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Abstract

We present a truncation theory of idiosyncratic histories for heterogeneous-agent

models. This method allows us to solve for optimal Ramsey policies in such models

with aggregate shocks. The method can be applied to a large variety of settings, with

occasionally binding credit constraints. We use this theory to characterize the optimal

level of unemployment insurance over the business cycle in a production economy. We

find that the optimal policy is countercyclical.
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1 Introduction

Incomplete insurance market economies provide a useful framework for examining many

relevant aspects of inequalities and individual risks. In these models, infinitely-lived agents

face incomplete insurance markets and borrowing limits that prevent them from perfectly

hedging their idiosyncratic risk, in line with the Bewley-Huggett-Aiyagari literature

(Bewley, 1983; Imrohoroğlu, 1989; Huggett, 1993; Aiyagari, 1994; Krusell and Smith,

1998). These frameworks are now widely used, since they fill a gap between micro- and

macroeconomics, and enable the inclusion of aggregate shocks and a number of additional

frictions on both the goods and labor markets. However, little is known about optimal

policies in these environments due to the difficulties generated by the large and time-

varying heterogeneity across agents. This is unfortunate, since a vast literature suggests

that the interaction between wealth heterogeneity and capital accumulation has first-order

implications for the design of optimal policies. An important example is the optimal design

of time-varying unemployment benefits in an economy with fluctuating unemployment

risk, which has not yet been studied in the general case due to the difficulties generated

by the variations in precautionary savings over the business cycle.

We present a general method that allows one to characterize optimal policy in models

with household heterogeneity and aggregate shocks. In standard incomplete insurance

market economies, agents differ according to the full history of their idiosyncratic risk

realizations. Huggett (1993) and Aiyagari (1994), using the results of Hopenhayn and

Prescott (1992), have shown that economies without aggregate risk have a recursive

structure when the distribution of wealth is introduced as a state variable. Unfortunately,

the distribution of wealth has an infinite number of possible values, which hinders the

analysis of optimal policies in these types of environment.

The main idea of our computational method is to go back to the sequential formulation

of incomplete-market models to construct a consistent finite state-space representation.

We proceed in three steps. First, we construct a partition in the space of idiosyncratic

histories, using a truncation procedure. For a given truncation length N, all agents with

the same idiosyncratic history over the last N periods are grouped together. Second, along

the truncated histories, the allocations of the original model are expressed in terms of
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aggregate variables (i.e., groups of agents sharing the same N-period history), rather than

individual ones.3 This allows us to provide an exact aggregation theory of the model with

aggregate shocks.4 This results in a so-called exact aggregated model, which is an equivalent

representation of the original model and does not involve any simplifying assumptions.

Finally, from this aggregated model, we construct a truncated model in the presence of

aggregate shocks, based on one additional simplifying assumption: the within-history

heterogeneity is assumed to remain constant in the dynamics. This assumption preserves

the within-history steady-state heterogeneity, but it do not let it vary with aggregate

shocks. This within-history heterogeneity is shown to vanish when the truncation length

becomes infinitely long and turns out to have little quantitative impact. The truncated

model thus focuses on the dynamics of heterogeneity across truncated histories.

The interest of this construction is twofold. First, we can prove that the Ramsey

allocation of the truncated model converges to the allocation of the original incomplete-

market model when the truncation length becomes infinitely long.5 To do so, we use the

tools developed in dynamic contracts, sometimes referred to as the Lagrangian approach

and developed by Marcet and Marimon (2019) among others.6 We show how the Lagrangian

approach must be adapted to deal with our model, which features occasionally-binding

credit constraints. This convergence result proves that the truncation methodology

provides a consistent representation. Second, our methodology provides a simple numerical

procedure to solve for Ramsey allocations both at the steady state and with aggregate

shocks. In particular, the finite state-space structure allows us to use linear algebra to

compute steady-state values of Lagrange multipliers in closed-form. The dynamics can

thus be simulated with perturbation methods and rely on standard software, such as

Dynare (Adjemian et al., 2011). We quantitatively find that a short truncation length

yields an accurate solution.
3Original model refers to the original baseline heterogeneous-agent model, expressed in terms of

individual agents.
4More general partitions – based on other criteria than the truncation – could be considered in a very

similar way. This could rely on any criterion guaranteeing a partition of the space of idiosyncratic histories.
5We also check that, in terms of numerical performance, the truncation method delivers dynamics

similar to those implied by other numerical techniques, in particular those of Reiter (2009) and Boppart
et al. (2018).

6Our methodology relies only on some elements of the Lagrangian approach. For instance, it does not
use the recursive formulation, which avoids further complexity (see Cole and Kubler, 2012, and Pavoni
et al., 2018 for a discussion).
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We use our truncation theory to characterize optimal unemployment benefits over the

business cycle in an economy where agents face both productivity risk and time-varying

employment risk, as in Krueger et al. (2018). The economy is hit by aggregate shocks that

affect technology and labor market transitions. Agents choose their labor supply when

working, consume, save, and face incomplete markets for idiosyncratic risk with credit

constraints. In this economy, a planner chooses the level of unemployment benefits in each

period, which must be fully financed by a distorting labor tax. Although the economic

trade-off is the standard trade-off between insurance and efficiency, this problem is very

hard to solve in a general equilibrium setting. The level of unemployment benefits directly

affects agents’ welfare, their saving decisions, as well as the dynamics of interest rates and

wages. We find that the replacement rate is countercyclical, increasing the transfer to

unemployed agents in recessions. This policy reduces the volatility of the total income of

unemployed agents, which is welfare improving.

Literature review. Our paper contributes to the recent literature on optimal policies

in heterogeneous-agent models, which can be split into three groups. First, some papers,

such as Aiyagari and McGrattan (1998), focus on the maximization of the steady-state

welfare. Second, other papers look for optimal policies while accounting for the cost of

transitions (see for instance Krueger and Ludwig, 2016, Dyrda and Pedroni, 2018, or

Chang et al., 2018). These papers directly maximize the aggregate intertemporal welfare

over all possible paths of the planner’s instruments. This method is computationally very

intensive, which may limit the number of instruments used by the planner. Third, a last

group of papers solves for the first-order conditions of the planner’s program. Aiyagari

(1995) pioneers the study of the Ramsey allocation in a general setup and characterizes the

optimal capital tax. The use of Lagrange multipliers is further developed in Açikgöz et al.

(2018). Nuño and Moll (2018) consider a continuous-time framework in which they use

the techniques of Ahn et al. (2017) based on calculus of variation to characterize optimal

monetary policy. All these papers solve for optimal policy without aggregate shocks. Our

truncation method allows us to solve for optimal policies with no restrictions, both at the

steady state and with aggregate shocks. To the best of our knowledge, the only paper

deriving optimal Ramsey policy in a similarly general environment is Bhandari et al. (2020).

4



Their method can account for large aggregate shocks but relies on a “primal approach”

in which credit constraints can be always binding or never binding, but not occasionally

binding. Compared to their model, our solution strategy works well with occasionally

binding credit constraints, which may be the relevant case in some environments.7

Our paper also contributes to the literature on solution methods for incomplete

insurance market economies with aggregate shocks. Our truncation method is related to

other projection and perturbation methods (Rios-Rull, 1999, Reiter, 2009, and Young,

2010), which have been shown to be accurate approximations compared to global solution

techniques (see Boppart et al., 2018 or Auclert et al., 2019). The main difference is that

our solution is based on idiosyncratic histories and not on the space of wealth, which turns

out to be helpful for solving Ramsey programs. In particular, our method keeps track of

the relevant distribution, which is necessary for deriving optimal policies, because they

depend on the distributive effects of the Ramsey instruments. Finally, our truncation

of idiosyncratic histories is related to, but different from, the truncation of aggregate

histories (see for instance Chien et al., 2011, 2012). Our truncation is used to derive

a limited-heterogeneity representation of the original model, which we simulate using

perturbation methods. To the best of our knowledge, this paper is the first to develop a

truncation in the space of idiosyncratic histories.

Finally, regarding the application, our paper contributes to the literature on optimal

unemployment benefits. This literature is huge, and a large part of it employs the sufficient-

statistics approach (see the surveys of Chetty, 2009, Chetty and Finkelstein, 2013, and

Kolsrud et al., 2018, for recent developments), based on partial equilibrium analysis. A

handful of papers introduce general equilibrium effects, such as Mitman and Rabinovich

(2015), Landais et al. (2018a,b), or Ábrahám et al. (2019), but they focus on labor market

externalities and not on saving distortions. To the best of our knowledge, the only paper

analyzing optimal unemployment insurance in general equilibrium with saving choices is
7Another strategy used in the literature is to focus on a simplified economy, in which the wealth

distribution has a tractable structure. Some papers, such as Ravn and Sterk (2017), Challe (2020), and
McKay and Reis (2020) follow Constantinides and Duffie (1996) and Krusell et al. (2011). They assume
a zero-net supply for assets, which yields a no-trade equilibrium. Other papers, such as Bilbiie (2008),
or Bilbiie and Ragot (2020), consider two-agent economies in which a second-order approximation of the
welfare function can be derived. Finally, a last group of papers, such as Acharya et al. (2020), consider a
CARA-normal economy without binding credit constraint, which enables to derive aggregate dynamics.
All these models provide important economic insights but they rely on special cases. Their quantitative
relevance is thus hard to assess.
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Krusell et al. (2010). To simplify the quantitative exercise, the authors perform a welfare

analysis by comparing steady states with different levels of unemployment benefits. We

adopt a different approach, deriving the time-varying solution of a general Ramsey problem

in an economy with aggregate shocks.

The rest of the paper is organized as follows. In Section 2 we present the environment.

In Section 3 we derive optimal Ramsey policies and discuss the economic trade-off for

optimal unemployment benefits over the business cycle. In Section 4 we construct the

truncated model and provide convergence properties. Section 5 sets out our quantitative

analysis. Finally, Section 6 compares our method in terms of accuracy to those of Reiter

(2009) and Boppart et al. (2018).

2 The economy

Time is discrete and indexed by t = 0, 1, 2, . . . The economy is populated by a continuum

of agents of measure 1, distributed on an interval I according to a measure ` (·). We follow

Green (1994) and assume that the law of large numbers holds.

2.1 Preferences

In each period, agents derive utility from private consumption c and disutility from labor

l. The period utility function, denoted by U(c, l), is assumed to be of the Greenwood-

Hercowitz-Huffman (GHH) type, exhibiting no wealth effect for the labor supply, as in

Heathcote (2005), for instance:

(1) U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
,

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and

u : R+ → R is twice continuously derivable, increasing, and concave, with u′(0) =∞ and

u′(∞) = 0. Our results do not rely on the GHH functional form, and we could consider

a more general utility function U . The algebra is simplified, however, especially in the

Ramsey program, because of the absence of a wealth effect for the labor supply. In the

online appendix (Section E.3), we show how to use our truncation method with a more

general utility function.
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Agents have standard additive intertemporal preferences, with a constant discount

factor 0 < β < 1. They therefore rank consumption and labor streams, denoted respectively

by (ct)t≥0 and (lt)t≥0, using the intertemporal utility criterion
∑∞
t=0 β

tU(ct, lt).

2.2 Risks

We consider a general setup where agents face an aggregate risk, a time-varying unemploy-

ment risk, and a productivity risk, as modeled by Krueger et al. (2018). As will be clear

in the quantitative analysis below, this general setup allows us to match realistic labor

market wealth distribution and dynamics.8

Aggregate risk. The aggregate risk affects both aggregate productivity and unemploy-

ment risk. At a given date t, the aggregate state is denoted by zt and takes values in the

(possibly continuous) state space Z ⊂ R+. We assume that the aggregate risk is a Markov

process. The history of aggregate shocks up to time t is denoted by zt = {z0, . . . , zt} ∈ Zt+1.

For the sake of clarity, we will denote the realization of any random variable Xt : Zt+1 → R

in state zt by Xt, instead of Xt(zt), when there is no ambiguity.

Employment risk. At the beginning of each period, each agent i ∈ I faces an uninsur-

able idiosyncratic employment risk, denoted by eit at date t. The employment status eit can

take two values, e and u, corresponding to employment and unemployment, respectively.

We denote the set of possible employment statuses by E = {e, u}. An employed agent with

eit = e can freely choose her labor supply lit. An unemployed agent with eit = u cannot

work and will receive an unemployment benefit financed by a distorting tax on labor and

will suffer from a fixed disutility reflecting a domestic effort. These aspects are further

described below.

The employment status (eit)t≥0 follows a discrete Markov process with transition matrix

Π(zt) ∈ [0, 1]2×2 – that will simply denoted as Πt –, which is assumed to depend on the

history of aggregate shocks up to date t. The job-separation rate between periods t−1 and

t is denoted by Πt,eu = 1−Πt,ee, while Πt,ue = 1−Πt,uu is the job-finding rate between
8Compared to Krueger et al. (2018), we introduce endogenous labor supply, such that labor taxes are

distorting. In addition, we simplify the economy and remove the age dimension. We follow these authors
and denote all transition probabilities by Π – which will be distinguished by their subscripts.
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t− 1 and t. We denote the implied population shares of unemployed and employed agents

by St,u and St,e, respectively, with St,u + St,e = 1.

Productivity risk. Agents’ individual productivity, denoted by yit, is stochastic and

takes values in a finite set Y ⊂ R+. Large values in Y correspond to high productivities.

The before-tax wage earned by an employed agent i is the product of the aggregate wage

wt (dependent on aggregate shock), the labor effort lit, and individual productivity yit.

The total before-tax wage is therefore yitwtlit. An unemployed agent will also carry an

idiosyncratic productivity level that will affect her unemployment benefits and her disutility

level, denoted by ζy (for productivity y ∈ Y), associated with domestic production.

The productivity status follows a first-order Markov process where the transition

probability from state yit−1 = y to yit = y′ is constant and denoted by Πyy′ . In particular,

it is independent of the agent’s employment status. We denote by Sy the share of agents

endowed with individual productivity level y. This share is constant over time because of

the assumptions regarding transition probabilities (Πyy′).

The individual state of any agent i is characterized by her employment status and her

productivity level. We denote by sit = (eit, yit) the date-t individual status of any agent,

whose possible values lie in the set S = E × Y. Finally, we denote by si,t = {si0, . . . , sit} a

history until period t. We can then use the transition probabilities for employment and

productivity to derive the measure µt : St+1 → [0, 1] – µt(st) being the measure of agents

with history st in period t.

2.3 Production

The good is produced by one profit-maximizing representative firm. This firm is endowed

with production technology that transforms, at date t, labor Lt (in efficient units) and

capital Kt−1 into Yt output units of the single good. The production function F is a

Cobb-Douglas function with parameter α ∈ (0, 1) featuring constant returns-to-scale.

Capital must be installed one period before production and the total productivity factor

Zt is stochastic. Constant capital depreciation is denoted by δ > 0, and net output Yt is
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formally defined as follows:

Yt = F (Zt,Kt−1, Lt) = ZtK
α
t−1L

1−α
t − δKt−1,(2)

where the total productivity factor is the exponential of the aggregate shock zt: Zt =

exp(zt).

The two factor prices at date t are the aggregate before-tax wage rate wt and the

capital return rt. The profit maximization of the producing firm implies the following

factor prices:

wt = FL(Zt,Kt−1, Lt) and rt = FK(Zt,Kt−1, Lt).(3)

2.4 Unemployment insurance

A benevolent government manages an unemployment insurance (UI) scheme, in which

labor taxes are raised to finance unemployment benefits. As labor supply is endogenous,

labor tax is distorting. The government thus faces the standard trade-off between efficiency

and insurance.

At any date t, unemployed agents receive an unemployment benefit that is equal to a

constant fraction of the wage the agent would earn if she were employed (with the same

productivity level). The replacement rate is denoted by φt and the unemployment benefit

of an agent endowed with productivity yt equals φtwtytlt (yt), where l̄t (yt) is the average

labor supply of employed agents with productivity yt. We follow Krueger et al. (2018) for

this specification, which usefully reduces the state space. From the agents’ perspective, the

replacement rate is an exogenous process that depends on the aggregate state φt = φt(zt).

Unemployment benefits are financed solely by the labor tax, which is only paid by

employed agents. Taxes amount to a constant share τt of employed agents’ wages with

this proportion being identical for all employed agents. The contribution τt is set such

that the UI scheme budget is balanced at any date t, no social debt being allowed:

(4) φtwt

ˆ
i∈Ut

yit l̄
i
t(yit)`(di) = τtwt

ˆ
i∈I\Ut

yitl
i
t`(di),

where Ut ⊂ I is the set of unemployed agents at t and I \ Ut is the set of employed agents.
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2.5 Agents’ program and resource constraints

We consider an agent i ∈ I. She can save in an asset that pays the gross interest rate

1 + rt. She is prevented from borrowing too much and her savings must remain above an

exogenous threshold, −ā ≤ 0. At date 0, the agent chooses the consumption (cit)t≥0, labor

supply (lit)t≥0, and saving plans (ait)t≥0 that maximize her intertemporal utility, subject to

a budget constraint and the previous borrowing limit. Formally, for a given initial wealth

ai−1, her program is:9

max
{cit,lit,ait}

∞
t=0

E0

∞∑
t=0

βtu

(
cit − χ−1

l
i,1+1/ϕ
t 1eit=e + ζ

1+1/ϕ
yit

1eit=u
1 + 1/ϕ

)
,(5)

cit + ait = (1 + rt)ait−1 + ((1− τt)lit1eit=e + φt l̄t(yit)1eit=u)yitwt,(6)

ait ≥ −ā, cit > 0, lit > 0.(7)

Objective (5) accounts for the disutility of unemployed agents associated with domestic

production. The budget constraint (6) is standard and the expression ((1− τt)lit1eit=e +

φt l̄t(yit)1eit=u)yitwt is a compact formulation for the net wage (i.e., after taxes and unem-

ployment benefits).

We denote by βtνit the Lagrange multiplier on the credit constraint of agent i. The

Lagrange multiplier is obviously null when the agent is not credit constrained. Taking

advantage of the GHH utility function, the first-order conditions of an employed agent’s

program (5)–(7) are:

u′(cit − χ−1 l̂
i,1+1/ϕ
t

1 + 1/ϕ) = βEt
[
(1 + rt+1)u′(cit+1 − χ−1 l̂

i,1+1/ϕ
t+1

1 + 1/ϕ)
]

+ νit ,(8)

(lit)1/ϕ = χ(1− τt)wtyit,(9)

where for all t ≥ 0 and i ∈ I, we introduce the notation l̂it:

l̂it ≡ lit1eit=e + ζyit
1eit=u.(10)

The GHH utility function implies that the labor supply in equation (9) only depends

on current productivity and the after-tax real wage, which implies: l̄t(yit) = lit. Unem-
9In the remainder of the paper, 1A will denote an indicator function equal to 1 if A is true and 0

otherwise. For any t ≥ 0, Et will denote an expectation operator, conditional on the information available
at date t.
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ployed agents have the same Euler equation (8). They supply no labor, but they earn

unemployment benefits and suffer from disutility (terms in ζy) related to home production.

