼ N (0, I2), the bivariate

normal distribution, and Q = N (0, 1)⊗U(0,1), the distribution
of a vector whose first component is normal and whose second
is the uniform distribution on (0, 1), independent from the first
component. Let X ∼ P and Y = (X1, U )′, U ∼ U(0,1) be
independent from (X1, X2), so that Y ∼ Q. This coupling



1192 D. Bosc and A. Galichon

does not have the maximum correlation even though X1 = Y1.
However, it satisfies (7) with A = (

1 0
0 0

)
and qualifies as a

maximal coupling.

5. An index of dependence

Suppose now we are observing (or simulating) a coupling
π̂ ∈ �(P, Q), thereafter referred to as an empirical coupling.
Even if this coupling is supposed to exhibit strong dependence,
its cross-covariance matrix will never be exactly located on the
boundary of the covariance set. Our problem is then to asso-
ciate an extreme coupling with π̂ ; more precisely, we propose
to find a continuous sequence of nondeterministic couplings
πT such that π1 = π̂ and π0 is an extreme coupling. In other
words, we give a means to go smoothly from an empirical
coupling to an extreme one by progressively increasing the
strength of the dependence between the marginals. This is
done by introducing an entropic penalization of (5), so that
solutions of the penalized problem project on inner points of
the covariance set.

5.1. Entropic relaxation

Consider the following problem, which is the entropic penal-
ization of (5):

W (M, T ) := max
π∈�(P,Q)

(
Eπ (X ′MY ) + T Ent (π)

)
, (8)

where the entropy of a coupling π is defined as

Ent (π) =
⎧⎨
⎩

− ∫ log π(x, y)dπ(x, y), if π � dx ⊗ dy
and the integral exists and is finite,

−∞ otherwise.

This problem has been considered by Kosowsky and Yuille
(1994) as a simulated annealing method to solve the assignment
problem, and in econometrics by Galichon and Salanié (2010)
and Dupuy and Galichon (2013).

The parameter T can be thought of as a ‘temperature’param-
eter which controls the strength of the entropic penalization.
The problem (5) corresponds to T = 0, while letting T to +∞
amounts to maximizing the entropy, in which case the solution
of problem (8) is the independence coupling.

Let πM,T denote a solution of (8); a proof of its existence
can be found in Rüschendorf (1995) and references therein.
We assume furthermore that the entropy of π̂ is finite.

Fixing the temperature at 1, our aim in the first place is to
find a matrix M such that π̂ and πM,1 have the same cross-
covariance matrix: σπ̂ = σπM,1 . By a property of the subdiffer-
ential of a maximum function, the gradient of W with respect to
M is: ∇M W (·, 1) = σπM,1 . This implies that M is the solution
of the following variational problem

min
M∈MI,J (R)

W (M, 1) − σπ̂ · M. (9)

W (·, 1) is a convex function as a supremum of affine functions
in M , and consequently the objective function in (9) is convex
as well: this is a classic unconstrained convex minimization
problem. Moreover, (9) is bounded below, which yields the
existence of a global minimizer. A detailed proof and a discus-
sion of uniqueness in (9) is given in Appendix C.

Figure 4 shows the diagonal of σπM,1 in the coordinates
(E(X1Y1), E(X2Y2)) for a large number of randomly generated
matrices M . This graph is obtained by sampling many matri-
ces M with coefficients uniformly distributed in the interval
[−1, 1], and then solving for each simulated M the problem (8),
in order to find σπ(M,T ). T is taken small enough to obtain near
from extreme couplings. The solution of (8) is computed thanks
to the algorithm presented in section 5.2. The bullet point has
coordinates (Eπ̂ (X1Y1), Eπ̂ (X2Y2)). One sees that any inner
point of the covariance set can be attained by a properly chosen
πM . This is a noticeable advantage of the entropic relaxation:
not only are the optimal couplings solving (8) easily computed
(at least when the marginals are discrete, see section 5.2), but
also changing the temperature parameter allows one to reach
any cross-covariance matrix inside the covariance set.

5.2. Numerical solution

The optimal πM,1 in (8) obeys the following equation (see e.g.
Rüschendorf (1995) for a proof):

log πM,1(x, y) = x ′My + u(x) + v(y),

for some u ∈ L1(d P), v ∈ L1(d Q). In other words, the log-
likelihood of πM,1 is the sum of a quadratic term x ′My and
of an additively separable function in x and y. The solution is
found by setting u and v such that πM,1 has the marginals P
and Q. This is the purpose of the Iterative Projection Fitting
Algorithm (Deming and Stephan 1940).

This algorithm consists in building a sequence πn such that
π2n has first marginal P and π2n+1 has second marginal Q.
It turns out that πn converges towards a probability π with
correct marginals P and Q. When the marginals P and Q are
discrete distributions with atoms P(x) and Q(y), respectively,
the algorithm is straightforward, as it consists in solving a series
of linear systems:⎧⎪⎪⎨

⎪⎪⎩
evn+1(y) = Q(y)∑

x r(x, y)eun(x)
,

eun+1(y) = P(x)∑
y r(x, y)evn+1(y)

,

where r(x, y) = ex ′ My∑
x,y ex ′ My .

The convex unconstrained minimization problem (9) can
be solved by a Quasi-Newton algorithm (we used the BFGS
method in the examples below). Of course, this algorithm can
be used for any temperature T by replacing M by M

T in the
previous equations.

5.3. Derivation of the extreme coupling

We recall that our aim is to associate an inner coupling (i.e.
a coupling whose cross-covariance matrix is inside the co-
variance set) to some extreme coupling which projects onto
the boundary of the covariance set, by finding a trajectory of
couplings that goes smoothly from the inner one to the extremal
one.

The previous algorithm yields a particular matrix M̂ and a
coupling πM̂ such that σπ̂ = σπM̂,1

. This coupling was found by
setting arbitrarily the temperature at 1; the entropy penalization
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Figure 4. Projection of various πM .

was thus effective and this allowed to reach inner points in the
covariance set. This temperature parameter is easily explained.
When it goes to +∞, the entropy penalization is predominant
in (8). Intuitively, the solution is the coupling with maximal
‘disorder’: this is the independence coupling. On the contrary,
the lower the temperature, the closer (8) is to the nonpenalized
problem. Hence, the lower T , the more πM̂,T projects near the
boundary of the covariance set. Hence, associating π̂ with an
extreme coupling can be done in the following way: once M̂
is found by solving (9), a sequence of πM̂,Tn

, Tn ↓ 0 yields
a trajectory of cross-covariance matrices which tends to the
boundary.

Figure 5 summarizes this idea: each point on the curve is the
projection of some πM̂,Tn

. As T → +∞, we recover the inde-
pendence coupling whose projection is located at (0,0). When
the temperature decreases, the trajectory passes on π̂ at T = 1,
and gradually approaches the boundary of the covariance set.
The entropy is decreasing along this trajectory, as Ent (πT )

decreases as T ↓ 0 (thanks to the convexity of W (M, T ) in T ),
and thus lowering the temperature corresponds to going away
from the independence coupling (maximal entropy). Thus, the
temperature can be seen as a means to control the strength of
the dependence. The matrix M̂ can be seen as an affinity matrix
(see Dupuy and Galichon (2013)): in the limit of T → 0, the
extreme coupling πM̂,0 achieves the supremum of Eπ (X ′M̂Y ).

Thus, M̂ is the linear transform that makes X the most depen-
dent with M̂Y under πM̂,0.

This can be used to define formally an index of dependence,
(if π̂ different from the independence coupling): choosing a
norm || · || over the set of matrices MI,J (R) and using the
homogeneity of W , namely W (λM, λT ) = λW (M, T ) for all
λ ∈ R, we have πM̂,1 = πM̂/||M̂ ||,1/||M̂ || and the temperature

1
||M̂ || appears as an indicator of the strength of the dependence

between the marginals of π̂ .

6. Applications

In the following financial applications below, we use the tech-
nique described in the previous section with times series of
linear daily returns on industrial sectors of mainstream in-
dices: S&P 500 and DJ Eurostoxx. We consider Health Care,
Financial and Food & Beverage sectors of these indices: P
and Q are distributions on R3. The historical data span 5
years between September 2004 and September 2009. Table
1 gives summary statistics (the first three variables correspond
to S&P sectors, and the last three to Eurostoxx). In particular,
the correlations between sectors belonging to different indices
are mild (< 35%). Inside an index, correlation is well higher,
but remains below 80%; this motivated our choice for these
sectors: the marginal distributions are not degenerated.