We now turn to economy-wide constraints. Financial- and labor-market clearing implies

the following relationships for the supply of capital Kt and labor Lt (in efficient units):

(11)
ˆ
i
ait`(di) = Kt and Lt =

ˆ
i∈I\Ut

yitl
i
t` (di) .

The clearing of the goods market implies that total consumption and the new capital stock

equals total supply, itself the sum of output net of depreciation and past capital:

(12)
ˆ
i
cit`(di) +Kt = Yt +Kt−1.

Using labor market transition probabilities, we deduce that the law of motion for the

employed and unemployed agent populations, denoted respectively by St,e and St,u, is:

(13) St,u = 1− St,e = Πt,euSt−1,e + Πt,uuSt−1,u.

The constant share of agents Sy with productivity y verifies: Sy =
∑
y∈Y Sy′Πy′y.

Using individual labor Euler conditions (9), the UI budget constraint (4) can be written

as: φt
´
i∈Ut

(
yit
)1+ϕ

`(di) = τt
´
i∈I\Ut

(
yit
)1+ϕ

`(di). We observe that the budget balance

only depends on the current idiosyncratic state. With equation (13), this can therefore be

simplified into φt
∑
y∈Y St,uSyy

1+ϕ = τt
∑
y∈Y St,eSyy

1+ϕ, or:

(14) φtSt,u = τtSt,e.

We can now formulate our equilibrium definition.

Definition 1 (Sequential equilibrium) A competitive equilibrium is a collection of

individual variables
(
cit, l

i
t, a

i
t, ν

i
t

)
t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price

processes (wt, rt)t≥0, and of UI policy (τt, φt)t≥0 such that, for an initial wealth distribution(
ai−1

)
i∈I , and for initial values of capital stock K−1 =

´
i a
i
−1`(di), and of the aggregate

shock z−1, we have:

1. given prices, individual strategies
(
cit, l

i
t, a

i
t, ν

i
t

)
t≥0,i∈I solve the agent’s optimization

program in equations (5)–(7);

2. financial, labor, and goods markets clear: for any t ≥ 0, equations (11) and (12)
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hold;

3. the UI budget is balanced: equation (14) holds for all t ≥ 0;

4. factor prices (wt, rt)t≥0 are consistent with the firm’s program (3).

3 Ramsey program

3.1 Formulation of the Ramsey program

The Ramsey problem involves determining the unemployment insurance policy (which

consists here of the replacement rate φt and the labor tax rate τt) that corresponds to

the “best” competitive equilibrium, according to a utilitarian welfare criterion. Aggregate

welfare is simply measured by the sum
∑∞
t=0 β

t
´
i U(cit, lit)`(di). The Ramsey problem can

thus be written as – with l̂it defined in (10):

max
((ait,cit,lit)i∈I ,φt,τt,rt,wt)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
U(cit, l̂it)`(di)

]
,(15)

subject to: (i) individual budget constraints (6), (ii) the Euler equations (8) and (9) for

consumption and labor, respectively, (iii) the UI scheme budget balance (14), (iv) the

market clearing constraints (11), and finally (v) the factor prices definitions (3).

The Ramsey program of equation (15) features a concave objective but non-affine

equality constraints (due to the presence of Euler equations). This implies that the

first-order conditions (FOCs) of the Ramsey program may not be necessary nor sufficient

to characterize the optimal policy. This limitation is shared with most of the literature

on Ramsey programs, including papers featuring a representative-agent. Following the

literature, we assume that the solution is interior and that the FOCs of the planner

are necessary. Finally, note that the structure of our problem does not require to use a

recursive formulation, which avoids further complexity (see Cole and Kubler, 2012 and

Pavoni et al., 2018, among others).

A reformulation of the Ramsey problem. We simplify the formulation of the

Ramsey problem exposed in equation (15), using the factorization of the Lagrangian

employed by Marcet and Marimon (2019). However, two specific difficulties arise when
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applying this approach in our environment. The first difficulty is the consistency of the

method with incomplete-market models. In fact, we show in Section B.1 of the online

appendix that our setup adds no complexity to the formulation of the planner’s objective.

The second difficulty is the application of Marcet and Marimon (2019) to models with

occasionally binding credit constraints. To show that the first-order conditions of the

Lagrangian approach are valid, we derive an additional theoretical result in Proposition 6

of the online appendix (Section E.2), where we prove that the first-order conditions of our

Ramsey problem can be understood as the limit of those of a Ramsey problem featuring

penalty functions (whose concavity become infinitely high). Since penalty functions

substitute for credit constraints, this result shows that Marcet and Marimon (2019)’s

result still applies with occasionally binding credit constraints.10

We denote by βtλit the Lagrange multiplier of the consumption Euler equation (8) for

agent i at date t. Observing that the multiplier λit is null when the credit constraint is

binding for agent i. This implies that the product λitνit (for all t and i) is thus always null.

Including the Euler equation constraint in the planner’s objective (15) yields the following

objective, denoted by J :

J = E0

∞∑
t=0

βt
ˆ
i

(
U(cit, l̂it)− (λitUc(cit, l̂it)− λitEt

[
(1 + rt+1)Uc(cit+1, l̂

i
t+1)

]
)
)
`(di).

The previous equation can be reformulated, setting λ−1 = 0 and using the tower rule:

J = E0

∞∑
t=0

βt
ˆ
i

(
U(cit, l̂it)− (λit − λit−1(1 + rt))Uc(cit, l̂it)

)
`(di).(16)

The Ramsey program then consists in maximizing J in (16) over ((ait, cit, lit)i, φt, τt)t≥0

subject to the relevant constraints: equations (6), (14), and (29). Using (3) to substitute

for rt and wt, the Lagrangian can be seen as depending only on (ait)i and φt.

The Lagrange multipliers λit are key to understanding the planner’s program. If agent’s

i private incentives to save at date t are socially optimal, then her Euler equation is not a

constraint and the Lagrange multiplier is λit = 0. Depending on how the planner perceives

the saving distortions, these coefficients can be either positive or negative. A positive

(resp. negative) Lagrange multiplier for agent i reflects that the planner perceives that

agent i saves too little (resp. too much). We provide an example in Section E.1 of the
10We thank Albert Marcet for this suggestion.
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online appendix to clarify this aspect.

3.2 Ramsey conditions and economic interpretation

Using proper substitution, the Ramsey program (16) can be written as a maximization

problem with only two sets of choice variables: the labor tax (τt)t and saving choices

(ait)t,i. The current section derives the planner’s first-order conditions and discusses the

economic trade-offs that determine the time-varying replacement rate. The derivations of

these conditions can be found in Section B.1 of the online appendix.

To ease the economic interpretation of the first-order conditions, we define:11

(17) ψit = Uc(cit, l̂it)− (λit − (1 + rt)λit−1)Ucc(cit, l̂it),

which will be called the marginal social valuation of liquidity for agent i, because it is

the marginal gain for the planner of transferring resources to agent i at date t. If agent

i receives one additional unit of goods today, this additional unit will have a private

value proportional to Uc. The planner also has to account for the effect on the saving

incentives, i.e., on the Euler equations. This additional unit therefore affects the agent’s

saving incentive from period t− 1 to period t and from period t to period t+ 1. This effect

is captured by the second term, which is proportional to Ucc.

The saving decision ait in history sN at date t affects the welfare of all agents due to

general equilibrium effects on capital and prices. The first-order condition of the Ramsey

program related to saving choices summarizes all of these effects. It can be written as
11Unlike Chien et al. (2011) or Marcet and Marimon (2019), we do not use cumulative Lagrange

multipliers to analyze the dynamics. Instead, we use the period multipliers to derive the planner’s first-
order conditions. These conditions are easier to interpret and the simulation of the model relies on a
smaller number of variables. See these two references for a discussion of the existence of these multipliers
in such economies.
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follows for an unconstrained agent i:12

ψit = βEt
[
(1 + rt+1)ψit+1

]
︸ ︷︷ ︸

liquidity smoothing

+ β
αK−1

t

1 + αϕ
Et
[ˆ

i
ψit+1

=net wage︷ ︸︸ ︷
(1− τt+1)yit+1wt+1l

i
t+11eit+1=e `(di)

]
︸ ︷︷ ︸

wage effect for employed

+ β
αK−1

t

1 + αϕ
Et
[ˆ

i
ψit+1(1 + ϕ)

=unemp. benefits︷ ︸︸ ︷
φt+1y

i
t+1wt+1l

i
t+1,e1eit+1=u `(di)

]
︸ ︷︷ ︸

wage effect (unemp. ben.) for unemployed

(18)

− β αK
−1
t

1 + αϕ
Et
[
wt+1Lt+1

Kt

ˆ
i

(
λitUc(cit+1, l̂

i
t+1) + ψit+1a

i
t

)
`(di)

]
︸ ︷︷ ︸

interest rate effect on smoothing and wealth

}
.

Equation (18) features the first-order condition on the liquidity allocation (i.e., saving

choices) for unconstrained agents. Although it appears complicated, the equation has a

straightforward interpretation. Four effects are at play. The first is a direct effect that

measures the expected future value of liquidity tomorrow. In other words, this component

states that liquidity value should be smoothed over time. This first part is very similar to

a standard consumption Euler equation, except that it reflects “social” marginal utilities

ψit, rather than “private” marginal utilities U ic. We refer to this first term as “liquidity

smoothing”. The three other components alter the pure smoothing effect and reflect the

fact that the planner also takes into account the consequences of liquidity allocation on

prices. More precisely, the second and third components correspond to the marginal effect

of additional saving on the wage rate. This affects employed agents (second component)

and unemployed (third component) agents, because UI benefits are proportional to the

labor income of employed agents with the same productivity. Finally, the fourth and last

component reflects the distortions through the interest rate on saving incentives.

The second first-order condition, relating to the labor tax, can be written as follows:

St,e
St,u

( 1
ϕ

+ 1− 1− α
1− τt

)ˆ
i
ψit
lity

i
t

Lt
1eit=u`(di)︸ ︷︷ ︸

gain of unemployment benefits for unemployed

=(19)

1
ϕ

ˆ
i
ψit
lity

i
t

Lt
1eit=e`(di)︸ ︷︷ ︸

cost of the tax for employed

+ α

(1− τt)Kt−1

ˆ
i

(
λit−1Uc(cit+1, l̂

i
t+1) + ψit+1a

i
t−1

)
.︸ ︷︷ ︸

effect on prices, smoothing, and redistribution

Equation (19) determines the optimal labor tax rate by setting the marginal costs of a
12Proofs for first-order conditions can be found in Section B.1 of the online appendix.
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higher tax rate equal to the marginal benefits. On the left-hand side of equation (19),

the marginal benefit comprises the marginal gain of tax (and UI benefit) for unemployed

agents. On the right-hand side of (19), marginal costs comprise two effects. The first

effect accounts for the impact of the labor tax on employed agents, taking into account

the negative net effect on the labor supply (inversely proportional to the Frisch elasticity

ϕ). The second one reflects the tax distortion on the interest rate and thus on saving

incentives. Note that equation (19) embeds, in a compact form, the general equilibrium

effect on wages, which are captured by both the Frisch elasticity of the labor supply, ϕ,

and the concavity of the production function, α.

4 The aggregation and truncation theory

This section presents our methodology. It is organized in two parts, which correspond

to fixed and optimal policies, respectively. In each of the two parts, the first subsection

presents the general principles that govern the methodology, either in the presence of fixed

UI policy or of optimal UI policy. The second subsection then presents the steady state,

while the third section discusses the introduction of aggregate shocks. Finally the fourth

and last subsection presents a convergence result of our method at the steady state.

4.1 Economy with exogenous UI policy

4.1.1 Aggregation of an incomplete-market model

Our methodology consists of expressing the model in terms of groups of agents sharing the

same idiosyncratic history over the last N > 0 periods, which will be called a truncated

history, rather than in terms of individual agents. The time-length N > 0, called the

truncation length, is an exogenous parameter of the method. The history over the last

N periods can be identified by a vector sN ∈ SN . Considering an agent i with (full)

idiosyncratic history si,t at date t ≥ N , her truncated history can be represented as:

(20) si,t = { . . . , st−N−2, s
t
−N−1, s

t
−N , s

t
−N+1, . . . , s

t
−1, s

t
0︸ ︷︷ ︸

=sN

},
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where st−k is her idiosyncratic status (at date t) k periods in the past. The resulting model

will be called an aggregated model, while for the sake of clarity, we will denote the original

model, the model expressed in terms of individuals of Section 2. The construction of the

aggregated model proceeds in four intermediate steps.

First, we compute the measure of agents with truncated history sN . An agent having a

truncated history ŝN at t− 1 will have a different truncated history sN at t depending on

the realization of the idiosyncratic risk at date t. The probability of transitioning from ŝN

at t− 1 to sN at t is denoted by Πt,ŝNsN (with
∑
sN∈SN Πt,ŝNsN = 1) and can be inferred

from the transition probabilities for unemployment and productivity:

(21) Πt,ŝNsN = 1sN�ŝNΠt,êN0 ,e
N
0

ΠŷN0 y
N
0
≥ 0,

where sN0 = (eN0 , yN0 ) and ŝN0 = (êN0 , ŷN0 ) are the current idiosyncratic states for sN and

ŝN , respectively. We can deduce from these transition probabilities the share of agents in

the population endowed with history sN at date t, which is denoted by St,sN :

(22) St,sN =
∑

ŝN∈SN
St−1,ŝNΠt,ŝNsN ,

where the initial shares (S−1,sN )sN∈SN , with
∑
sN∈SN S−1,sN = 1, are given.

Second, the aggregated model involves computing consumption, saving, and labor

choices for groups of agents with the same truncated history sN . In the original model

with the aggregate shocks of Section 2, the equilibrium allocation can be characterized by

a set of policy rules (for saving, consumption, and labor supply) and Lagrange multipliers

(for the borrowing limit), defined over all idiosyncratic and aggregate histories:

at(st, zt), ct(st, zt), lt(st, zt), νt(st, zt), t ≥ 0, st ∈ St, zt ∈ Zt.

These quantities have to be computed for the aggregated model. Consider one of these

variables, denoted by X. We will assign to a truncated history sN the quantity Xt,sN ,

which is defined as the following average:

(23) Xt,sN = 1
St,sN

∑
st∈St|(stt−N+1,...,s

t
t)=sN

Xt(st,zt)µt(st),

where we recall that µt(st) is the measure of agents with history st. With the definition
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(23), ct,sN , at,sN , lt,sN , and νt,sN are respectively the average consumption, the end-of-

period saving, the labor supply and the credit-constraint Lagrange multiplier among agents

having at date t the truncated history sN .

Third, we have to compute aggregate beginning-of-period wealth. Because agents

switch histories from one period to another, the per capita beginning-of-period wealth

for history sN at date t is derived from period-(t− 1) end-of-period wealth and from the

transition across histories. Indeed, it consists of the wealth of all agents having history

sN in period t and any other possible history in t− 1. Formally, the beginning-of-period

wealth ãt,sN for truncated history sN is:

ãt,sN =
∑

ŝN∈SN

St−1,ŝN

St,sN
Πt,ŝN ,sNat−1,ŝN .(24)

Fourth, the method involves the aggregation of Euler equations. As the marginal

utility is not linear in consumption in the general case, the marginal utility of consumption

aggregation is different from the aggregation of marginal utilities. If we denote the latter

aggregation by u′
t,sN

for truncated history sN at date t, we formally have: u′(ct,sN ) 6= u′
t,sN

,

unless there is no consumption heterogeneity within truncated histories sN . However, we

can compute the set of parameters (ξt,sN )t,sN that guarantees that Euler equations hold

with aggregate consumption levels. As a consequence, the ξs can be seen as the relevant

summary of within-truncated-history heterogeneity for the dynamics of the aggregated

model and will be henceforth called residual heterogeneity parameters. Indeed, we show in

the numerical investigation of Section 5 that the ξs efficiently capture this within-history

heterogeneity in a parsimonious way, even with a short truncation, such as N = 2.13

The ξs parameters only apply to consumption Euler equations and not to the labor

Euler equations. This is a result from the GHH utility function, which implies that the

labor supply Euler equation is linear in current productivity (see equation (9)). Hence,

there is no truncation wedge when aggregating the labor supply equation. However, it

would be present with a more general utility function, and correcting coefficients would be

needed for both Euler equations. Though slightly more involved, it is noteworthy that

this would not impair the construction of the aggregated model. See Section E.3 of the
13These parameters are related to the aggregation procedure presented in Werning (2015). The difference

is that Werning (2015) captures the heterogeneity through a change in the discount factor, whereas we
capture with these ξs. This is only important to derive Ramsey allocations.
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online appendix for further details.

The four previous steps can now be used to compute the aggregated model starting

from the equations (6)–(9) characterizing the equilibrium in the original model. The

aggregation yields the following set of equations:

ct,sN + at,sN ≤ (1 + rt)ãt,sN(25)

+
(
(1− τt)1eN0 =elt,sN + φt1eN0 =ult,sN ,e

)
yN0 wt,

ξt,sNUc(ct,sN , l̂t,sN ) = βEt(1 + rt+1)
∑

s̃N∈SN
Πt+1,sN ,s̃N ξt+1,s̃NUc(ct+1,s̃N , l̂t+1,s̃N ) + νt,sN ,(26)

l
1
ϕ

t,sN
= χ(1− τt)wtyN0 ,(27)

l̂it,sN = lt,sN 1eN0 =e + ζyN0
1eN0 =u.(28)

The budget constraint (25) is the aggregation of individual budget constraints (6) using

equations (23) and (24). The same holds for the Euler labor equation (27) that comes from

individual Euler equation (9). Finally, the aggregated Euler equation (25) for consumption

relies on the parameters (ξt,sN ) that enable the aggregation of individual Euler equations

(8). The system (25)–(28) is an exact aggregation of the original model with aggregate

shocks in terms of truncated idiosyncratic histories. It characterizes the dynamics of the

aggregated variables ct,sN , at,sN , lt,sN , and νt,sN without involving any approximation.

Finally, market clearing conditions can also be expressed in terms of aggregated

variables. For capital and labor we have:

(29) Kt =
∑

sN∈SN
St,sNat,sN , Lt =

∑
sN∈SN

St,sN ysN lt,sN .

The equilibrium in the aggregated model is characterized by the set of equations

(25)–(29). The aggregation mechanism involves no simplifying assumption and, for any

truncation length N > 0, it is always possible to compute the allocation of an aggregated

model based on the allocation of an original model. However, we aim at doing the opposite:

taking advantage of the finite-state space properties of the aggregated model to simulate it

and gain knowledge about the original model. We now explain how to make the aggregated

model operational.
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4.1.2 Economy with exogenous UI policy and no aggregate shock

The first step to make the aggregated model operational involves computing the ξs at the

steady state. Consider an original Bewley model associated to an exogenous UI policy (φ, τ).