6.1. Numerical results

P and Q are discrete distributions with equally weighted atoms
in R3, each atoms being a vector of the returns at some date of
the three sectors.

P = 1

N

N∑
t=1

δr Xt ,

r X
t = vector of the linear returns at date t on the

three sectors of the S&P500.
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Figure 5. A trajectory toward an extreme coupling when the sectors are Health Care and Financials.

Table 1. Summary statistics.

Mean returns 10−4. ( 1.03 −1.13 1.67 1.16 −1.37 3.99 )

Variance 10−4. ( 1.36 7.65 1.16 1.14 4.15 1.12 )

Correlation matrix

⎛
⎜⎝

1
0.66 1
0.76 0.62 1
0.22 0.10 0.19 1
0.26 0.33 0.25 0.49 1
0.22 0.16 0.22 0.67 0.58 1.00

⎞
⎟⎠

Cross-covariance 10−5.

(
2.74 3.05 2.13
6.04 1.8 5.52
2.66 4.62 2.56

)

The optimal M̂ for these three sectors are:

# of components 2 3

Optimal M
(

0.23 −0.14
−0.10 0.40

) (
0.25 −0.139 −0.37

−0.39 0.44 −0.80
−0.57 −0.15 0.86

)

Error = ||σM −σπ̂ ||
||σπ̂ || ≈0.1% <0.2%

The linear returns are expressed in percentage. The error
is computed as the percentage of difference between σπ̂ , the
cross-covariance targeted, and σπM,1 , the covariance matrix of
the optimal coupling. They should be perfectly equal in theory
and this percentage measures the convergence of the gradient
algorithm.

6.2. Financial applications

First, we use the trajectory of couplings T �→ πM̂,T as a con-
tinuous family of scenarios of increasing dependence. Theses

scenarios are used to build scenarios of stress-tests involving
multivariate variables, with obvious applications to risk man-
agement. By stress-testing, we mean increasing the index of
dependence defined above (that is, lowering the temperature
parameter), thus shifting away continuously from some cou-
pling π̂ to the extreme coupling πM̂,0. This is to be compared
to the method that consists in selecting the maximum correla-
tion coupling as the ‘strongest dependence scenario’; indeed
this coupling might be less in line with the cross-covariance
structure of the empirical coupling π̂ , yielding unexpected and
undesired results when managing risky portfolios or options
on several assets.

Then, we exploit further the affinity matrix M̂ in order to
exhibit indices of maximal correlation, based on an analysis of
its singular value decomposition.

6.2.1. Portfolios stress-testing. In order to underline the
necessity of accounting properly for the multivariate depen-
dence, the problem of one-period portfolio allocation is con-
sidered. Suppose an investor chooses to allocate his wealth
between assets X1, . . . , Xn, Y1, . . . , Ym . The problem is to
study the impact of the change of the dependence between
X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) on the investor’s
portfolio.

In the numerical examples below, the assets are S&P Sector
Indices: X is composed of Materials, Construction and Retail
indices, while Y is composed of Food and Beverage, Health
Care, Financials and Utilities indices. The corresponding sum-
mary statistics are given in table 2. Correlation is higher than
in the above examples as the sectors are industrial sectors on
a single index, the S&P500.
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Table 2. Summary statistics.

Mean returns 10−4. ( 2.89 1.67 1.03 −1.13 1.97 2.01 1.85 )

Variance 10−4. ( 3.59 1.16 1.36 7.65 1.92 0.984 3.25 )

Correlation matrix

⎛
⎜⎜⎜⎝

1
0.72 1
0.71 0.76 1
0.69 0.86 0.65 1
0.69 0.85 0.69 0.76 1
0.69 0.67 0.75 0.62 0.66 1
0.70 0.76 0.60 0.72 0.74 0.56 1

⎞
⎟⎟⎟⎠

Cross-covariance 10−4.

(
1.41 1.53 3.62 1.85
0.921 0.979 1.83 1.05
1.27 1.45 3.73 1.50

)

It is assumed that the investor chooses his portfolio alloca-
tion according to the Markowitz allocation problem (over a
one-year horizon), meaning that the weights ω that determine
the allocation are chosen by solving the problem max∑

i ωi =1 μ·
ω − λ

2 ω′�ω. μ are the expected yearly returns of the stocks,
� the covariance matrix of the returns, and λ a risk aversion
parameter specific to the investor. We assume that both μ and �

are the standard empirical estimators computed over a period
of one year, the in-sample period. The risk aversion parameter
λ is set at 3. The solution to the Markowitz allocation problem
with these parameters is denoted by w. The risk of a portfolio
is here identified by its variance, and is known as soon as the
covariance between the assets is specified. When performing
the allocation at time 0, the investor is expecting a risk of
ω′�w. The dependence stress-test consists in considering that
the market conditions change after the investment decision: the
strength of dependence between X and Y increases.

The affinity matrix is computed with respect to the in-sample
data and the whole trajectory of couplings of increasing de-
pendence is obtained, parameterized by the temperature T .
These couplings πT yield stressed covariance matrices
�T = EπT ((X −E(X))(Y −E(Y ))′). �T represents a scenario
where the marginals of X and Y are left unchanged, while the
realized dependence between X and Y has increased, compared
to the initial covariance matrix �.

The unexpected risks the investor might face when the de-
pendence varies are materialized in the variance w′�T w, plot-
ted in figure 6. The variance obtained at temperature 1 is w′�w;
in the worst case (which corresponds to temperature 0.1 in
figure 6), the investor chooses a portfolio that has a variance
4% higher than expected.

When the dependence is properly accounted for, the investor
determines the optimal weights wT according to the covariance
�T . The opportunity cost μ ·wT −μ ·w is the loss on the return
when the dependence increases while the investor sticks to the
initial allocation w. This cost is more and more significant as
the temperature lowers, reaching 6% in this case, as shown in
figure 7.

A comparison with the maximum correlation coupling is
enlightening. First of all, this coupling is not defined when the
dimension of X and Y are different. Consequently, an asset is
removed from Y (namely the Food and Beverages index) and
the same computations as above are performed: a covariance
matrix �B that would be the realized covariance if the assets
were in maximum correlation dependence is computed. On
this particular example, the variance w′�Bw is 60% lower
than the expected variance w′�w. Other examples can yield a

significantly higher covariance. This shows that the maximum
correlation coupling might not be always adapted as a means
of stress-testing the dependence.

A more classical way to stress the dependence is to suppose
that the correlation between Xi and Y j is fixed and equal to
some parameter ρ for all i and j ; the resulting cross-covariance
matrix is denoted by �ρ . A problem of this method is that it is
known beforehand that, depending on the marginals, �ρ might
not be an admissible cross-covariance matrix for P and Q;
the resulting variance-covariance matrix of the vector (X, Y )

might fail to be semi-definite positive. This stress-test yields in
this case underestimated risks. Indeed, while in our framework
the variance w′�w is at 1.91, this level of variance is attained
only when ρ is above 95%, while the mean of the empirical
cross-correlation is around 60%. Furthermore, even if ρ is set
at 100 (disregarding the admissibility problem evoked above),
the resulting variance is still lower than the one obtained with
the extreme coupling.

It appears that the trajectory T �→ πT provides a coherent
sequence of covariance matrices �T that models an increase
of the dependence between X and Y . This method respects
both marginals and has the advantage of generating admissible
matrices contrary to the usual method of parameterizing corre-
lation matrices by a single parameter. Moreover, the maximum
correlation coupling fails in this setting to properly account for
increasing the risk of dependence, likely because it ignores the
cross-correlation effects.

6.2.2. Options pricing. These couplings with increasing
strength of dependence can be also used for the risk manage-
ment and pricing of rainbow options (options on several under-
lyings). As a case study, consider the underlyings X1, . . . , Xn ,
Y1, . . . , Ym . It is assumed that each one follows a log-normal
martingale diffusion (i.e. we assume a null risk-free rate and
write the risk-neutral dynamics):⎧⎪⎪⎨
⎪⎪⎩

d Xi
t

Xi
t

= σ X
i dW i

t , d〈W i , W j 〉t = ρX
i j dt, Xi

0 = 1,

dY i
t

Y i
t

= σ Y
i d Bi

t , d〈Bi , B j 〉t = ρY
i j dt, Y i

0 = 1.