The outcome of this original Bewley model is denoted by (r, w, (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞),

where (r, w) are prices and (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞ is the allocation denoted using the

sequential representation. We formally define the probability space associated to the set

S∞ of infinite idiosyncratic histories in Section B.3.1 of the online appendix. The following

proposition presents the computation of the ξs.

Proposition 1 (Constructing the ξs) Consider a truncation length N > 0, and an

original Bewley model, (r, w, (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞) for a UI policy (φ, τ). The steady-

state value of the residual heterogeneity parameters (ξsN )sN∈SN can be computed such that

the following conditions hold:

1. the tuple (SsN , asN , csN , lsN , νsN ), consisting of the steady-state truncation history

sizes, savings, consumption levels, labor supplies, and credit-constraint Lagrange

multipliers in the aggregated model, is computed using the allocation (as∞ , cs∞ , ls∞ ,

νs∞)s∞∈S∞ of the original Bewley model and using the idiosyncratic transition

probabilities (Πyy′) and (Πee′) with equations (21), (22), and (23);

2. the set of credit constraints histories, CN , is determined based on the aggregated

credit-constraint Lagrange multipliers: CN = {sN ∈ SN : νsN ≥ ν̄N}, where ν̄N is an

exogenously set threshold;

3. the Euler equations (26) for consumption hold at the steady state in the aggregated

model.

The proof is provided in Section C.2.1 of the online appendix, and it can be summarized

as follows. At the steady state, given an exogenous UI policy, we can solve the original

model and compute the policy functions and the stationary wealth distribution. From

these elements, we can compute with equation (23) the aggregated quantities. Note that

transition probabilities for truncated histories are deduced from idiosyncratic transition

probabilities (Πyy′) and (Πt,ee′) with equation (21), while the population of agents with

the given truncated history is given by (22). This completes Point 1 of Proposition 1.
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The set of credit-constrained truncated histories, denoted by CN , is determined using

credit-constraint Lagrange multipliers for truncated histories, νsN . Credit-constrained

truncated histories are those with the highest Lagrange multipliers νsN . Formally, all

truncated histories featuring a Lagrange multiplier νsN above a threshold ν̄N will be

credit-constrained. The threshold is chosen such that the mass of credit-constrained agents

in both the original and the aggregated models is similar. This sets Point 2 of Proposition

1.

Once we have computed the consumption, labor supply, and Lagrange multipliers for

truncated histories (i.e., the triplet (csN , lsN , νsN )), the ξs can be computed by inverting

Euler equations (26) in the aggregated model. This computation actually pins down to

simple linear algebra. We provide in equation (83) of Section C.2.1 in the online appendix

a closed-form expression for the ξs. Point 3 therefore holds by construction of the ξs.

4.1.3 Economy with exogenous UI policy and aggregate shocks

To make our aggregation procedure in the presence of aggregate shocks operational, we

need to impose the following assumptions.

Assumption A We assume that in the presence of aggregate shocks:

1. the residual heterogeneity parameters (ξsN )sN remain constant and equal to their

steady-state values;

2. the set of credit-constrained histories, CN , is time-invariant and determined at the

steady state.

The first item of Assumption A means that the model features within-history het-

erogeneity, but that this heterogeneity is not time-varying, as the preference parameters

(ξsN )sN , determined at the steady state, remain constant in the presence of aggregate

shocks. We thus assume the model dynamics is computed while considering that within-

truncated-history heterogeneity is not time-varying. This assumption is in the same vein

as the assumption that the within-bin heterogeneity is uniform in the histogram approach

of Reiter (2009).
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The second item of Assumption A states that if a history sN ∈ SN is credit-constrained

at the steady state, it also remains credit-constrained in the dynamic version of the

model. This restriction is imposed by perturbation methods and is not specific to our

construction.14 Despite this assumption, the number of credit-constrained households

can be time-varying, since the measure of agents having a given truncated history is

time-varying.

Assumption A enables us to formally characterize the so-called truncated model. It is

defined by the set of equations (25)–(28), together with: (i) the additional assumptions

that ξt,sN = ξsN for all t; and (ii) the fact that Euler equations (25) only hold for the

non-credit-constrained histories determined at the steady state. The definition can be

stated as follows.

Definition 2 (Truncated equilibrium) A truncated equilibrium is a collection of in-

dividual variables (ct,sN , lt,sN , at,sN , νt,sN )sN∈SNt≥N−1 , of aggregate quantities (Kt, Lt, Yt)t≥N−1,

of price processes (wt, rt)t≥N−1, and of UI policy (τt, φt)t≥N−1, such that, for an ini-

tial wealth distribution (aN−2,sN )sN∈SN , and for initial values of capital stock KN−2 =∑
sN∈SN aN−2,sN , and of the aggregate shock zN−2, we have:

1. (ξsN )sN∈SN are the steady-state preference parameters of the aggregated model;

2. individual strategies (ct,sN , lt,sN , at,sN , νt,sN )t≥N−1,sN∈SN solve the agent’s optimiza-

tion program in equations (25)–(10);

3. financial, labor, and goods markets clear: for any t ≥ N − 1, equations (29) hold;

4. the UI budget is balanced: equation (4) holds for all t ≥ N − 1;

5. factor prices (wt, rt)t≥N−1 are consistent with the firm’s program (3).

We now explain how we can use Proposition 1 and Assumption A to simulate the

truncated model in the presence of aggregate shocks.

Algorithm 1 Consider a truncation length N > 0 and a UI policy (φ, τ). The algorithm

for simulating the truncated model with aggregate shocks can be stated as follows.
14In particular, it could be relaxed by using history-specific penalty functions to model (possibly large)

aggregate shocks. We leave this development for future work.
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1. Solve for the original Bewley model given UI policy (φ, τ). This gives individual

allocations, aggregate quantities and prices.

2. Construct the aggregated model at the steady state following Proposition 1.

(a) Compute aggregate quantities (SsN , csN , lsN , asN , νsN )sN , using individual allo-

cations and equation (23).

(b) Characterize the set of credit-constrained truncated histories CN .

(c) Compute (ξsN )sN by inverting the Euler equations (26) – see the closed-form

expression (83) in Section C.2.1 of the online appendix.

3. Construct the truncated model (defined by equations (25)–(29)) using Assumption A.

4. The truncated model can then be simulated in the presence of aggregate shocks using

perturbation methods.

The perturbation methods of Step 4 can be conducted using a standard software such as

Dynare. The steady state around which the perturbation is conducted is computed as the

aggregation of the underlying original Bewley model. Remark also that, by construction,

the original and truncated models feature the same steady-state aggregate quantities (such

as GDP, capital, total labor supply, etc.) and the same prices.

Our truncation method makes it possible to rely on off-the-shelf and well-established

computational software to solve for heterogeneous-agent models in the presence of aggregate

shocks. The key advantage of our method is that, once the ξs have been computed at the

steady state, the truncated model features limited heterogeneity and therefore lends itself

to a computation through perturbation methods, explained in Algorithm 1 (see Section

C.1 of the online appendix for the list of equations).15

4.1.4 A steady-state convergence result

We provide a convergence result for the truncation method, when the history length N

becomes increasingly long. We need to state a number of additional assumptions so as to
15The truncated model can also be shown to be constructed from an explicit partial-insurance mechanism,

where individual agents can only insure against idiosyncratic shocks occurring N + 1 periods ago. This
alternative construction is presented in Section A of the online appendix using an island metaphor (see
Lucas, 1975, 1990). One of the interests of this alternative construction is to prove that the dynamic of
the truncated model is well-defined and can be written in a recursive form.
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guarantee the existence of the steady-state equilibrium for the original model. We here

follow Açikgöz (2018), which applies in our GHH setup for a given UI policy.

Assumption B We make the following set of assumptions:

1. the credit-constraint is set to zero: a = 0;

2. steady-state wage and interest rates verify: w > 0 and 0 < β(1 + r) < 1;

3. steady-state labor tax verifies:
(
(1 + 1

ϕ) SeSu + 1
)−1

< τ < 1.

4. utility function verifies:

lim inf c→∞ −
u′′(c)
u′(c) = 0;

5. the steady-state transition matrices (Πyy′) for productivity and (Πee′) for unemploy-

ment are irreducible and verify Πy,y > 0, Πee > 0 and Πuu > 0, where y is the lowest

productivity level.

Let us comment on the different points of Assumption B. Point 1 sets the credit constraint

a to zero, as in Açikgöz (2018). Note that such a choice is always possible, up to

renormalization of the income process. Point 2 is similar to Assumption 2 in Açikgöz

(2018), and it avoids discussing irrelevant cases. Point 3 is specific to our framework and has

two objectives. First, it ensures that the income of employed or unemployed agents cannot

be nonpositive and thus simply extends w > 0 in our case. Second, through the condition(
(1 + 1

ϕ) SeSu + 1
)−1

< τ , it implies that the “aggregate consumption” of unemployed agents,

equal to c− χ−1 ζ
1+1/ϕ
y

1+1/ϕ , is positive at the steady state. The “aggregate consumption” of

employed agents can be shown to be also positive whenever τ < 1. Together with the

properties of the utility function, it guarantees that the agent’s program in the original

Bewley economy is well-defined and can be solved by continuous policy functions (defined

on the product space of beginning-of-period asset holdings and idiosyncratic risk). Points

1 to 4 imply that the agent’s state space can be chosen to be compact. Point 4, which is

similar to Assumption 3 of Açikgöz (2018), holds for the standard CRRA utility function

(independently of the choice of the elasticity of substitution) that is most often used in

quantitative applications – and that we use in Section 5. Point 5, with previous points, is

sufficient to prove the existence of a unique stationary distribution – and also that agents’
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aggregate asset demand diverges to infinity when β(1 + r)→ 1. Assumption B ultimately

implies the existence of a stationary recursive equilibrium for a given UI policy.

We can now state our result regarding the convergence of allocations in the aggregated

model at the steady state, as well as the convergence of the ξs parameters. The proof can

be found in Section B.3 of the online appendix.

Proposition 2 (Convergence of allocations) Consider an original Bewley model, whose

prices and allocations are denoted by (r, w, (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞) for a given UI policy

(φ, τ). For any truncation length N > 0, let (r, w, (csN , asN , lsN , νsN , ξsN )sN∈SN ) be the

prices and allocations of the aggregated model constructed using Proposition 1. We have

the following results:

1. (r, w, (csN , lsN , asN , νsN )sN∈SN ) −→N (r, w, (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞), almost surely;

2. (ξsN )sN∈SN −→N (1)s∞∈S∞, almost surely.

Proposition 2 states that when the truncation length increases, the allocation of the

aggregated economy converges to the allocation of the underlying original Bewley model,

while the ξs converge to one. In the proposition, we used the fact that prices are the

same in the original Bewley model and in the aggregate one (for all truncation lengths

N). The intuition for the result of Proposition 2 is as follows. As N increases, the agents’

shared history becomes longer and the first period with a potentially different idiosyncratic

status becomes more distant. This means that as N increases, the agents assigned to a

given truncated history become more “similar” to each other and the allocation of the

aggregated model converges to the allocation of the original Bewley model. Furthermore,

since the heterogeneity within each truncated history vanishes, the ξs have an increasingly

smaller role to play and converge to 1 for large N .

4.2 Economy with optimal policy

4.2.1 Ramsey program

We use the truncated model to compute optimal Ramsey policies in a heterogeneous-agent

model with aggregate shocks. There are two main gains of computing Ramsey allocations in

the truncated model rather than aggregating first-order conditions of the original Ramsey

25



program. First, we can prove the convergence results of Ramsey allocations in the truncated

model toward the true allocation, when the truncation length becomes increasingly long.

Second, this strategy ensures the numerical stability of dynamic simulations, as we solve

for Ramsey policies in a well-defined model (see Section B.2 of the online appendix).

Following Section 3, the truncated Ramsey problem can be written as:

max
((a

t,sN
,c
t,sN

,l
t,sN

,l̂
t,sN

)
s∈SN ,φt,τt,rt,wt)t≥0

E0

 ∞∑
t=0

βt
∑

sN∈SN
St,sN ξsNU(ct,sN , l̂t,sN )

 ,(30)

subject to: (i) the budget constraints (25), (ii) the Euler equations (26)–(27), (iii) the

market clearing constraints (29), and (iv) the factor prices (3), (v) the UI budget balance

(14).

As in the original program, we define the social value of liquidity Ψt,sN as:

(31) Ψt,sN = ξsNUc(ct,sN , l̂t,sN )− (λt,sN − (1 + rt)λ̃t,sN )ξsNUcc(ct,sN , l̂t,sN ),

where λ̃t,sN is the aggregation of previous-period Lagrange multipliers λt−1,s̃N and is

defined similarly to ãt,sN in equation (24):

(32) λ̃t,sN =
∑

s̃N∈SN

St−1,s̃N

St,sN
Πt,s̃NsNλt−1,s̃N .

The parameter Ψt,sN is the exact parallel for histories of ψit defined in (17) for individuals.

Similarly to the original case, two first-order conditions need to be computed. With respect

to savings, we obtain for unconstrained histories sN ∈ SN \ CN :

Ψt,sN = β
∑

s̃N∈SN
Et
[
(1 + rt+1)Πt+1,sN s̃NΨt+1,s̃N

]
+ β

αK−1
t

1 + αϕ
(33)

×
{
Et
[ ∑
s̃N∈SN

Ψt+1,s̃NSt+1,s̃Nwt+1
(
(1− τt+1)lt+1,s̃N 1ẽN0 =e+(1 + ϕ)φt+1lt+1,s̃N ,e1ẽN0 =u

)
ỹN0

]

−
∑

s̃N∈SN
Et
[
wt+1Lt+1

Kt
St+1,s̃N

(
λ̃t+1,s̃N ξs̃NUc(ct+1,sN , l̂t+1,sN ) + Ψt+1,s̃N ãt+1,s̃N

)]}
,

while gather first-order relative to the labor tax can be written as follows:

St,e
St,u

( 1
ϕ

+ 1− 1− α
1− τt

) ∑
s̃N∈SN

Ψt,s̃NSt,s̃N
lt,s̃N ,e
Lt

ỹN0 1ẽN0 =u =(34)

α

(1− τt)Kt−1

∑
s̃N∈SN

St,s̃N
(̃
λt,s̃N ξs̃NUc,t,sN + Ψt,s̃N ãt,s̃N

)
+ 1
ϕ

∑
s̃N∈SN

St,s̃NΨt,s̃N
lt,s̃N

Lt
ỹN0 1ẽN0 =e.
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It can be observed that first-order conditions (33) and (34) of the truncated Ramsey

program are very similar to (18) and (19) for the original Ramsey program.

4.2.2 Economy with optimal policy and no aggregate shock

In the Ramsey program of Section 4.2.1, the planner takes the ξs as given and solves, at

the steady state, for the optimal corresponding allocation (csN , lsN , asN )sN∈SN and the

optimal UI policy (φ, τ). This first step is easy to implement and yields an allocation that

is consistent with the truncated representation. In the following algorithm, we impose

an additional consistency constraint. This constraint requires the ξs (capturing residual

heterogeneity) to correspond to the allocation of the original Bewley model given the

optimal UI policy. More precisely, once the optimal UI policy (φ, τ) has been computed,

we can solve for the original Bewley model corresponding to this policy, and derive the

residual heterogeneity parameters ξ̃s implied by this Bewley allocation. While these

ξ̃s may differ from the ξs used to compute the optimal policy, our second consistency

requirement imposes these parameters to be the same: ξs = ξ̃s. This constraint on the

ξs should be seen as a refinement of our method to take advantage of the maximum

information from the original Bewley model. The following algorithm ensures that the

consistency requirement over the ξs holds by looking for a fixed point over the ξs until the

ξs used to compute the optimal UI policy are the same as the ξs constructed using the

optimal UI policy and Proposition 1.

Algorithm 2 The algorithm for computing the steady-state Ramsey allocation can be

stated as follows.

1. Choose a truncation length N .

2. Set an initial value for the UI policy (φ, τ).

3. Solve for the allocation of the original Bewley model given the policy (φ, τ).

4. Construct the corresponding aggregated model as follows:

(a) Compute aggregated allocation (csN , lsN , asN )sN using the allocation of the

original Bewley model and equation (23).
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(b) Inverse Euler equations (26) to compute (ξsN )sN . See the closed-form expression

(83) in Section C.2.1 for a direct computation of the online appendix.

(c) Use equation (33) at the steady state to compute (ΨsN )sN and Lagrange multi-

pliers (λsN )sN . See the closed-form expressions (84) and (85) in Section C.2.2

of the online appendix for a direct computation.

5. Compute both sides of optimality condition (19). If equality does not hold (up to a

precision criterion), update the UI policy, and iterate starting at Step 3.

6. Finally, increase N and repeat Steps 2-5 until the optimal UI policy does not change.

This algorithm delivers a policy (φ, τ) such that: (i) the aggregated allocation

(csN , lsN , asN )sN and the ξs are both derived from an allocation (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞

of the original Bewley model given the policy (φ, τ); (ii) the policy (φ, τ) is optimal in

the truncated model defined by (csN , lsN , asN )sN and the ξs. In other words, we find the

optimal policy in the truncated model with the ξs that are consistent with the original

Bewley model (given the optimal policy).

Algorithm 2 has two main advantages. First, the aggregated model is, by construction,

consistent with the corresponding original Bewley model. In particular, aggregate quan-

tities (capital, consumption, labor) and prices are exactly the same in the steady-state

Ramsey model and in the corresponding original Bewley model. Second, our algorithm

requires the Bewley model to exist for each UI policy (because of Step 3). The Ram-

sey planner must therefore select an existing competitive equilibrium and perturbation

methods – used to compute the model with aggregate shocks – cannot be run around

non-existing steady-state equilibria (which could be the case if we did not impose aggre-

gated allocation (csN , lsN , asN )sN to be the aggregation of an original Bewley allocation

(as∞ , cs∞ , ls∞)s∞∈S∞).

4.2.3 Economy with optimal policy and aggregate shocks

Once the steady state of the model has been computed, the dynamics of the Ramsey

model – provided in Section C.1 of the online appendix – can be solved by perturbation

techniques, as there are a finite number of equations. This implies that the (truncated)
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wealth distribution and the distribution of Lagrange multipliers are used as state variables.

As shown in the numerical analysis of Section 5, the planner’s instruments depend on

these two distributions. As in the case of exogenous policy, the simulation can rely on

existing software (e.g., Dynare).

Algorithm 3 The algorithm for solving the Ramsey program in the presence of aggregate

shocks can be stated as follows.

1. Use Algorithm 2 to compute the steady-state Ramsey allocation and set an acceptable

truncation length.

2. Set the system characterizing the Ramsey solution: equations (25)–(29) for the

competitive equilibrium and equations (33) and (34) for Ramsey FOCs.