The model is fully specified as soon as the correlation
matrix between W and B is set. Consider the option that
pays � = min((maxi X i

T − K )+, (max j Y j
T − K )+); it is the

minimum between the payoffs of two best-of options on the Xi

on the one hand and the Y j on the other hand. It pays when the
Xi

T and Y i
T perform well, but mitigates the gain by selecting the

lowest payoff between (maxi X i
T −K )+ and (max j Y j

T −K )+.
Suppose an investor has sold this option and knows the

distribution of the vector X and Y . In other words, he has
been able to calibrate the volatilities σ X

i and σ Y
i , as well as the

correlation matrices of (W 1, . . . , W n) and of (B1, . . . , Bm).
The investor may have a guess on the dependence between X
and Y (or equivalently between B and W ), for instance an em-
pirical estimation of the covariance matrix, but this guess is not
sufficient to price the claim � in a conservative manner. A way
to do this is to compute the price of this claim when the
strength of the dependence between X and Y varies from
the independence coupling to some extreme coupling and pick
the highest value for the claim.
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Figure 6. Plot of T �→ w′�T w.

Figure 7. Opportunity cost as a function of the temperature.

For the purpose of numerical computations, the terminal
distribution of the underlyings is discretized. The atoms of

the discretized marginals are, respectively, denoted xi,(k)
T and

y j,(k′)
T . For each specification of a cross-covariance matrix A
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Figure 8. Price as a function of the temperature.

between X and Y , a trajectory πT (A) is obtained. The claim is
priced as the expected value of � under the distribution πT (A):

PT (A) = EπT (A)

(
min

(
(max

i
Xi

T − K )+, (max
j

Y j
T − K )+

))

=
∑
k, k′

min

(
(max

i
xi,(k)

T − K )+,

(max
j

y j,(k′)
T − K )+

)
πT (A)(xi,(k)

T , y j,(k′)
T ).

In the following example, X has 3 components and Y has 4,
σ X = (0.15, 0.20, 0.22)′ and σ Y = (0.13, 0.10, 0.16, 0.18)′.
For the sake of the exposition W and B are standard Brownian
motions (ρX = I dn andρY = I dm) while the cross-correlation
matrix between W and B is randomly generated, and set at⎛

⎜⎝
0.087 0.126 0.068 0.100

0.490 0.438 0.006 0.149

0.136 0.369 0.447 0.331

⎞
⎟⎠ .

The strike is set at 1, i.e. at time 0 the option is at-the-money.
As seen on figure 8, the price increases as the temperature

lowers; this is an expected behavior, as when the dependence
between the assets increases, so do the dependence between
their respective maxima and thus the minimum of these max-
ima increases too, which yields a higher price. In this setting,
the stress-test increases the price by more than 30% (i.e. be-
tween the price found with the independence coupling and the
price found with the extreme coupling). This must be compared
to the price that is obtained when the cross-correlation matrix

�ρ is taken of the form

(
ρ ... ρ

...
...

ρ ... ρ

)
.As a matter of fact, the stress-

test of the cross-correlation fails, as the resulting correlation
matrix

(
I d �ρ

�ρ I d

)
is no longer definite positive when ρ > 1

2
√

3
which is lower than 30%. And even in the limit ρ → 1

2
√

3
,

the price does not reach 0.075, and is still lower than the
nonstressed price.

6.2.3. Indices of maximal correlation. In order to better
understand the link between the extreme coupling πM̂,0 and
the maximum correlation coupling (the one that corresponds
to M = I d in (5)), we use a singular value decomposition of the
affinity matrix M̂ of the coupling (X, Y ). It writes M̂ = U SV ′,
with U and V two orthogonal matrices and S a diagonal matrix
with nonnegative entries. In particular,

EπM̂,0

(
(
√

SU ′ X)′(
√

SV ′Y )
)

= max
π∈�(P,Q)

Eπ

(
(
√

SU ′ X)′(
√

SV ′Y )
)
.

In other words, if (X̃ , Ỹ ) = (
√

SU ′ X,
√

SV ′Y ), then this
linear transform of (X, Y ) has maximum covariance (under
the distribution πM̂,0).

Thus if P̃ is the distribution of
√

SU ′ X with X ∼ P , Q̃
is defined likewise from Q, and π̃M̂,0 is the distribution of

(
√

SU ′ X,
√

SV ′Y ) where (X, Y ) ∼ πM̂,0, then Eπ̃M̂,0
(X ′Y ) =

max
π∈�(P̃,Q̃)

Eπ (X ′Y ). Therefore, the singular value decom-
position of the affinity matrix provides linear transforms of the
marginals that makes the extreme coupling πM̂,0 the maximum
correlation coupling after a scaling of the marginals by these
transforms.
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As an example, in the case of the 3 components described
in the introduction of section 6, this transform writes

X̃ =
⎛
⎜⎝

− 0.42 X1 +0.95 X2 −0.019 X3

− 0.64 X1 −0.27 X2 +0.26 X3

0.11 X1 +0.06 X2 +0.35 X3

⎞
⎟⎠ ,

Ỹ =
⎛
⎜⎝

− 0.30 Y1 +0.99 Y2 −0.13 Y3

− 0.67 Y1 −0.16 Y2 +0.28 Y3

0.12 Y1 +0.08 Y2 +0.34 Y3

⎞
⎟⎠ .

This result states that X̃ and Ỹ are most correlated to one an-
other under the distribution of the extreme coupling. These two
vectors are composed of portfolios involving the components
of the original index and can be viewed as new indices: we
speak of indices of maximal correlation. When the strength of
dependence is maximal (T = 0), they maximize the correlation
E(X̃ Ỹ ) among all the couplings with same marginals.

This analysis can be seen as dual to the canonical correlation
analysis, which consists, for two random vectors X and Y , in
finding vectors a and b such that the correlation between a′ X
and b′Y is maximal. In the multivariate setting,

√
SU ′ and√

SV ′ are the analogue of the optimal a and b. The technique
described in this section has been introduced in the very dif-
ferent context of matching markets by Dupuy and Galichon
(2013) under the name saliency analysis.

7. Conclusion

A recurring complaint in Applied Statistics is the ‘curse of
dimensionality’: models that have a simple, computationally
tractable form in dimension 1 become very complex, both com-
putationally and conceptually in higher dimension. We show
here that convex analysis, along with the theory of
Optimal Transport, can lead to efficient solutions to the prob-
lem of extreme dependence. Building on a natural geomet-
ric definition of extreme dependence, we have introduced an
index of dependence and used the latter to build stress-tests
of dependence between two sets of economic variables. This
is particularly relevant in the case of international finance,
where the dependence between many economic variables in
two countries is of interest.
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Appendix A. Facts on conic orders

In the space MI,J (R), a basis is a convex set B with 0 /∈ B̄ (the
closure of B). We assume that B is a compact basis. Let K (B) be the
dual cone of the cone generated by B, R+.B = {λ.b, λ ≥ 0, b ∈ B},
which means that:

K (B) = {� ∈ MI,J (R)|� · M ≥ 0, M ∈ R+.B}.
Its interior is

I nt (K (B)) = {� ∈ MI,J (R)|� · M > 0, M ∈ R+.B\{0}}.
It is important to note that in both definitions, R+.B and R+.B\{0}
can be replaced by the basis B.

A strict partial order is defined on MI,J (R) by setting

M1 �K M2
def⇔ M1 − M2 ∈ K ∗+.

If S is a subset of MI,J (R), a maximal element of S for this order is
a matrix A ∈ S such that for all B ∈ S, M1 − M2 /∈ K ∗+: M1 cannot
be ‘strictly dominated’ by any element in S.

The choice of MI,J (R) is arbitrary here and it could be replaced
by any Euclidean space.

Appendix B. Proof of the results

B.1. Proof of Theorem 3.3

As stated in section 3, this theorem is a direct corollary of the results
proven in Rachev and Rüschendorf (1990) and Brenier (1991) which
characterize optimal couplings.

Proof As the covariance set is a closed convex set, a point x ∈
MI,J (R) lies on its boundary if and only if there exists a nonzero
M ∈ MI,J (R)\{0} such that M · x is maximal as a function of x .
This translates to the fact that there exists a supporting hyperplane at
x . Thus, σπ is on the boundary of the covariance set iff there exists
M ∈ MI,J (R)\{0} such that

M · σπ = sup
π̃∈�(P,Q)

M · σπ̃ ,

(recall that M · σπ = T r
(
M ′σπ

)
).

Equivalence between (ii) and (iii) follows from a well-known result
in Optimal Transport theory, the Knott-Smith optimality criterion (see
Villani (2003), Th. 2.12). �

B.2. Proof of theorem 4.2

Before we give the proof of the theorem, we state and prove a number
of auxiliary results which are of interest per se. Let B be a compact ba-
sis ; we have a crucial, although technical, variational characterization
of the maximality of σπ with respect to �K (B):

Proposition B.1 (Variational characterization of maximality)

σπ maximal iff inf
M∈B

sup
π̃∈�(P,Q)

(σπ̃ − σπ ) · M = 0.