3. Simulate the previous system using perturbation methods around the steady-state

allocation of Step 1.

4. Check that IRFs and second-order moments are not affected by changing N .

4.2.4 A steady-state convergence result

We provide a second convergence result for the truncation method, still for a steady-state

economy. For the sake of simplicity, we will denote an original (steady-state) Ramsey

equilibrium by (φ, τ, r, w, (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞) where φ is the replacement rate, τ ,

the associated labor tax, (r, w) are prices, and (as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞ , the allocation

of the original Bewley program corresponding to UI policy (φ, τ). The replacement rate φ

and the labor tax τ are connected though the UI policy budget equation (14). Similarly,

we denote by (φN , τN , rN , wN , (csN , lsN , asN , νsN , ξsN )sN∈SN ) the Ramsey equilibrium for

an aggregated Ramsey model with truncation length N > 0, where the UI policy and

prices can in general depend on the truncation length. We assume that Assumption B

also holds here.

The following result characterizes the convergence of Ramsey allocations in the ag-

gregated model at the steady state, when the truncation length increases. Each Ramsey

allocation (for a given truncation length) can be thought of as being computed with Algo-

rithm 3. Indeed, assuming full convergence of this algorithm will imply that Assumptions
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1 to 3 of Proposition 3 hold (or are straightforward to check). The proof can be found in

Section B.4 of the online appendix.

Proposition 3 (Convergence of allocations) We consider a sequence of Ramsey equi-

libria (φN , τN , rN , wN , (asN , csN , lsN , νsN , ξsN )sN∈SN )N≥0, such that:

1. for all N , there exists an original Bewley allocation (as∞,N , cs∞,N , ls∞,N , νs∞,N )s∞∈S∞

such that the aggregation following equation (23) of (cs∞,N , ls∞,N , as∞,N , νs∞,N )s∞∈S∞

yields the aggregated allocation (asN , csN , lsN , νsN )sN∈SN ;

2. for all N , the first-order equations characterizing the aggregated Ramsey equilibrium,

(25)–(29) and (33)–(34), hold for (φN , τN , rN , wN , (asN , csN , lsN , νsN , ξsN )sN∈SN );

3. there exist
(
(1 + 1

ϕ) SeSu + 1
)−1

< τ < τ < 1, such that for all N : τ ≤ τN ≤ τ ;

4. there exists a unique solution denoted (φ∗, τ∗, r∗, w∗, (a∗s∞ , c∗s∞ , l∗s∞ , ν∗s∞)s∞∈S∞), solv-

ing the original Ramsey program of Section 3 (characterized by equations (6)–(14)

and (18)–(19)).

Then, we have the following convergence results:

1. the UI policy (φN , τN ) converges with N to (φ∗, τ∗);

2. prices (rN , wN ) converge with N to (r∗, w∗);

3. allocations (asN , csN , lsN , νsN )sN∈SN converge almost surely with N to the allocation

(a∗s∞ , c∗s∞ , l∗s∞ , ν∗s∞)s∞∈S∞;

4. (ξsN )sN∈SN −→N (1)s∞∈S∞, almost surely.

Proposition 3 states that this sequence of aggregated Ramsey allocations converges

toward the unique original Ramsey allocation (φ∗, τ∗, r∗, w∗, (a∗s∞ , c∗s∞ , l∗s∞ , ν∗s∞)s∞∈S∞).

The ξs are also shown to converge to 1. This convergence result completes the convergence

result for the original Bewley allocation of Proposition 2.

Two points are worth noting. First, Proposition 3 assumes that the UI tax lies in a

compact set. This avoids a situation where τN → 1 or τN →
(
(1 + 1

ϕ) SeSu + 1
)−1

, implying

that the income or the consumption of some agents could be null at the limit. In that
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case, Points 2 and 3 of Assumption B would not hold any more. Second, we require the

existence of a unique solution to the original Ramsey program of Section 3. In the absence

of such a condition, we can only obtain the convergence for a subsequence. This weaker

result, related to the possibility of multiple equilibria, is stated in Proposition 5 of Section

B.4 of the online appendix.

5 Dynamics of the optimal replacement rate

We now turn to the quantitative analysis. We provide the calibration in Section 5.1.

We then provide steady-state results in Section 5.2. The model dynamics with a fixed

replacement rate is presented in Section 5.3. The optimal policy at the steady state is

discussed in Section 5.4, and the optimal policy with aggregate shocks, which is the purpose

of the paper, is presented in Section 5.5. The comparison of the truncation method with

other methods, together with additional accuracy checks, are provided in Section 6.

5.1 The calibration

5.1.1 Preferences

The period is a quarter. The discount factor is β = 0.99. The period utility function is

log(c − χ−1 l1+1/ϕ

1+1/ϕ). The Frisch elasticity of labor supply is set to ϕ = 0.5, which is the

value recommended by Chetty et al. (2011) for the intensive margin in heterogeneous

agent models. The scaling parameter is set to χ = 0.04, which implies normalizing the

aggregate labor supply, defined in (11), to 1/3.

Unemployed workers cannot choose their labor supply. Their utility function is

log(c − χ−1 ζ
1+1/ϕ
y

1+1/ϕ ), also with χ = 0.04 and ϕ = 0.5. We recall that ζy is the exogenous

labor supply for home production for a worker with productivity y. For agents to be

worse-off when unemployed than employed, ζy is set to the steady-state labor supply of a

worker with productivity y.

5.1.2 Technology and TFP shock

The production function is Cobb-Douglas: Y = ZKαL1−α. The capital share is set to

α = 36% and the depreciation rate is δ = 2.5%, as in Krueger et al. (2018) among others.
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The TFP process is a standard process, with Zt = exp(zt) and zt = ρzzt−1 + εzt , where

εzt
iid∼ N (0, σ2

z). We use the standard values ρz = 0.95 and σz = 0.31% to obtain a deviation

of the TFP shock zt equal to 1% at the quarterly frequency (see e.g., Den Haan, 2010).

5.1.3 Idiosyncratic risk

Unemployment risk. For the unemployment risk, we follow Shimer (2003) and assume

that the job-separation rate is constant over the business cycle, while the job-finding rate is

time-varying and procyclical. We set ΠSS
eu = 4.87% for the average job-separation rate and

ΠSS
ue = 78.6% for the average job-finding rate. The standard deviation of the job-finding

rate is set to 6%, based on US estimates (see Abeille-Becker and Clerc, 2013, or Challe

and Ragot, 2016). As the standard deviation of zt is 1%, we assume that the job-finding

rate is defined as Πt,ue = ΠSS
ue + σuezt, with σue = 6.

Parameter Description Value

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025

ΠSS
ue Average job-finding rate 78.6%
ā Credit limit 0.0

ΠSS
eu Average job-separation rate 4.87%

SSSu Steady-state unemployment rate 5.83%
ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%
σue Cov. job find. rate with TFP 6.0
ρy Autocorrelation idio. income 0.992
σy Standard dev. idio. income 6.60%
χ Scaling param. labor supply 0.04
ϕ Frisch elasticity labor supply 0.5

Table 1: Parameter values in the baseline calibration. See text for descriptions and targets.

Idiosyncratic productivity risk. Idiosyncratic productivity risk is a key ingredient

for the model to generate a realistic earning and wealth distribution. We calibrate a

productivity process log yt = ρy log yt−1 + εyt , with ε
y
t
iid∼ N (0, σ2

y). As we are considering a

model with endogenous labor supply, there is a difference between the earning process

and the productivity process. With the GHH utility function, the labor supply is ly =
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(w (1− τ)χy)ϕ . The log of labor income yly is thus related to (1+ϕ) log y and accordingly

depends on the value chosen for the Frisch elasticity. We calibrate the process y such

that the persistence and variance of the labor income yly match the estimated values of

Krueger et al. (2018). They estimate a process with a persistent and transitory shock

on productivity. Following Boppart et al. (2018), we use persistent shocks and consider

transitory shocks as measurement errors. Using a Frisch elasticity of 0.5, we compute

a quarterly persistence of ρy = 0.9923 and a standard deviation of σy = 6.60%, which

generate, for the log of earnings, an annual persistence of 0.9695 and a variance of
3.84%

1−0.96952 .16 The Rouwenhorst (1995) procedure is used to discretize the productivity

process into 7 idiosyncratic states with a constant transition matrix. As agents can be

either employed or unemployed, each agent can be in one of the 14 = 7× 2 idiosyncratic

states. Table 1 provides a summary of the model parameters.

5.2 Fixed UI policy at the steady state

We simulate a Bewley model with a constant and exogenous replacement rate φ. The

computational details are provided in Section D.1 of the online appendix. In Table 2, we

report the wealth distribution generated by the model and compare it to the empirical

distribution. We compute a number of standard statistics – listed in the first column –

including the quartiles, the Gini coefficient, and the 90-95 and 95-100 intercentiles.

The empirical wealth distribution, reported in the second and third columns of Table

2, comes from two sources, the PSID for the year 2006 and the SCF for the year 2007.

The fourth and fifth columns report the wealth distribution generated by our model with

two different values for the exogenous replacement rate φ, set either to 50% (column 4) or

to 42% (column 5). The former value of φ = 50% corresponds to the standard value used

in the literature for the US, as in Krueger et al. (2018) among others. The latter value of

φ = 42% corresponds to the optimal steady-state replacement rate that we compute below

(see Section 5.4), and is here provided to observe the effect of a change in the replacement

rate on the steady-state wealth distribution.
16We follow the procedure of Footnote 19 in Krueger et al. (2018). The quarterly persistence ρy is

such that ρ4
y = 0.9695 equals the annual persistence. The variance of the log of labor income yly (at the

quarterly frequency) is the same as the variance at the annual frequency, so: (1 + ϕ) σ2
y

1−ρ2
y

= 0.0384
1−0.96952 .
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Overall, the distribution of wealth generated by the model is quite similar for the two

replacement rate values and is close to the data. In particular, the model does a good

job in matching the wealth distribution with a high Gini of 0.70. The concentration of

wealth at the top of the distribution is higher in the data than in the model. It is known

that additional model features must be introduced to match the high wealth inequality

in the US, such as heterogeneous discount rates, as in Krusell and Smith (1998), or

entrepreneurship, as in Quadrini (1999).

Data Models

Wealth statistics PSID, 06 SCF, 07 φ = 50% φ = 42%

Q1 (minimum) −0.9 −0.2 0.2 0.3
Q2 0.8 1.2 1.4 1.8

Q3 (median) 4.4 4.6 6.2 6.4
Q4 13.0 11.9 19.5 18.7

Q5 (maximum) 82.7 82.5 71.6 68.7
90-95 intercentile 13.7 11.1 16.9 16.9
95-100 intercentile 36.5 36.4 32.9 32.8

Gini 0.77 0.78 0.70 0.69

Table 2: Wealth distribution in the data and in the model.

Steady-state effect of a change in the replacement rate. To better understand

the effect of the replacement rate, Table 3 compares some steady-state statistics for two

economies, featuring the replacement rate of either 42% or 50%.

φ K C cu/ce

Economy (1) 42.0% 13.1428 0.8382 0.9823
Economy (2) 50.0% 13.1304 0.8380 0.9847

Variation (%) 8.0%† −0.1% −0.02% −0.24%

Note: See the text for definitions of the variables. † indicates an absolute variation, while the variation by
default is a relative variation.

Table 3: Implications of a variation in the steady-state replacement rate

The first two rows correspond to the two economies, while the third row corresponds

to the relative change for the variable of interest, reported in the columns. It can be

observed that an increase in the replacement rate of 8% decreases the capital stock, K,
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and aggregate consumption, C, by a small amount. Due to the higher replacement rate,

unemployed agents are better insured by the UI scheme and agents thus express a smaller

demand for self-insurance. They therefore save less, which diminishes total savings and

capital. This also decreases the consumption inequality cu/ce between unemployed and

employed workers. The higher replacement rate also means a higher labor tax that deters

labor supply and agents’ labor earnings, which has a negative impact on savings and

consumption.

5.3 Fixed UI policy with aggregate shocks

We now compute the dynamics of the model with a fixed replacement rate, set to φ = 42%,

and with aggregate shocks affecting both TFP and the job-finding rate. The dynamics of

the model is solved using the truncation procedure with a truncation length N = 2. We use

these steady-state allocations to compute the ξs, which ensure that the truncated model

has the same truncated wealth distribution as the steady-state Bewley model. Importantly,

this low value of N is enough to replicate the dynamics of the model, thanks to the ξs. The

model captures relevant heterogeneity in productivity levels and transitions, as discussed

in Section 4. We gather in Section 6 the discussion of the accuracy of the method. For

the sake of clarity, we summarize the equations of the model in Section C.1 of the online

appendix.

We compare the behaviors of the incomplete-market economy (IM) and the complete-

market one (CM) for a fixed replacement rate, set exogenously to 42%. The CM model

features a unique agent and one Euler equation. All parameters are otherwise the same.

Results correspond to Economies (1) and (2) of Table 4, respectively. Economies (3) and

(4) are discussed in Section 5.5 and are provided in the same table to ease the comparison.

Table 4 reports, for each economy, the mean and the normalized standard deviation (i.e.,

the standard deviation divided by the mean) of the main aggregate variables: output Y ,

aggregate consumption C, total labor L, and the replacement rate φ. The autocorrelations

and correlations for consumption and output are also given. Each economy is simulated

over 10,000 periods.

In the incomplete-market economy (Economy (1)), the capital stock is higher than

in the complete market one (Economy (2)) since the agents form some precautionary
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Replacement rate Exogenous rate Optimal rule

Methods IM CM IM CM

Economies (1) (2) (3) (4)

Y Mean 1.17 1.08 1.17 1.08
Std/mean (%) 2.18 2.10 2.64 2.81

C Mean 0.84 0.80 0.84 0.80
Std/mean (%) 1.76 1.73 2.26 2.35

L Mean 0.30 0.30 0.30 0.30
Std/mean (%) 1.03 0.70 1.67 1.47

K Mean 13.14 11.09 13.14 11.09
Std/mean (%) 2.09 2.18 2.29 2.93

φ Mean 42.0 42.0 42.0 42.0
Std/mean (%) 0.0 0.0 23.0 23.0

corr(C,C−1) (%) 99.23 99.66 98.74 99.67
corr(Y, Y−1) 97.64 98.19 97.41 98.23
corr(C, Y ) 95.87 94.59 97.19 95.26
corr(Y,Φ) 0.0 0.0 −97.18 −96.43

Table 4: Moments of the simulated models for different specifications and different
computational techniques.

savings against the idiosyncratic risk. The correlation between consumption and output

being higher in incomplete-market economies, the incomplete-market economy is also more

volatile that the complete-market one, which is a standard outcome of those models.

5.4 Optimal UI policy at the steady state

The optimal steady-state replacement rate is computed using the algorithm described in

Section 4.2.2. This algorithm yields an optimal steady-state replacement rate of φ = 42%,

which we used in the simulations of Section 5.3. This optimal replacement rate is obtained

for N = 2, which implies that we simulate 142 = 196 histories. We have checked that we

obtain the same optimal replacement rate, φ = 42%, for N = 3, with 2,744 histories. In

this last case, the computations are slower.

The trade-offs faced by the planner have already been presented in the discussion of

Table 3. An increase in the replacement rate reduces inequality and capital accumulation.

Increasing the replacement rate is a distorting tool to provide insurance against the

unemployment risk. It also disincentivizes savings, as it decreases labor supply and
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consumption.

These replacement rates have been computed using the algorithm described in Section

4.2.2. In particular, the calculations involved the ξs that are consistent with the original

Bewley allocation. In order to investigate the sensitivity of our algorithm to the consistency

constraint on the ξs, we have also computed the steady optimal replacement rate while

imposing ξs = 1. We find that the optimal replacement rate is then equal to 40%, instead

of 42% with the consistent ξs. The optimal policy is in our case quite robust to a variation

in the ξs. For the simulations below, we use the ξs that are consistent with the underlying

Bewley model, as the dynamics appears to be more sensitive than the steady state to the

choice of the ξs (see Section 6.1).

5.5 Optimal UI policy with aggregate shocks

We now compute the dynamics of the model using perturbation methods, about which

more details are provided in Section C of the online appendix. The dynamic properties of

the replacement rate, solved in the truncated economy, are reported in Economy (3) of

Table 4.17 The average replacement rate is 42% and its standard deviation is 23%. The

comparison between Economies (1) (with a fixed replacement rate of 42%) and (3) shows

the effect of a time-varying replacement rate. It can be seen that the replacement rate is

countercyclical, since corr(Y, φ) = −0.93 < 0. It increases in recessions and decreases in

booms. As the replacement rate is countercyclical, labor supply, aggregate consumption,

and output are more procyclical in Economy (3) than in Economy (1).18

We investigate the dynamics of the optimal replacement rate in the truncated economy

to plug it into the complete-market economy. We simulate the model for 10,000 periods

and regress the replacement rate φt on several moments of aggregate variables. We find

that the following (and rather complex) rule has a very high R2 = 0.99999:

(35) φt = (1−aφ1−a
φ
2 )φss+aφ1φt−1+aφ2φt−2+aε0εzt +aε1εzt−1+aε2εzt−2+aK(Kt−1−K̄)+εφt ,

17The simulation of the economy with the optimal replacement rate implies 7 variables, (c, a, ã, λ,λ̃, l, S),
for the 142 = 196 histories. As a consequence, there are roughly 1500 equations in our perturbation
procedure. Using Dynare, it takes around 2 minutes to simulate the model with a standard laptop.

18In the literature, results about the cyclicality of the replacement rate are mixed. Mitman and Rabinovich
(2015) find a procyclical replacement rate, whereas Landais et al. (2018a,b) find a countercyclical one.
These papers study economies without capital, but with a much more detailed model of the labor market.
We instead investigate the implication of an endogenous capital stock, but with a simpler labor market
structure.
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with (φss, aφ1 , a
φ
2 , a

ε
0, a

ε
1, a

ε
2, a

K) = (0.420,−23.907, 0.011, 0.602, 0.482, 0.371,−0.117).19 We

can now plug this estimated rule into the complete-market economy to simulate it. The

results correspond to Economy (4) in Table 4.

One can check that a countercyclical replacement rate increases the volatility in a

complete-market economy compared to the case where the replacement rate is constant

(Economies (2) vs. (4)). However, the incomplete-market economy is now less volatile

than the complete-market one (Economies (3) vs. (4)), as there is more insurance for the

unemployment risk in recessions, which reduces time-varying precautionary saving. The

planner indeed wants to avoid a sharp decrease in the consumption of agents with the

highest marginal utilities, which would strongly reduce aggregate welfare in recessions.

6 Method comparisons, accuracy of the truncation method,

and additional tests

6.1 Method comparison

We here assess the accuracy of the truncation method used in the previous section. We

compare the truncated method with two other methods. The first is the method developed

by Rios-Rull (1999), Reiter (2009), and Young (2010) among others, which we call the

Reiter method for brevity. This method uses a histogram representation and perturbation

methods to solve for the model.20 The method is known to provide accurate results, when

compared to the global method of Krusell and Smith (1998), as shown in Boppart et al.

(2018) or in Auclert et al. (2019). We also compare the results of the truncation approach

to the recent method of Boppart et al. (2018) – hereafter BKM – for TFP shocks.

Second-order moments. We simulate the same economy as in Section 5.3, with the

same parameters. To follow the comparison method of Boppart et al. (2018), we focus on

TFP shocks only (σue = 0). The results are reported in Table 5 (Economies (1) to (6)).
19We also estimated a simpler rule. We regress the replacement rate φt on the technology shock z and

on the first, second, and third-order moments of the wealth distribution, to see whether moments of the
wealth distribution can be sufficient statistics. We find a lower R2 of 0.73. It appears that a rich time
structure is necessary to reproduce the dynamics of the optimal replacement rate.

20The Reiter method can be used with bases other than histograms, such as in Winberry (2018) or Bayer
et al. (2019).
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Methods RA BKM Reiter Trunc.
(N = 2)

Trunc.
(N = 3)

Trunc.
(ξ = 1)

Economies (1) (2) (3) (4) (5) (6)

Y Mean 1.08 1.17 1.17 1.17 1.17 1.17
Std/mean (%) 2.10 1.75 1.77 1.78 1.78 1.74

C Mean 0.80 0.84 0.84 0.84 0.84 0.84
Std/mean (%) 1.73 1.45 1.45 1.45 1.45 1.46

L Mean 0.30 0.30 0.30 0.30 0.30 0.30
Std/mean (%) 0.70 0.58 0.59 0.59 0.59 0.58

K Mean 11.09 13.14 13.14 13.14 13.14 13.14
Std/mean (%) 2.18 1.61 1.62 1.68 1.68 1.54

corr(C,C−1) (%) 99.66 99.13 99.13 99.14 99.14 99.07
corr(Y, Y−1) 98.19 97.48 97.49 97.54 97.54 97.43
corr(C, Y ) 94.59 96.17 96.21 96.29 96.23 96.24

Table 5: Moments of the simulated model for different computational techniques

The first column describes the computed statistics (using simulations with 10,000 periods).

Subsequent columns correspond to the representative-agent (RA) economy (Economy (1)),

the Boppart et al. (2018) methodology (Economy (2)), the Reiter method (Economy (3)),

the truncation method with the baseline methodology with N = 2 (Economy (4)), the

truncation method with N = 3 (Economy (5)), and the truncation method with N = 2

where we impose ξs = 1 (Economy (6)). In this last experiment, the Euler equations do

not hold with equality and feature residuals, which are history-specific. This experiment

allows us to quantify the role of the ξs in reproducing the dynamics.

First, the three methods (Reiter, BKM, truncation in Economies (2)–(4)) yield very

similar results – and are very different from the RA economy (Economy (1)). For instance,

the normalized standard deviation of GDP is between 1.75% and 1.78% for the three

methods, whereas it is 2.10% in the RA case. The three methods indeed rely on a first-order

approximation of the dynamics after aggregates shocks. This shows that the ξs efficiently

capture the within-history heterogeneity and that a time-varying between-history is enough

to reproduce well the dynamics. Second, solving the model with N = 2 or N = 3 does

not significantly change the results (the changes are smaller than the precision criterion

we use), as the ξs are computed in each case to match the wealth distribution. Third,

imposing ξ = 1 reduces the accuracy of the truncation method, but the impact is modest,

which is reassuring regarding the robustness of the truncation method.

39



Comparisons of IRFs. Figure 1 plots the IRFs for the main variables of interest after

a TFP shock of 1%. These IRFs are the ones generated by the Reiter (Economy (3)) and

the baseline truncated economy with N = 2 (Economy (4)) in Table 5.

Figure 1: Comparisons of IRFs for the main variables after a technology shock of 1%. The
black line is the Reiter method. The blue dashed line is the truncation method.

The two sets of IRFs are extremely similar, confirming the results of Table 5, stating

that the Reiter and truncation methods yield very close quantitative outcomes. We also

provide additional statistics, such as correlations, in Section D.2 of the online appendix.

6.2 Alternative rules

To check for the optimality of the time-varying rule of equation (35), we also simulate the

model using the Reiter method and implement two variations of the rule and quantify their

impact on aggregate welfare. The aggregate welfare is computed using an intertemporal

utilitarian welfare criterion. We report the increase in consumption ∆c for all agents in all

periods (agents have thus a period utility u((1 + ∆c)cit − χ−1 (lit)1+1/ϕ

1+1/ϕ )) for the aggregate

welfare to be identical in economies with modified rules and in the benchmark economy

(with the rule (35)). The results are collected in Table 6. Economy (1) corresponds to the

benchmark economy, while Economies (2) and (3) correspond to rule variations.

The first variation is a procyclical replacement rate, where we change the signs of aε0,

aε1, aε2, and aK . This is Economy (2) in Table 6. We find that aggregate welfare decreases
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Economies (1) (2) (3)

Benchmark Procyclical High variance

Y Mean 1.17 1.17 1.17 1.17
Std/mean (%) 2.64 2.71 2.13 2.98

C Mean 0.84 0.84 0.84 0.84
Std/mean (%) 2.26 2.27 1.24 2.51

L Mean 0.30 0.30 0.30 0.30
Std/mean (%) 1.67 1.70 0.32 2.02

K Mean 13.14 13.14 13.14 13.14
Std/mean (%) 2.29 2.45 1.52 2.66

φ Mean 42.0 42.0 42.0 42.0
Std/mean (%) 23.0 23.0 26.0 34.0

corr(C,C−1) (%) 98.74 99.18 98.72 99.19
corr(Y, Y−1) 97.41 97.52 97.66 97.50
corr(C, Y ) 97.19 95.30 97.29 94.84
corr(Y,Φ) −97.18 −96.65 92.05 −96.30
Equiv. cons.
increase ∆c

− 1.72 1.75

Table 6: Impact of different rules for the replacement rate.

with this modified rule: a number of agents now have a lower consumption level and a

higher marginal utility in recessions. The second variation is a rule featuring the same

cyclicality as the original rule, but a higher variance – such that the standard deviation of

φt becomes 34% instead of 23%. This variation corresponds to Economy (3) in Table 6.

Welfare is again decreasing because the replacement rate falls considerably in good times.

This indeed leads to a decrease in the consumption of unemployed agents.

Both rules imply a decrease in welfare compared to the benchmark economy, around

1.7% of consumption equivalent. We can thus be confident in the rule’s optimality – and

thereby in the outcomes of the Ramsey program solved with the truncation method. These

modified rules also allow to better understand the role of the optimal rule in the business

cycle, which attempts to stabilize the consumption of low-utility agents.

6.3 Convergence properties of the ξs

For a given N , we compute (ξsN )sN∈SN as explained in Section 4 and then deduce the

normalized standard deviation std(ξ) across histories. The values std(ξ) = 0.27 for N = 2

and it diminishes to std(ξ) = 0.22 for N = 3. The normalized standard deviation std(ξ)
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decreases with N , but at a slow rate.21 As the number of idiosyncratic states is high,

equal to 14, the number of histories grows rapidly with N , which computationally limits

the maximal truncation length. As explained above, our choice of N is not based on the

minimization of the normalized standard deviations of ξ.

6.4 Accuracy tests

Finally, we perform two other standard accuracy tests. We start with Euler Equation error

tests (see Den Haan and Marcet, 1994, Aruoba et al. 2006, and Den Haan, 2010) on both

the steady-state model and the model with aggregate shocks. They consist in computing

the absolute errors (on a base-10 log scale) implied by the exact Euler equations using the

simulated allocations. The results (including mean, standard deviation, and distribution

of errors) are reported in Table 7. A value of −3 for this error, which is approximately

the value found in the three cases, means a $1 mistake for $1,000 of consumption. This is

generally considered as being an acceptable error, as discussed in Faraglia et al. (2019) for

instance.

Static Dynamic
Bewley Exo. φ Endo. φ

Average −3.91 −4.08 −3.95
Std. dev. 0.63 0.57 0.70

[−2,∞) 0.00 0.00 0.00
[−3,−2) 1.47 3.01 5.11
[−4,−3) 96.57 32.14 53.93
[−5,−4) 1.78 59.72 33.73
[−6,−5) 0.06 4.59 5.94

(−∞,−6) 0.10 0.53 1.29

Table 7: Euler equation errors

For the steady-state model with φ = 42%, the results can be found in the second column

of Table 7, labeled “Bewley”. The average error amounts to −3.91, which lies within the

admissible range. The results for the model with aggregate shocks are reported in the

third and fourth columns of Table 7. The third column, labelled “Exo. φ”, corresponds to
21More generally, simulating different economies, we find that these normalized standard deviations

decrease faster when the persistence of the idiosyncratic shocks is low, not necessarily when the number of
idiosyncratic states is small.
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an exogenous replacement rate φ, set to 42%. The mean absolute log error is −4.08, which

is also completely acceptable. The fourth column, labelled “Exo. φ”, reports the result

for an endogenously optimal replacement rate φ. The average error is equal to −3.95,

which is slightly higher than for the exogenous φ but completely remains in the acceptable

range. This accuracy test shows that the perturbation approach we use, which ignores

some potential non-linearities, has a limited quantitative impact.

Our second set of tests concerns the assumption that credit-constrained histories remain

constant in the dynamics (second point of Assumption A). The test is run as follows. We

simulate the model – with both exogenous and endogenous replacement rates – over 10, 000

periods. We then check that the saving decision of each unconstrained history remains

above the credit limit in the simulations. Conversely, we also check that credit-constrained

histories remain constrained in the dynamics by checking the sign of the Euler inequality.

We find that savings remain positive for all unconstrained histories and that all Euler

inequalities have the correct sign for constrained histories. Finally, as noted by Den Haan

(2010), these accuracy tests are not sufficient to characterize the overall goodness-of-fit

of a simulation method. We consider the results of Table 4 as the main evidence of the

truncation method’s relevance.

7 Conclusion

This paper presents a truncation representation of incomplete insurance market models

with aggregate shocks. We construct a finite-dimensional state-space representation, which

can be simulated with aggregate shocks, and for which optimal Ramsey policies can be

derived. We apply the theory to characterize optimal time-varying unemployment benefits

when the economy is hit by aggregate shocks. The model simulation uses perturbation

methods, which considerably eases implementation. Such methods, however, rely on small

aggregate shocks around a well-defined steady state. They are less relevant for models

with large macroeconomic shocks, for which additional developments are needed, using

penalty functions or global methods for instance.

The theory could obviously be used for a number of other applications. The underlying

model could be generalized to examine relevant frictions on the goods, labor, or financial
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markets, such as limited participation on financial markets or nominal frictions. In

addition, the planner could use other tools to reduce distortions, such as a whole set of

fiscal or monetary policy instruments. We are currently working on the design of optimal

fiscal-monetary policies in these environments (see LeGrand et al., 2021). The simplicity

of the implementation could contribute to a more systematic integration of redistributive

effects in the design of economic policies.
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Appendix

This Appendix is split into five parts. Section A presents a micro-foundation theory of the

truncation method. Section B contains the proofs of the paper. Section C presents the

details of the truncation method. Section D contains a number of robustness checks and

additional results about the implementation of our numerical implementation. Finally,

Section E presents supplemental theoretical results.

A Decentralizing the truncation method

In this section, we explain how the truncation method of Section 4 can be seen as the

outcome of a decentralized mechanism. We show that the truncated allocation is the

market outcome of an island economy (Section A.1) – see Lucas, 1975, 1990, or Heathcote

et al., 2017 for a more recent reference. We also prove that the island economy can be

decentralized by a well-chosen fiscal system of lump-sum transfers (A.2). We denote the

truncation length by N ≥ 0.

A.1 The island metaphor

Island description. There are SN different islands, where S is the cardinal of S. Agents

with the same idiosyncratic history for the last N periods are located on the same island.

Any island is represented by a vector sN = (sN−N+1, . . . , s
N
0 ) ∈ SN summarizing the last

N -period idiosyncratic history of all island inhabitants. At the beginning of each period,

agents face a new idiosyncratic shock. Agents with history ŝN in the previous period

are endowed with the new history sN in the current period, and have to move to the

corresponding island. The history sN will be said to be a continuation of ŝN , and will be

denoted by sN � ŝN . The probability of transitioning from island ŝN at t− 1 to island

sN at date t is denoted by Πt,ŝN ,sN , defined in (21). The island sizes (St,sN )sN∈SN can be

deduced from these probabilities and are defined in recursion (22).

The specification N = 0 (one island) corresponds to the standard representative-agent

model. Symmetrically, the case N = ∞ corresponds to a standard incomplete-market

economy with aggregate shocks, as in Krusell and Smith (1998).
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The quasi-planner. The quasi-planner maximizes the welfare of agents, attributing an

identical weight to all agents and behaving as a price-taker.22 The quasi-planner can freely

transfer resources among agents on the same island, but cannot do so across islands. All

agents belonging to the same island are treated identically and therefore receive the same

allocation, as is consistent with welfare maximization. For island sN , the quasi-planner

will choose the per capita consumption level ct,sN , the labor supply lt,sN , and the savings

at,sN .

Wealth pooling and heterogeneity reduction. At the beginning of each period t,

agents learn about their current idiosyncratic shock and move from island ŝN to island sN .

Agents take their wealth – equal to at−1,ŝN – with them when they move. On island sN ,

the wealth of all agents coming from island ŝN (equal to St−1,ŝNΠt,ŝN ,sNat−1,ŝN ) – and

for all islands ŝN– is pooled together and then equally divided among the St,sN agents of

island sN . Therefore, at the beginning of period t, each agent of sN holds wealth ãt,sN ,

defined in equation (24). We denote by (a−1,sN )sN∈SN the initial wealth endowment.

Agents face island-specific preference shifters, denoted by ξsN , which multiply their

utility function. The quasi-planner’s program can be expressed as:

max
(c
t,sN

,l
t,sN

,a
t,sN

,ã
t,sN

)
t≥0,sN∈SN

E0

∞∑
t=0

βt
∑

sN∈SN
St,sN ξsNU(ct,sN , l̂t,sN ),(36)

at,sN + ct,sN = ((1− τt)lt,sN 1eN0 =e + φtlt,sN ,e1eN0 =u)yN0 wt + (1 + rt)ãt,sN (sN ∈ SN ),(37)

ct,sN , lt,sN ≥ 0, at,sN ≥ −ā (sN ∈ SN ),(38)

and subject to the law of motion for (St,sN )sN∈SNt≥0 , and to the definition of (ãt,sN )sN∈SNt≥0 .

Note that initial island sizes (S−1,sN )sN∈SN and initial wealth (a−1,sN )sN∈SN are given.23

As the objective function is increasing and concave, constraints are linear (i.e., the

admissible set is convex), and the existence of the equilibrium can be proved using standard

techniques (see Stokey et al., 1989, Chap. 15 and 16). We therefore omit this proof in the

interest of conciseness.
22As the quasi-planner does not internalize the effect of its choices on prices, the allocation is not

constrained-efficient, and the distortions identified by Dávila et al. (2012) are present in the equilibrium
allocation.

23In equation (37), lt,sN ,e is the labor supply of an employed agent with productivity yN0 , which determines
the UI benefits of unemployed agents of history sN . Furthermore, as in (10), l̂t,sN = lt,sN 1eN

0 =e+ζyN
0

1eN
0 =u.
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The first-order conditions of the quasi-planner’s program are the same as those derived

in the main text for the truncated economy (same notation):

ξsNUc(ct,sN , l̂t,sN ) = βEt
[ ∑
s̃N�sN

Πt+1,sN ,s̃N ξs̃NUc(ct+1,s̃N , l̂t+1,s̃N )(1 + rt+1)
]

+ νt,sN ,(39)

l
1/ϕ
t,sN

= χ(1− τt)wtyN0 1eN0 =e,(40)

νt,sN (at,sN + ā) = 0 and νt,sN ≥ 0.(41)

Market clearing and equilibrium. The clearing for labor and capital markets implies

equations (29). We can now state our sequential equilibrium definition, which is similar to

the definition of the truncated equilibrium in the main text (Definition 2).

Definition 3 (Sequential equilibrium) A sequential truncated competitive equilibrium

is a collection of individual allocations (ct,sN , lt,sN , at,sN , ãt,sN )sN∈SNt≥0 , of island population

sizes (St,sN )sN∈SNt≥0 , of aggregate quantities (Lt,Kt, Yt)t≥0, of price processes (wt, rt)t≥0,

and of UI policy (τt, φt)t≥0, such that, for an initial distribution of island population and

wealth (S−1,sN , a−1,sN )sN∈SN , and for initial values of capital stock K−1 and of the initial

aggregate shock z−1, we have:

1. given prices, individual strategies (ct,sN , lt,sN , at,sN , ãt,sN )sN∈SNt≥0 solve the agents’

optimization program in equations (36)–(38);

2. island sizes and beginning-of-period individual wealth (St,sN , ãt,sN )sN∈SNt≥0 are consis-

tent with the laws of motion (22) and (24);

3. capital and labor markets clear at all dates: for any t ≥ 0, equations (29) hold;

4. the UI budget is balanced at all dates: equation (14) holds for all t ≥ 0;

5. factor prices (wt, rt)t≥0 are consistent with the firm’s program (3).

The sequential equilibrium has a simple structure defined at each date by 5SN + 5

variables and 5SN + 5 equations for a given UI policy (τt, φt)t≥0. The equilibrium features

a finite number of different allocations, characterized by the N -period history of agents.

A.2 A decentralization mechanism

We now prove that the finite-state equilibrium of Definition 3 can be decentralized through

fiscal transfers, which are shown to measure the degree of idiosyncratic risk sharing achieved
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by asset pooling in the island economy. The economy is now similar to that in Section 2 –

in particular, agents are expected-utility maximizers – except for two differences. First,

agents are endowed with so-called preference shifters. Second, at each date, each agent

receives a lump-sum transfer ΓN+1, which is contingent on her individual history sN+1

over the previous N + 1 periods. This fiscal system will be key in mimicking the pooling

operation of Section A.1. Using standard recursive notation, the agents’ program can be

written as:24

V (a, sN+1, X) = max
a′,c,l

ξsNU(c, l̂) + βE
[ ∑

(sN+1)′
Π′sN+1,(sN+1)′V (a′, (sN+1)′, X ′)

]
,(42)

a′ + c− (1 + r(X))a = ((1− τ)l1eN0 =e + φly,e1eN0 =u)w(X) + ΓN+1(sN+1, X),(43)

l̂ = l1eN0 =e + ζyN0
1eN0 =u,(44)

c, l ≥ 0, a′ ≥ −ā,(45)

where ly,e denotes the labor supply of an employed agent with productivity y, and where the

state vector X encompasses all variables necessary to forecast prices, including aggregate

shocks. Compared to the economies studied by Huggett (1993) and Aiyagari (1994), the

individual history sN+1 is a state variable, as it determines the transfer ΓN+1(sN+1, X).