In other words, a coupling is maximal whenever there exists M ∈ B
such that σπ maximizes σπ̃ · M .

Proof [Proof of proposition B.1] Note that for everyπ ∈ �(P, Q),
the function

f : (π̃, M) ∈ �(P, Q) × B �→ (�π̃ − �π) · M,

exhibits a saddlepoint (π̄, S̄):

max
π̃∈�(P,Q)

min
M∈B

f (π̃, M) = f (π̄, M̄) = min
M∈B

max
π̃∈�(P,Q)

f (π̃, M).

(B1)
This is a consequence of a classical minmax theorem by Fan (1951):
a continuous function over a product of compact convex sets embed-
ded in normed linear spaces, and which is linear in both arguments,
exhibits a saddlepoint. Both �(P, Q) and B are compact and convex.
The compactness of B is an hypothesis, and it is a well-known fact
that �(P, Q) is compact, see Villani (2003). Moreover f is linear in
M and π̃ , and continuous in both arguments. Finally, �(P, Q) can be
embedded in the space of Radon measures over RI × RJ endowed
with the bounded Lipschitz norm. We refer to Villani (2003, chapter
7). for more details on this point: the important thing is that �(P, Q)
is a compact subset (for this norm) of this space.

Back to the proof of the theorem. If σπ is maximal, then for all σπ̃
one has σπ̃ − σπ /∈ I nt (K (B)), which means that for some M ∈ B,
(σπ̃ − σπ ) · M ≤ 0, hence

sup
π̃∈�(P,Q)

inf
M∈B

(σπ̃ − σπ ) · M ≤ 0.

Therefore, the above quantity is necessarily zero, because one may
choose π̃ = π . Thanks to the compactness of B and �(P, Q), the
minmax theorem applies and yield that the infimum of the supremum
is zero.

On the contrary, if σπ is not maximal then there exists some
coupling π̃ such that σπ̃ − σπ ∈ I nt (K (B)). Thus, for all M ∈ B,
sup ˜π∈�(p,q)

σπ̃ − σπ · M > 0, and thanks to the compactness of B,

inf
M∈B

sup
π̃∈�(p,q)

σπ̃ − σπ · M > 0.

�
As a consequence, we are now ready to prove theorem 4.2.

Proof [Proof of theorem 4.2]
(ii) ⇒ (i): If for some M ∈ B, a coupling π satisfies

Eπ (X · MY ) = sup
π̃∈�(P,Q)

Eπ̃ (X · MY ),

then supπ̃∈�(P,Q)(σπ̃ − σπ ) · M = 0 and so inf M∈B supπ̃∈�(P,Q)
(σπ̃ − σπ ) · M ≤ 0. But this is an infimum of quantities that are
greater than zero, and eventually the ‘inf sup’ is zero.

(i) ⇒ (ii): if σπ is maximal, then proposition B.1 entails
inf M∈B supπ̃∈�(p,q) σπ̃ − σπ · M = 0. Due to the compactness
of B, there exists a matrix M ∈ B, such that the supremum is zero,
which concludes the proof of this implication. �

Appendix C. More details on problem (9)

The objective function of the problem (9) is convex in M , because
it is the sum of: a linear function of M ,−σπ̂ · M ; and of W (M, 1),
which is convex in M as the supremum over π ∈ �(p, q) of linear
functions in M , namely Eπ (X ′MY ) = σπ · M .

Moreover, assuming that the entropy of the empirical coupling π̂ is
finite, then W (M, 1) ≥ σπ̂ · M + Ent(π̂). Thus W (M, 1)−σπ̂ · M ≥
Ent(π̂) > −∞. A strictly convex function which is bounded from
below admits a unique global minimizer.

Moreover, the objective function is differentiable as W (M, 1) is
differentiable and ∇M W (M, 1) = σπ(M,1). This is a consequence
of a property of subdifferentials, see e.g. Valadier (1969). A global
minimizer is necessarily a critical point, proving that the solution M
of problem (9) satisfies σπ(M,1) = σπ̂ .
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