We now state our result, which explains that we can find a particular set of transfers –

denoted by (Γ∗N+1(sN+1, X))sN+1∈SN+1 – such that the decentralized economy allocations

match those of the island economy.

Proposition 4 (Finite state space) A set of balanced transfers exists, that are denoted

by (Γ∗N+1(sN+1, X))sN+1∈SN+1, such that any optimal allocation of the island program

(36)–(38) is also a solution to the decentralized program (42)–(45).

Proposition 4, proved below, states that the island program presented in Section A.1 can be

decentralized by the balanced lump-sum transfers (Γ∗N+1(sN+1, X))sN+1∈SN+1 (shortened

to Γ∗N+1 henceforth). This transfer is formally provided in equation (47).

The transfers Γ∗N+1 mimic the wealth pooling of the island economy (equation (24)),

when agents transfer from one island to another. It consists of two steps: (i) putting

together the beginning-of-period wealth of all agents with the same idiosyncratic history
24As standard, we denote the current savings choice by a′; a is thus the beginning-of-period wealth.
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for the last N periods, independently of their idiosyncratic status N + 1 periods ago, and

(ii) redistributing consistently the same amount to agents with the same idiosyncratic

history for N periods, such that there are only SN possible wealth levels. The transfers

(Γ∗N+1) operate a strict redistribution among agents and thus sum up to zero.

Proof of Proposition 4

We use a guess-and-verify strategy. The transfer is constructed such that all agents with

the same N -period history have the same after-transfer wealth. The measure of agents

with history sN follows the same law of motion as (22) in the main text and is equal to

SsN . If agents with the same history (ŝN , s), s ∈ S have the same beginning-of-period

wealth aŝN , the after-transfer wealth, denoted by âsN , of agents with history sN � ŝN is:

(46) â′sN =
∑

s̃N∈SN

Ss̃N

SsN
Πs̃N ,sNa

′
s̃N ,

such that agents with the same history hold the same wealth. By construction, âsN follows

dynamics similar to the “after-pooling” wealth ãt,sN in the island economy of equation

(24). The transfer scheme denoted by (Γ∗N+1(sN+1, X))sN+1∈SN+1 that enables all agents

with the same history to have the same wealth is:

(47) Γ∗N+1(sN+1, X) = (1 + r) (âsN − aŝN ) ,

where we use sN+1 = (ŝN , s) = (sN , sN ) (in the former notation, sN+1 is seen as the

history ŝN ∈ SN with the successor state s ∈ S, while in the latter notation, sN+1 is seen

as the state sN ∈ S followed by history sN ∈ SN ). The transfer Γ∗N+1 defined in (47)

replaces the beginning-of-period wealth (1 + r)aŝN with the average wealth (1 + r)âsN ,

which only depends on the last N -period history. Since there is a continuum with mass

Ss̃N of agents with history s̃N , in which each agent is atomistic, all agents take the transfer

Γ∗N+1 as given.

Finally, it is easy to check that the transfer scheme is balanced in each period. Using

the definition (46) of âsN , we obtain for sN = (sNN−1, . . . , s
N
1 , s

N
0 ) ∈ SN , SsN âsN =∑

ŝN∈SN SŝNΠŝN ,sNaŝN =
∑
ŝ∈S S(ŝ,sNN−1,...,s

N
1 )M sN1 ,s

N
0
a(ŝ,sNN−1,...,s

N
1 ). Therefore, we deduce

that:
∑
s̃∈S S(s̃,sN )Γ∗N+1(s̃, sN ) = (1 + r)

[∑
s̃∈S S(s̃,sN )

(
âsN − a(s̃,sNN−1,...,s

N
1 )

)]
= 0, where

53



the last equality comes from the definition of âsN in equation (46).

B Proofs

B.1 The original Ramsey program

FOC with respect to saving choices ait. Using equations (11), we can show for

aggregate quantities that ∂Kt−1
∂ait

= ∂Lt
∂ait

= 0, and:

∂Kt

∂ait
= 1, ∂Lt+1

∂ait
=

ϕLt+1
FKL,t+1
FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

,
∂wt+1
∂ait

= FKL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

.

After some manipulations, and using F (K,L) = KαL1−α − δK, we obtain for cit and lit:

∂lit

∂ajt
= 0,

∂lit+1

∂ajt
= ϕ

αK−1
t

1 + αϕ
lit+11eit=e,

∂cit

∂ajt
= −1j=i,

∂cit+1

∂ajt
= (1 + rt+1)1i=j + FKK,t+1

1 + αϕ
ait−1

+
(

(1− τt+1)1eit+1=e + St+1,e
St+1,u

τt+11eit+1=u

)
lit+1,ey

i
t+1 (1 + ϕ) αwtK

−1
t

1 + αϕ
.

The derivative of the Lagrangian with respect to ajt implies, using (17):

ψjt = βEt

[ˆ
i
ψit+1

(
∂cit+1
∂ait

− χ−1l
i, 1
ϕ

t+1
∂lit+1
∂ait

)
`(di)

]
(48)

+βEt

ˆ
i

FKK,t+1 + FKL,t+1
ϕLt+1

FKL,t+1
FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

λitU ic,t+1`(di)

 .
With F 2

KL−FKKFLL
FL

= 0 and the expression of ∂c
i
t+1
∂ait
− χ−1l

i, 1
ϕ

t+1
∂lit+1
∂ait

, we obtain FOC (18).

FOC with respect to replacement rate φt. Rather than computing the derivative

with respect to φt, we do so with respect to τt. For aggregate quantities, we obtain

quite directly: ∂Lt
∂τt

= − ϕ
1+αϕ

Lt
1−τt ,

∂Kt−1
∂τt

= 0. The computation for individual choices is

lengthier, and yields:

∂lit
∂τt

= −
ϕ

1−τt l
i
t

1 + αϕ
1eit=e,

∂cit
∂τt

= −
αϕ wt

1−τt
Lt
Kt−1

1 + αϕ
ait−1 + St,e

St,u

lit
1− τt

yitwt1eit=u
(

1− τt
1 + ϕ

1 + αϕ

)
− 1eit=el

i
ty
i
twt

1 + ϕ

1 + αϕ
.
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Using the Lagrangian expression, we obtain after substituting for ψit and partial derivatives:

0 =
ˆ
i
ψit

(
St,e
St,u

lit
1− τt

yitwt
1− τt − ϕ(1− α)

1 + αϕ
1eit=u − 1eit=el

i
ty
i
twt

1
1 + αϕ

)
`(di)

− αϕ

1 + αϕ

wt
1− τt

Lt
Kt−1

ˆ
i
(λit−1U

i
c,t + ψita

i
t−1)`(di),

which yields equation (19) after some rearrangements.

B.2 The Ramsey program in the truncated economy

The computations are similar to those in the original Ramsey program (Section B.1).

B.2.1 Rewriting the Ramsey program

In the remainder, we use the notation Uc,t,sN = u′(ct,sN − χ−1 l̂
1+1/ϕ
t,sN

1+1/ϕ), and similarly for

Ucc,t,sN , Ucl,t,sN , and Ull,t,sN . The planner’s program can be written as:

max(
(a
t,sN

,c
t,sN

,l
t,sN

)
sN
,φt,τt,rt,wt

)
t≥0

E0

 ∞∑
t=0

βt
∑

sN∈SN
St,sN ξt,sNU(ct,sN , l̂t,sN )

 ,(49)

ξt,sNUc,t,sN − νt,sN = βEt
[
(1 + rt+1)

∑
s̃N∈SN

Πt+1,sN s̃N ξt+1,s̃NUc,t+1,sN

]
,(50)

and subject to (25), (29), (14), and (3). Let βtSt,sNλt,sN be the Lagrange multiplier on

the Euler equation. With νt,sNλt,sN = 0, the planner’s objective, denoted by J , becomes:

J = E0
∑
t,sN

βt
(
St,sN ξt,sNU(ct,sN , l̂t,sN )− (λt,sN − (1 + rt)λ̃t,sN )ξt,sNUc(ct,sN , l̂t,sN )

)
.(51)

The Ramsey program consists in maximizing J in (51) over ((at,sN , ct,sN , lt,sN )sN , φt, τt)t≥0

subject to the relevant constraints. As in the original case, the Lagrangian can be seen as

depending only on saving choices (at,sN ) and the replacement rate φt.

FOC with respect to saving choices at,sN Using equations (29), we can show for

aggregate quantities that:

∂Kt

∂at,sN
= St,sN ,

∂Kt−1
∂at,sN

= 0, ∂Lt+1
∂at,sN

=
ϕLt+1

FKL,t+1
FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN ,
∂Lt
∂at,sN

= 0.
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After some manipulations, we obtain for individual choices (labor and consumption):

∂lt,s̃N

∂at,sN
= 0,

∂lt+1,s̃N

∂at,sN
= ϕ

FKL,t+1
FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN ls̃N ,e,t+11e
s̃N

=e,
∂ct,s̃N

∂at,sN
= −1sN=s̃N ,

∂ct+1,s̃N

∂at,sN
= (1 + FK,t+1)Πt+1,sN s̃N +

FKK,t+1 + ϕLt+1
F 2
KL,t+1−FKK,t+1FLL,t+1

FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN ãt,sN

+
(

(1− τt+1)1e
s̃N

=e + St+1,e
St+1,u

τt+11e
s̃N

=u

)
ls̃N ,e,t+1ỹ (1 + ϕ) FKL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN .

We deduce for
∂C

t+1,s̃N
∂a
t,sN

=
∂c
t+1,s̃N
∂a
t,sN

− χ−1l
1
ϕ

t+1,s̃N
∂l
t+1,s̃N
∂a
t,sN

:

∂Ct+1,s̃N

∂at,sN
= (1+rt+1)Πt+1,sN s̃N +

FKK,t+1+ϕLt+1
F 2
KL,t+1−FKK,t+1FLL,t+1

FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN ãt,sN(52)

+
(

(1−τt+1)1e
s̃N

=e + St+1,e
St+1,u

τt+11e
s̃N

=u

)
ls̃N ,e,t+1ỹ (1 + ϕ) FKL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN

−(1−τt+1)ys̃Nϕ
FKL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

St,sN ls̃N ,e,t+1

Note that using F (K,L) = KαL1−α − δK, we have: F 2
KL−FKKFLL

FL
= 0; LFLLFL =

−α; FKL = FL
α
Kt

and FKK = −αFL L
K2 . Simplifying the partial derivatives of F and

using (52), the derivative of the Lagrangian with respect to at,sN implies equation (33).

FOC with respect to φt Rather than computing the derivative with respect to φt, we do

so with respect to τt. For aggregate quantities, we obtain quite directly: ∂Lt
∂τt

= −
ϕ

Lt
1−τt

1−ϕLt
FLL,t
FL,t

,

∂Kt−1
∂τt

= 0. The computation for individual choices is lengthier, and yields:

∂lt,s̃N

∂τt
= −

ϕ
1−τt lt,s̃N

1− ϕLt FLL,tFL,t

1e
s̃N

=e,

∂ct,s̃N

∂τt
= −

ϕ Lt
1−τt

1− ϕLt FLL,tFL,t

FKL,tãt,s̃N + (1− τt)ϕ−1 St,e
St,u

χϕỹϕ+1F 1+ϕ
L,t 1e

s̃N
=u

−
(

(1− τt)1e
s̃N

=e + St,e
St,u

τt1e
s̃N

=u

)
χϕỹϕ+1(1 + ϕ)

(1− τt)ϕ−1F 1+ϕ
L,t

1− ϕLt FLL,tFL,t

.

Using the partial derivatives of F and previous computations, we obtain equation (34).
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B.3 Proof of Proposition 2

Although the proof is technical, the idea can be summarized quite simply. The sequence

of aggregated allocations (23) as a function of truncation length can be seen as a sequence

of conditional expectations with a well-chosen filtration. The martingale convergence

theorem then enables us to conclude.

B.3.1 Proof of the first part of Proposition 2

We consider a truncation length N > 0, and a steady-state allocation, denoted by

(as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞ , of an original Bewley model given a UI policy (φ, τ). We con-

struct the aggregated allocation (csN , lsN , asN , νsN )sN∈SN using equation (23) at the steady

state and we aim to show that when N → ∞, we have (csN , lsN , asN , νsN )sN∈SN −→N

(as∞ , cs∞ , ls∞ , νs∞)s∞∈S∞ , almost surely. The proof is split in several steps: (i) we in-

troduce some formal notation and construct the probability space related to the set of

infinite histories S∞; (ii) using this formalization, we write the aggregated allocation as

conditional expectation realizations; (iii) we apply the Levy’s upward theorem to prove

convergence. For the sake of clarity, the proof is organized in lemmas.

Formal notation and construction of the probability space. In each period, the

outcomes of the idiosyncratic state lie in the finite set S. We denote by (Πss′) the

transition matrix for idiosyncratic histories (that be deduced from the transition matrix

for productivity and for unemployment). The transition matrix being irreducible and

finite as a consequence of Assumption B, it admits a unique stationary distribution (πs).

A steady-state infinite history can be seen as a one-sided infinite sequence of elements

of S. The space of idiosyncratic histories is thus S∞ and a typical steady-state history

will be denoted:

s∞ = (. . . , s−N+1(s∞), s−N+2(s∞), . . . , s−1(s∞), s0(s∞)),

where s−k(s∞) ∈ S for all s∞ ∈ S∞ and k ≥ 0. Each s−k : S∞ → S is a coordinate

function indicating the idiosyncratic state k periods ago.

We focus on the so-called cylinder sets. A cylinder set CN (A) is defined as, for N ≥ 1
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and A ⊂ SN :

(53) CN (A) ≡ {s∞ ∈ S∞ : (s−N+1(s∞), . . . , s−1(s∞), s0(s∞)) ∈ A}.

In words, CN (A) is the subset of histories whose truncation of length N belongs to A.

We denote by C0 the set of all cylinder sets. We have our first lemma.

Lemma 1 The set C0 of all cylinder sets is an algebra.

Proof. ∅ = C1(∅) ∈ C0; S∞ = CN (SN ) ∈ C0; closed for complements since S∞ \CN (A) =

CN (SN \A); closed for finite unions. The last point is worth showing more carefully. Let

N ≤M , A ⊂ SN and B ⊂ SN . Note that:

CN (A) = {s∞ ∈ S∞ : (s−N+1(s∞), . . . , s0(s∞)) ∈ A},

= {s∞ ∈ S∞ : (s−M+1(s∞), . . . , s−N+1(s∞), . . . , s0(s∞)) ∈ SM−N ×A},

= CM (SM−N ×A),(54)

where the first equality is the definition of CN (A), the second is an equivalent rewriting

of the set definition (some coordinates prior to N belong to S), the third equality is the

definition of CM (SM−N × A). Using (54), we deduce CN (A) ∪ CM (B) = CM (SM−N ×

A) ∪ CM (B) and finally:

CN (A) ∪ CM (B) = CM ((SM−N ×A) ∪B),(55)

which belongs to C0 and shows that C0 is closed for finite unions.

We now define the set function µ∞ : C0 → R from the matrix (Πss′) and the vector

(πs):

µ∞(CN (A)) =
∑

(s−N+1,...,s0)∈A
πs−N+1Πs−N+1s−N+2 . . .Πs−1s0 .

Note that when N = 1, we have µ∞(C1(A1)) =
∑
s0∈A1 πs0 , where A1 ⊂ S.

Lemma 2 The set function µ∞ is a pre-measure on C0.

Proof. We need to verify three properties for µ∞ to be a pre-measure on C0: (i) well-

defined, (ii) (countably) additive, (iii) µ∞(S∞) = 1. Point (i) is related to the fact that

cylinders may have non-unique representations, in particular CN (A) = CN (SM−N × A)
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for M ≥ N . We need to check that µ∞(CN (A)) = µ∞(CN (SM−N × A)) for all M ≥ N .

For M = N + 1, we have:

µ∞(CM (S ×A)) =
∑

s−N∈S,(s−N+1,...,s0)∈A
πs−NΠs−Ns−N+1Πs−N+1s−N+2 . . .Πs−1s0 ,

=
∑

(s−N+1,...,s0)∈A

 ∑
s−N∈S

πs−NΠs−Ns−N+1

Πs−N+1s−N+2 . . .Πs−1s0 ,

=
∑

(s−N+1,...,s0)∈A
πs−N+1Πs−N+1s−N+2 . . .Πs−1s0 ,

= µ∞(CN (A)),(56)

where the first equality uses the definition of µ∞ on C0, the second is a rearrangement of

finite sums, the third uses the fact that π is stationary (
∑
s∈S πsΠss′ = πs′), and the last

uses the definition of µ∞ again. The proof for any M ≥ N can be completed by induction

using the same lines. This shows point (i).

For point (ii), we consider two disjoint cylinders, CN (A) and CM (B) (M ≥ N , A ⊂ SN

and B ⊂ SM ). Since both cylinders are disjoint, then SM−N ×A and B must be disjoint

too. We deduce that:

µ∞(CN (A) ∪ CN (B)) = µ∞(CM ((SM−N ×A) ∪B)

=
∑

(s−M+1,...,s0)∈(SM−N×A)∪B
πs−MΠs−Ms−M+1 . . .Πs−1s0 ,

=
∑

(s−M+1,...,s0)∈(SM−N×A)
πs−MΠs−Ms−M+1 . . .Πs−1s0

+
∑

(s−M+1,...,s0)∈B
πs−MΠs−Ms−M+1 . . .Πs−1s0 ,

= µ∞(CM (SM−N ×A)) + µ∞(CN (B)),(57)

where the first equality uses (55), the second the definition of µ∞, the third the property

that SM−N × A and B are disjoint, the fourth the definition of µ∞ again (twice). This

proves that µ∞ is finitely additive. Finally, for point (iii), note that, for any N ≥ 1, we

have using (56) iteratively, µ∞(CN (SN )) = 1, which proves that µ∞(S∞) = 1.

All these elements prove that µ∞ is a finitely additive probability measure on the

algebra C0. However, we know that any finitely additive probability measure on the cylinder
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algebra in S∞ is countably additive (see Billingsley 2012, Theorem 2.3) and conclude that

µ∞ is a countably additive probability measure on C0. So, µ∞ is a pre-measure on C0.

We denote by F = σ(C0) the cylindrical σ-algebra generated by C0.

Lemma 3 The triplet (S∞,F , µ∞) is a probability space.

Proof. We use the Hahn-Kolmogorov theorem (which is a simple version of the Carathéodory’s

extension theorem, see Billingsley 2012, Theorem 3.1), stating that: (i) any pre-measure

defined on an algebra A extents to a measure defined on the sigma-algebra generated by

A; (ii) the restriction of the extended measure to A coindices with the initial measure; (iii)

the extended measure is unique when the initial measure is σ-finite. The theorem directly

applies in our framework to the initial measure µ∞ defined on the algebra C0. Since µ∞ is

finite (µ∞(S∞) = 1), hence σ-finite, the extension is unique. The unique extension of µ∞

to F is also denoted (with a slight abuse of notation) µ∞. The triplet (S∞,F , µ∞) is thus

a probability space.

Aggregated allocation as conditional expectations. We define, for every N ≥ 1,

FN = σ (
⋃
A⊂SN CN (A)) the σ-algebra generated by cylinder sets of ranks N .

Lemma 4 The sequence (FN )N≥1 is a filtration of F .

Proof. Using property (54), we deduce that
⋃
A⊂SN CN (A) =

⋃
1≤k≤N

⋃
A⊂Sk Ck(A)

(⊂ is direct, while ⊃ comes from (54) which implies that for k ≤ N ,
⋃
A⊂Sk Ck(A) =⋃

A⊂Sk CN (SN−k×A) ⊂
⋃
A⊂SN CN (A)). We deduce that FN = σ

(⋃
1≤k≤N

⋃
A⊂Sk Ck(A)

)
.

With this last notation, it is clear that the sequence of σ-algebras is increasing in the sense

of inclusion: FN ⊂ FN+1 for any N and we also have FN →N F∞ = F (since F is exactly

defined as F∞). So, (FN )N≥1 is a filtration of F .

Lemma 5 Let N > 0, sN ∈ SN , and X be an integrable random variable. Define XsN as

the average value of X over the cylinder set CN ({sN}):

(58) XsN ≡
1

µ∞(CN ({sN}))

ˆ
s∞∈CN ({sN})

X(s∞)µ∞(ds∞).

We then have:

(59) XsN = E [X|FN ]s∞ , s
∞ ∈ CN ({sN}).
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Proof. We will use the total expectation theorem. Let (E1, . . . , Ep) be a partition of

S∞ that generates the sub σ-algebra G ⊂ F (with µ∞(Ei) > 0), then we have for any

integrable random variable X:

E [X|G]s∞ =
p∑
i=1

E [X|Ei] 1s∞∈Ei ,(60)

where: E [X|Ei] = 1
µ∞(Ei)

ˆ
s∞∈Ei

X(s∞)µ∞(ds∞).(61)

Let N > 0. We apply this theorem to (CN ({sN}))sN∈SN , where CN ({sN}) is a thin

cylinder corresponding to the histories s∞ whose realizations in the last N periods is sN

(see equation (53)). We have to prove that (CN ({sN}))sN∈SN is a partition of S∞. First,

if sN1 6= sN2 , then CN ({sN1 }) ∩ CN ({sN2 }) = ∅ since a given history s∞ cannot have two

different realizations sN1 6= sN2 over the last N periods. Second, let s∞ ∈ S∞. It can

be written as s∞ = (. . . , s−N , s−N+1, . . . , s0), so s∞ ∈ CN ({(s−N , s−N+1, . . . , s0)} and

S∞ =
⋃
sN∈SN CN ({sN}). So, (CN ({sN}))sN∈SN is a finite partition of S∞. Furthermore,

FN = σ
(⋃

sN∈SN CN ({sN})
)
. We thus deduce from (60) and (61), for an integrable

random variable X:

E [X|FN ]s∞ =
∑

sN∈SN
E
[
X|CN ({sN})

]
1s∞∈CN ({sN}),

E
[
X|CN ({sN})

]
= 1
µ∞(CN ({sN}))

ˆ
s∞∈CN ({sN})

X(s∞)µ∞(ds∞).(62)

Since SN is a finite set and since with our previous notation, SsN = µ∞(CN ({sN})) (see

equation (22)), we can also rewrite equation (62) as:

E
[
X|CN ({sN})

]
= 1
SsN

∑
s∞∈S∞|(s∞−N+1,...,s

∞
0 )=sN

X(s∞)µ∞(s∞),

which is exactly our aggregation equation (23). Finally, we deduce:

(63) XsN = E [X|FN ]s∞ , s
∞ ∈ CN ({sN}).

Convergence of allocation.
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Lemma 6 For any integrable random variable X, we have:

XsN = E [X|FN ]s∞ →N Xs∞ , a.s.,

where XsN is defined in (63).

Proof. We conclude the proof using the Levy’s upward theorem. This theorem states for

any filtration (GN )N of F , we have for any integrable random variable Y , E [Y |GN ]s∞ →N

E [Y |G∞]s∞ , almost surely and in L1. We apply this theorem to the filtration (FN )N , for

which F∞ = F and we deduce, for any integrable random variable X:

XsN = E [X|FN ]s∞ →N Xs∞ , a.s.

This convergence theorem can be applied to all terms of the tuple (csN , lsN , asN , νsN )sN ,

which can be assumed to be integrable following Assumption B and Açikgöz (2018).

Lemma 6 concludes the first part of the proof.

Convergence of the ξs.

Lemma 7 We have:

ξsN →N 1, a.s.

Proof. Using the convergence result of Lemma 6, we have ξsN → ξs∞ , almost surely. We

need to show that ξs∞ = 1, a.s. Using the continuity of Uc, passing to the limit in the

aggregate Euler equation for consumption (26) yields:

ξs∞Uc(cs∞ , ls∞) = β(1 + r)
ˆ
s̃∞∈S∞

ξs̃∞Uc(cs̃∞ , ls̃∞)µ∞(ds̃∞|s∞) + νs∞ ,

where µ∞(ds̃∞|s∞) denotes the conditional probability of having next-period history

s̃∞ = (. . . , s̃0) conditional on having current history s∞ = (. . . , s0) (which is simply Πs0s̃0

given our notation). By difference with the individual Euler equation, we have:

(ξs∞ − 1)Uc(cs∞ , ls∞) = β(1 + r)
ˆ
s̃∞∈S∞

(ξs̃∞ − 1)Uc(cs̃∞ , ls̃∞)µ∞(ds̃∞|s∞),

which holds a.s., or taking the absolute value:

|ξs∞ − 1|Uc(cs∞ , ls∞) ≤ β(1 + r)
ˆ
s̃∞∈S∞

|ξs̃∞ − 1|Uc(cs̃∞ , ls̃∞)µ∞(ds̃∞|s∞).
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We now sum over all histories s∞ ∈ S∞ the previous inequality (holding a.s.) and deduce

using Bayes’ law:

0 ≤ (1− β(1 + r))
ˆ
s∞∈S∞

|ξs∞ − 1|Uc(cs∞ , ls∞)µ∞(ds∞) ≤ 0,

where the left hand-side inequality comes from β(1 + r) < 1 and the positivity of the

integral. We finally deduce from Uc > 0 that |ξs∞ − 1| = 0 a.s., and ξs∞ = 1 a.s.

Lemma 7 concludes the proof of Proposition 2.

B.4 Proof of Proposition 3

The proof is conducted in two steps. We first prove the following proposition, in which we

do not impose the uniqueness of the solution to the original Ramsey problem. The proof

can be found in Section B.4.1. The proof of Proposition 3 can be found in Section B.4.2.

Proposition 5 (Convergence of allocations) We consider a sequence of Ramsey equi-

libria (φN , τN , rN , wN , (asN , csN , lsN , νsN , ξsN )sN∈SN )N≥0, such that:

1. for all N , there exists an original Bewley allocation (as∞,N , cs∞,N , ls∞,N , νs∞,N )s∞∈S∞

such that the aggregation following equation (23) of (cs∞,N , ls∞,N , as∞,N , νs∞,N )s∞∈S∞

yields the aggregated allocation (asN , csN , lsN , νsN , )sN∈SN ;

2. for all N , the first-order equations characterizing the aggregated Ramsey equilibrium,

(25)–(29) and (33)–(34), hold for (φN , rN , wN , (asN , csN , lsN , νsN , ξsN )sN∈SN );

3. there exist
(
(1 + 1

ϕ) SeSu + 1
)−1

< τ < τ < 1, such that for all N : τ ≤ τN ≤ τ .

Then, there exists a subsequence (Nk)k such that:

1. the UI policy (φNk , τNk) converges with k to a limit (φ∗, τ∗);

2. prices (rNk , wNk) converges with k to a limit (r∗, w∗);

3. the allocation (asNk , csNk , lsNk , νsNk )sNk∈SNk converges almost surely with k to a limit

(a∗s∞ , c∗s∞ , l∗s∞ , ν∗s∞)s∞∈S∞ ;

4. the allocation (a∗s∞ , c∗s∞ , l∗s∞ , ν∗s∞)s∞∈S∞ with the UI policy (φ∗, τ∗) and prices (r∗, w∗)

is a solution of the original Ramsey program of Section 3 (characterized by equations

(6)–(14) and (18)–(19));
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5. (ξsNk )sNk∈SNk −→k (1)s∞∈S∞, almost surely.

B.4.1 Proof of Proposition 5

For a given Ramsey allocation, we make the dependence in φ explicit. The sequence

of Ramsey equilibria we consider in Proposition 5 will be denoted by the sequence

(φN , τN (φN ), rN (φN ), wN (φN ),(csN (φN ), lsN (φN ), asN (φN ), νsN (φN ), ξsN (φN ))sN∈SN )N≥0.

This sequence verifies:

1. for all N , there exists an original Bewley allocation (cs∞(φN ), ls∞(φN ), as∞(φN ),

νs∞(φN )) corresponding to UI policy (φN , τN (φN )), and prices (rN (φN ), wN (φN )),

such that the aggregation of this original allocation yields the aggregated allocation

denoted by (asN (φN ), csN (φN ), lsN (φN ), νsN (φN ), ξsN (φN ))sN∈SN ;

2. the set of equations, characterizing the aggregated Ramsey equilibrium, (25)–(29)

and (33)–(34) holds;

3. there exist
(
(1 + 1

ϕ) SeSu + 1
)−1

< τ < τ < 1, such that for all N : τ ≤ τN ≤ τ , and

markets clear.

Note that point 3 implies the existence of φ, φ > 0, such that φN ∈ [φ, φ] for all N .

Preliminary remarks and notation. First, for a given UI policy (φ, τ), the existence

of a Bewley equilibrium is well understood. In particular, Assumption B (Section 4.1.4)

guarantees that the structure of the proof of Açikgöz (2018) (who also considers a GHH util-

ity function) can be applied in our environment. As a consequence, we do not prove here the

equilibrium existence for a given UI policy (φ, τ). Second, the proof consists in showing that

(φN , τN (φN ), rN (φN ), wN (φN ), (csN (φN ), lsN (φN ), asN (φN ), νsN (φN ), ξsN (φN ))sN∈SN )N≥0

belongs to a compact set. To do so, we will start with proving that the sequence of equilib-

rium prices (rN (φN ))N belongs to a compact set [ρ, ρ] where −1 < ρ ≤ ρ < (1 + β)−1 − 1.

The proof involves two intermediary results (Lemmas 9 and 10), which generalize two

results of Açikgöz (2018) to all φ ∈ [φ, φ].

Note that from factor prices (3) and the labor Euler equation (9), we deduce the

64



demand for capital given the interest rate r, K(r), has the following expression:

K(r) = (1− α)κ1−α+αϕ
L

(
r + δ

α

)− 1+αϕ
1−α

,(64)

= (1− α)−
1
ακLw(r)ϕ+ 1

α ,(65)

where: κL = χϕ(1− τ)ϕSe
∑
y∈Y

Syy
1+ϕ,

where w(r) is the wage as a function of the interest rate, from the first-order conditions of

the firm.

We state a preliminary lemma.

Lemma 8 The demand for capital given interest rate r, K(r), verifies for all r ∈ [0, r):

K(r) ≤ K(0) <∞.

Proof. Since α ∈ (0, 1), we deduce from (64) that: K(·) decreases with r; 0 < K(r) <∞

for all r ∈ (−δ, r); limr→δK(r) = ∞. In particular, we have K(r) ≤ K(0) < ∞ for all

r ∈ [0, r).

We denote r = (1 + β)−1 − 1. We define the quantity XD(r, φ) as the excess demand

function, as a function of the real interest rate r and the replacement rate φ. Formally,

XD(r, φ) = K(r) − A(r, φ), where A(r, φ) the aggregate asset demand of an original

Bewley model, with interest rate r and UI policy (φ, τ(φ)).

Lemma 9 There exists a continuous function f : (0, r) 7→ f(r), such that: (i) f is

independent of φ; (ii) limr→r f(r) = 1; and (iii) for any L > 0, r ∈ (0, r), φ ∈ [φ, φ], we

have A(r, φ) ≥ Lf(r).

Proof. Our proof builds on the proof of Açikgöz (2018, Proof of Lemma 1). Using

Proposition 5 in Açikgöz (2018), we know that there exists a unique stationary distribution

defined on the space asset holdings × idiosyncratic shocks. We denote it µ(a, s; r, φ) to

highlight the dependence in r and φ (a is asset holding and s idiosyncratic state). We also

denote by C the “aggregate consumption”:

C(a, s; r, φ) = c(a, s; r, φ)− χ−1 l̂(a, s; r, φ)1+1/ϕ

1 + 1/ϕ
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The integration of consumption Euler equations yields:
ˆ

(a,s)
u′(C(a, s; r, φ))dµ(·; r, φ)(66)

=β(1 + r)
ˆ

(a,s)

∑
s′∈S

Πss′u
′(C(ga(a, s; r, φ), s′; r, φ))dµ(·; r, φ)+

ˆ
(a,s)

ν(a, s; r, φ)dµ(·; r, φ),

where ga(a, s; r, φ) is the saving policy function. We need to show that marginal utilities

are finite. The budget constraint (6) implies at the steady-state:

c = ra+ ((1− τ)1e(s)=e + φ1e(s)=u)ly(s)w,

where e(s) and y(s) are the employment and productivity statuses in state s. We can

simplify the expression of aggregate consumption C using the labor Euler equation (9):

C(a, s; r, φ) = ra+ w̃(s; r, φ)(67)

with: w̃(s; r, φ) =
( 1− τ

1 + ϕ
1e(s)=e +

(
((1 + 1

ϕ
)Se
Su

+ 1)τ − 1
) 1e(s)=u

1 + 1/ϕ

)
(68)

× χϕ(1− τ)ϕwϕ+1y(s)ϕ+1.

Let define the constants κC and κC as follows:

κC = min
( 1− τ

1 + ϕ
,

(
((1 + 1

ϕ
)Se
Su

+ 1)τ − 1
) 1

1 + 1/ϕ

)
χϕ(1− τ)ϕ > 0,(69)

κC = max
( 1− τ

1 + ϕ
,

(
((1 + 1

ϕ
)Se
Su

+ 1)τ − 1
) 1

1 + 1/ϕ

)
χϕ(1− τ)ϕ > 0,(70)

where the inequalities come from 1 > τ ≥ τ ≥ τ > ((1 + 1
ϕ) SeSu + 1)−1. We deduce from

(67) and (69) that we have for all a, s, φ:

κCw
ϕ+1yϕ+1 + ra ≥ C(a, s; r, φ) ≥ κCwϕ+1yϕ+1 > 0,

where y and y are the worst and best productivity levels. This guarantees that marginal

utilities in (66) are finite and strictly positive. Furthermore, the support of µ(·; r, φ) is

compact (Açikgöz, 2018, Proposition 4), so we can simplify the expression of (66) as

follows:

(1− β(1 + r))
ˆ

(a,s)
u′(C(a, s; r, φ))dµ(·; r, φ) =

ˆ
(a,s)

ν(a, s; r)dµ(·; r, φ).(71)
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Now, note that:

(72)
ˆ

(a,s)
ν(a, s; r)dµ(·; r, φ) ≥ ν(0, s; r, φ)µ({(0, s)}; r, φ),

where s is the “worst” idiosyncratic state (i.e., (y, e) or (y, u) depending on the value of

τ). From Açikgöz (2018, Proof of Lemma 1), we know that there exists q ∈ (0, 1] such

that for any L > 0:

µ({(0, s)}; r, φ) ≥ µL(r, φ)q,(73)

where: µL(r, φ) = µ([0, L]× S; r, φ).

This result holds for a given φ and comes from the fact that thanks to Point 4 in Assumption

B, Section 4.1.4, any agent can reach the state (0, s) (i.e., zero asset in worst state, be it

(y, e) or (y, u)) in at most m <∞ periods with strictly positive probability q – the same q

as in (73)). We now turn to the term ν(0, s; r, φ) in (72). Using the consumption Euler

equation:

ν(0, s; r, φ) = u′(C(0, s; r, φ))− β(1 + r)E
[
u′(C ′)|(0, s)

]
≥ u′(C(0, s; r, φ))− E

[
u′(C ′)|(0, s)

]
,(74)

using β(1 + r) < 1. Furthermore using (67)–(68) and the same technique as in Açikgöz

(2018, Proposition 2), we can prove that:

C(a, s; r, φ) ≥ ra+ r

1 + r
w̃(s; r, φ) + 1

1 + r
w̃(s; r, φ),(75)

By construction, we have w̃((e, y′); r, φ) > w̃((e, y); r, φ) and w̃((u, y′); r, φ) > w̃((u, y); r, φ)

iff y′ > y. In particular, w̃((e(s), y′); r, φ) > w̃((e(s), y); r, φ) iff y′ > y. With this notation,

we also have: C(0, s; r, φ) = w̃(s; r, φ). Plugging this and (75) into (74) yields with u being

concave:

ν(0, s; r, φ) ≥ u′(w̃(s; r, φ))− E
[
u′
(
ra′ + r

1 + r
w̃(s′; r, φ) + 1

1 + r
w̃(s; r, φ)

)
|(0, s)

]
,

≥ u′(w̃(s; r, φ))− E
[
u′
(

r

1 + r
w̃(s′; r, φ) + 1

1 + r
w̃(s; r, φ)

)
|s
]
,

≥ u′(w̃(s; r, φm))− E
[
u′
(

r

1 + r
w̃(s′; r, φm) + 1

1 + r
w̃(s; r, φm)

)
|s
]
.

The second inequality holds for all φ and comes from a′ ≥ 0, u concave and the independence
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in asset holdings. The third inequality is independent of φ and uses continuity of w̃ and u′

over the compact set [φ, φ] to guarantee the existence of such a φm ∈ [φ, φ]. Finally, it can

be observed that the term u′
(

r
1+r w̃(s′; r, φm) + 1

1+r w̃(s; r, φm)
)
is equal to u′(w̃(s; r, φm))

iff s′ = s and strictly smaller than u′(w̃(s; r, φm)) for all s′ = (e(s), y′) such that y′ > y. So

using Point 3 in Assumption B, we know that there exists ν, independent of φ, such that.

(76) ν(0, s; r, φ) ≥ ν > 0,

which means that the agent with no asset and in the worst state s is always credit-

constrained.

Putting together equations (71), (72), (73), and (76) finally yields:

µL(r, φ)qν ≤ (1− β(1 + r))
ˆ

(a,s)
u′(C(a, s; r, φ))dµ(·; r, φ),

≤ (1− β(1 + r))u′(w̃(s; r, φ)),

≤ (1− β(1 + r))u′(w̃(s; r, φ̃m)),

where the first inequality uses (75), a ≥ 0, and s being the worst state, and the second

inequality uses the continuity of φ 7→ w̃(s; r, φ) on [φ, φ] to ensure the existence of

φ̃m ∈ [φ, φ] (actually, we have φ̃m = φ or φ̃m = φ, depending on whether the worst state

features employment or unemployment, i.e. whether e(s) = e or e(s) = u). This implies

that:

(77) 0 ≤ µL(r, φ) ≤ (1− β(1 + r))u′(w̃(s; r, φ̃m)),

where the upper bound is independent of φ. Now, using Markov inequality we have:

1− µL(r, φ) = P (a > L; r, φ) ≤ 1
L
A(r, φ),

which implies with (77) that for all L > 0, r ∈ (0, r), and φ ∈ [φ, φ]:

A(r, φ) ≥ Lf(r),(78)

where: f(r) = 1− (1− β(1 + r))u′(w̃(s; r, φ̃m)).

Note that f(·) is independent of φ, continuous, and verifies limr→r f(r) = 1.

A direct corollary of Lemma 9 (and of inequality (78)) is that limr→r A(r, φ) =∞ for
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all φ ∈ [φ, φ].

Lemma 10 The correspondence φ ∈ [φ, φ] 7→ arg supr∈[ρ,ρ]{−XD(r, φ)2} (associating φ

to an equilibrium interest rate) is upper-hemicontinuous and compact-valued.

Proof. We proceed in three steps. For each step, we prove an intermediary result that is

stated in italic. For the sake of conciseness, we do not introduce formal lemma.

1. We prove that there exists ρ ∈ [0, r), such that for all φ ∈ [φ, φ], XD(ρ, φ) < 0.

Inequality (78) with L = 2K(0) + 1 implies that there exists ρ ∈ [0, r) (independent

of φ), such that:

∀φ ∈ [φ, φ], A(ρ, φ) ≥ (2K(0) + 2)1
2 > K(0).

Since K(0) ≥ K(r) for all r > 0, we deduce that for all φ ∈ [φ, φ]:

XD(ρ, φ) = K(ρ)−A(ρ, φ) < 0.

2. We prove that there exists ρ ∈ (−δ, 0], such that for all φ ∈ [φ, φ], XD(ρ, φ) > 0.

The individual budget constraint (6) and labor Euler equations (9) imply, when

r < 0: a ≤ −1
r (1 + φ)χϕyϕ+1wϕ+1 or, after integration:

XD(r, φ) ≥ K(r)
(

1 + 1 + φ

r
χϕyϕ+1w(r)ϕ+1

K(r)

)
.

Using (64) and (65), we deduce that K(r) →r→−δ ∞ and w(r)ϕ+1

K(r) →r→−δ 0. We

deduce that XD(r, φ) is bounded from below by a function that diverges to ∞,

independently of φ. We deduce, since XD(r, φ) < ∞ for all r ∈ (−δ, 0] and all

φ ∈ [φ, φ] that there exists ρ ∈ (−δ, 0] (independent of φ), such that:

∀φ ∈ [φ, φ], XD(ρ, φ) > 0.

3. We prove that R : φ ∈ [φ, φ] 7→ arg supr∈[ρ,ρ]{−XD(r, φ)2} is upper-hemicontinuous,

as well as nonempty and compact-valued. Açikgöz (2018, Lemma G.2) can be

extended in our setup to show that we can find a uniform upper bound on asset

holdings for all r ∈ [ρ, ρ] and all φ ∈ [φ, φ]. Moreover, it is known that the policy

functions are continuous in (r, w, φ) over any compact subset of {(r, w, φ)|β ∈
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(0, 1), β(1 + r) < 1, w > 0, φ ∈ [φ, φ]} (see Açikgöz, 2018, Lemma G.3 for a proof in

a related environment). We can thus apply Stokey et al. (1989, Theorem 12.13) that

implies that the stationary distribution µ(·; r, φ) is continuous (in the sense of the

weak convergence) on [ρ, ρ] × [φ, φ]. Because the support of measures (over asset

space and idiosyncratic space) is uniformly bounded, the continuity in the sense of

the weak convergence of µ(·; r, φ) implies the continuity (in the usual sense) of A(r, φ)

over [ρ, ρ]× [φ, φ]. We deduce that XD(r, φ) is continuous over [ρ, ρ]× [φ, φ], while

we already proved that: XD(ρ, φ) < 0 < XD(ρ, φ). The intermediate value theorem

guarantees that for all [φ, φ], there exists rφ ∈ [ρ, ρ], such that XD(rφ, φ) = 0. Since

−XD(r, φ)2 is nonpositive, we deduce that R(φ) = arg maxr∈[ρ,ρ]{−XD(r, φ)2} is

non empty. Furthermore, we can apply the Maximum theorem and obtain that R(·)

is upper-hemicontinuous and compact-valued over [φ, φ].

Conclusion of the proof. We prove a last lemma.

Lemma 11 We can extract a convergent subsequence of the sequence (φN , rN (φN ),

(as∞(φN ))s∞∈S∞)N≥0, such that:

φNk →Nk φ
∗, r(φNk)→Nk r

∗(φ∗), and (as∞(φNk))s∞∈S∞ →Nk, a.s. (a∗s∞(φ∗))s∞∈S∞ .

Proof. Lemma 10 implies that the joint sequence (φN , rN (φN ))N belongs to a compact

set: ∀N, (φN , rN (φN )) ∈ [φ, φ]× [ρ, ρ]. We need to show that (as∞(φN ))s∞∈S∞ also lies in

a compact set. We again use the fact that there is a uniform upper bound on asset holdings,

such that asset holdings can be defined over compact set A, and that the policy functions

are continuous in (a, r, w, φ). Then, for the saving policy function, denoted as ga(a, r, w, φ),

the correspondence (a, φ) ∈ A × [φ, φ] 7→ {ga(a, rφ, w(rφ), φ) : rφ ∈ R(φ) ⊂ [ρ, ρ]}

(i.e., the set of general equilibrium asset holdings) is upper-hemicontinuous and hence

{ga(a, rφ, w(rφ), φ) : a ∈ A, rφ ∈ R(φ) ⊂ [ρ, ρ], φ ∈ [φ, φ]} is a compact set.

We now come back to our initial problem, and to the sequence of steady-state in-

dividual allocations (as∞(φN ), cs∞(φN ), ls∞(φN ), νs∞(φN ))i corresponding to UI policy

(φN , τN (φN )), and prices (r(φN ), w(φN )). Because {ga(rφ, w(rφ), φ) : rφ ∈ R(φ), φ ∈
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[φ, φ]} is compact, (φN , rN (φN ), (as∞(φN ))s∞∈S∞)N≥0 takes value in a compact set, and

we can extract a convergent subsequence (φNk , rNk(φNk), (as∞(φNk))s∞∈S∞)Nk≥0 with

φNk → φ∗, r(φNk)→ r∗(φ∗), and (as∞(φNk))s∞∈S∞ →a.s. (a∗s∞(φ∗))s∞∈S∞ .

We deduce by continuity from Lemma 11 that labor supply, consumption, and

Lagrange multiplier are also convergent: (cs∞(φNk), ls∞(φNk), νs∞(φNk))s∞∈S∞ →a.s.

(c∗s∞(φ∗), l∗s∞(φ∗), ν∗s∞(φ∗))s∞∈S∞ .

We conclude the proof of Proposition 5. Define with the notation of Section B.3

similarly to equation (63) for all N,Nk:

(79) aN,s∞,Nk = E [as∞(φNk)|FN ]s∞ for all s∞ ∈ CN ({sN}), a.s.

where CNk is defined in (53). Since we are in a compact set, |ai(φNk)| is bounded by a

constant. We can use the dominated convergence theorem to permute limit (in Nk) and

integral in (79). We deduce that:

aN,s∞ = lim
Nk→∞

aN,s∞,Nk = E [a∗s∞(φ∗)|FN ] , s∞ ∈ CN ({sN}).

We conclude with a similar argument as in Proposition 2:

lim
N
aN,s∞ = a∗s∞(φ∗), a.s.

We proceed similarly for consumption, labor supply, and Lagrange multiplier. Finally, it is

straightforward to check that the FOCs of the Ramsey aggregate program (Section 4.2) con-

verge to those of the original Ramsey program (Section 3). The FOCs of the original Ram-

sey program therefore hold for the limit allocation (φ∗, τ∗(φ∗), r∗(φ∗), w∗(φ∗), (c∗s∞(φ∗),

l∗s∞(φ∗), a∗s∞(φ∗), ν∗s∞(φ∗))s∞∈S∞). This concludes the proof of Proposition 5.

B.4.2 Proof of Proposition 3

We now further impose the uniqueness of the original Ramsey equilibrium. In other words,

the sequence (φN , rN (φN ), (as∞(φN ))s∞∈S∞)N≥0 takes value in a compact set (see Section

B.4.1) and admits a unique limit point, denoted (φ∗, r∗(φ∗), (a∗s∞(φ∗))s∞∈S∞). In other

words, there is only one point which can be the limit. Note that again, we only need to

look at the triplet (φ∗, r∗, (a∗s∞(φ∗))s∞∈S∞), since consumption, wage, labor supply and La-

grange multiplier can be deduced from this triplet. Then, (φN , rN (φN ), (as∞(φN ))s∞∈S∞)N≥0
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converges to (φ∗, r∗(φ∗), (a∗s∞(φ∗))s∞∈S∞) (a.s. for assets). Indeed, suppose it is not the

case. Then there exists ε > 0n such for all N ≥ 0, there exists k ≥ N , such that

‖(φk, rk(φk), (as∞(φk))s∞∈S∞)− (φ∗, r∗(φ∗), (a∗s∞(φ∗))s∞∈S∞)‖ ≥ ε (the product norm is

the Euclidian norm for the two first dimensions and the one associated to the almost sure

convergence for the third one). This means that the set:
{

(φN , rN (φN ), (as∞(φN ))s∞∈S∞) :

‖(φN , rN (φN ), (as∞(φN ))s∞∈S∞)− (φ∗, r∗(φ∗), (a∗s∞(φ∗))s∞∈S∞)‖ ≥ ε
}

is infinite and compact (as the complement of an open set in a compact set). We can thus

extract a convergent subsequence (φNk , rNk(φNk), (as∞(φNk))s∞∈S∞)nk that converges

to a limit (φ∗∗, r∗∗, (a∗∗s∞(φ∗∗))s∞∈S∞) 6= (φ∗, r∗, (a∗s∞(φ∗))s∞∈S∞). This contradicts the

uniqueness of the limit point. This completes the proof of Proposition B.3.

C Details of the implementation of the truncation method

This section is organized in three parts. Section C.1 presents all the equations driving the

dynamics of the truncated model. Section C.2 details the computations that enable to

express the steady-state value of the ξs using linear algebra.

C.1 Summary of the dynamics of the truncated model

The dynamics of the model in the presence of an optimal time-varying replacement rate

can be written as follows. We start with equations valid for all sN ∈ SN :

lt,sN = χϕ(1− τt)ϕwϕt y
N,ϕ
0 1eN0 =e,

ct,sN + at,sN ≤ (1 + rt)ãt,sN +
(
(1− τt)1eN0 =e + φt1eN0 =u

)
lt,sN y

N
0 wt,

ãt,sN =
∑

s̃N∈SN
Πt,sN s̃N

Ss̃N

SsN
at−1,s̃N ,

Ψt,sN = Uc,t,sN −
(
λt,sN − (1 + rt)λ̃t,sN

)
ξsNUcc,t,sN ,

λ̃t,sN =
∑

s̃N∈SN

St−1,s̃N

St,sN
Πt,s̃NsNλt−1,s̃N ,

St,sN =
∑

ŝN∈SN
St−1,ŝNΠt,ŝNsN .
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Then, the equations valid for unconstrained histories only (sN /∈ C) are:

ξsNUc,t,sN = β(1 + r)
∑

s̃N∈SN
Πt+1,sN s̃N ξs̃NUc,t+1,s̃N ,

Ψt,sN = β
∑

s̃N∈SN ,
Πt+1,sN s̃NEt

[
(1 + rt+1)Ψt+1,s̃N

]
+ β

1− α
ϕ

Et
[ 1
Lt+1

(
Kt

Lt+1

)α−1

×
∑

s̃N∈SN

(
(1− τt+1)1ẽN0 =e + St+1,e

St+1,u
(τt+1(1 + ϕ)− 1)1ẽN0 =u

)
Ψt+1,s̃NSt+1,s̃N lt+1,s̃N ỹ

N
0

]
,

For constrained histories (sN ∈ C), we have at,sN + ā = λt,sN = 0. Aggregate equations

are:

∑
sN∈SN

St,sN λ̃t,sN ξsNUc,t,sN = −
∑

sN∈SN
St,sNΨt,sN ãt,sN + 1

αϕ

Kt−1
Lt

(80)

×
∑

sN∈SN

(
−(1− τt)1eN0 =e + St,e

St,u
(1 + αϕ− (1 + ϕ)τt) 1eN0 =u

)
St,sNΨt,sN lt,sN ỹ

N
0 ,

Kt =
∑

sN∈SN
St,sNat,sN , Lt =

∑
sN∈SN

St,sN y
N
0 lt,sN ,

∑
sN∈SN

St,sN ct,sN +Kt = ZtK
α
t−1L

1−α
t + (1− δ)Kt−1,

rt = αZt

(
Kt−1
Lt

)α−1
− δ, wt = (1− α)Zt

(
Kt−1
Lt

)α
and logZt = ρ logZt−1 + ut.

The optimal replacement rate is given by equation (80), corresponding to the first-order

condition of the Ramsey program of Section 4.2. Note that the dynamics of the model

with an exogenous replacement rate can be deduced from the previous set of equations, in

which φ (and τ) has to be set to its exogenous value and equation (80) is discarded.

This system has Y + 5 (2Y )N + 7 equations for the same number of variables. A

standard software like Dynare is able to perform automatic differentiation and to identify

the set of state variables ((at,sN , λt,sN , St,sN )sN∈SN ,Kt, Zt). It provides the first-order

dynamics for the (stacked) vector of level-deviation of state variables (denoted by yt) from

their steady-state values (denoted by ys):

yt − ys = A(yt−1 − ys) +But,

where A is a square matrix, B a row matrix, and ut is the innovation of the TFP process.

See Adjemian et al. (2011) for the details of the implementation of the numerical procedure.
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C.2 Matrix representation of the steady state to compute ξ and λ

Before turning to the matrix representation, we introduce the following notation: ◦ is the

Hadamard product, ⊗ the Kronecker product, and × the usual matrix product. For a

vector V , diag (V ) is the diagonal matrix with V on the diagonal.

A truncated history is a vector sN = {(y−N+1, e−N+1), . . . , (y0, e0)} ∈ SN , where

ek = 0 if the agent is unemployed and ek = 1 if the agent is employed, and yk is the

productivity level, k periods in the past. Productivity levels (y, . . . , y) are assumed to

be ordered and we denote by iy the index function of productivity levels (in increasing

order). For instance, iy(y) = 1, while iy(y) = Card(Y). The total number of histories is

Ntot = SN where S = Card(S).

We can identify each history by the integer ksN = 1, . . . , Ntot defined as:

(81) ksN =
N−1∑
k=0

N−N+1−k
tot (ek × Y + iy(yk)− 1) + 1,

which corresponds to an enumeration in base S of the vector sN . In this enumeration, the

first Ntot/2 histories are histories where agents are currently unemployed, while the other

half corresponds to employed histories.

The idea of matrix notation we use below is to stack equations holdings for all sN ∈ SN

into vectors and matrices, following the order of the enumeration in (81).

C.2.1 Computing the ξs

Let S be the Ntot-vector of steady-state history sizes. Similarly, let a, c, `, ν, Uc, Ucc be

the Ntot-vectors of end-of-period wealth, consumption, labor supply, Lagrange multipliers,

marginal utilities, and derivatives of the marginal utility, respectively. Each vector is

computed using equation (23) as the aggregation of the relevant variable – known from

the steady-state Bewley model. We also define:

W = w

 φ

1− τ

⊗y⊗ 1B, Le =

 0

1

⊗y⊗ 1B, Lu =

 1

0

⊗y⊗ 1B,

where y = [y1 . . . yY ]> is the vector of productivity levels. Let P be the diagonal matrix

having 1 on the diagonal at sN if and only if the history sN is not credit constrained (i.e.,
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νsN = 0), and 0 otherwise. Similarly, define Pc = I−P, where I is the (Ntot×Ntot)-identity

matrix. Let Π be the transition matrix across histories. In the steady state:

S = ΠS and Pca = −ā1Ntot×1,(82)

S ◦ c + S ◦ a = (1 + r)Π (S ◦ a) + (S ◦W ◦ `) ,(
r + δ

α

) 1
α−1

Le
> × S = S> × a,

τ = φ
Lu
> × S

Le
> × S

, and w = (1− α)
(
r + δ

α

) α
α−1

.

(The previous equalities can be double-checked numerically). We define the vector ξ̃ as:

(83) ξ̃ =
[
P
(
diag

(
u′ (c)

)
− β(1 + r)Π× diag

(
u′ (c)

))
+ Pc

]−1
ν,

which is well-defined since the matrix P (diag (u′ (c))− β(1 + r)Π× diag (u′ (c))) + Pc is

invertible (because β (1 + r) < 1, and P + Pc = I), and since the vector ν is not zero

(because some histories are credit constrained due to a credit limit above the natural

borrowing limit). With definition (83), we can check that for unconstrained histories, we

have:

ξ̃ ◦ u′ (c) = β(1 + r)Π
(
ξ̃ ◦ u′ (c)

)
,

and for constrained histories, ξ̃◦u′ (c) = β(1+r)Π
(
ξ̃ ◦ u′ (c)

)
+ν, where we use ξ̃◦u′ (c) =

diag (u′ (c)) ξ̃.

C.2.2 Computing equilibrium Lagrange multipliers λ

We derive here the Lagrange multipliers of the Ramsey program as a function of the

steady-state solution (i.e., allocations and prices), which is assumed to be known. Denoting

the vectors associated with the Lagrange multipliers by λ, λ̃, and Ψ, we have: Ψ =

ξ ◦Uc −
(
λ− (1 + r)λ̃

)
◦ ξ ◦Ucc, from (17). We define the matrix ΠΛ by ΠΛ

k̃k
= SkΠkk̃

Sk̃
,

such that λ̃ = ΠΛλ, and the matrix ΠΨ by:

ΠΨ
kk̃

= β(1 + FK)Πkk̃ + β
1− α
αϕ

r + δ

L

(
(1− τ)1

k̃>
Ntot

2
+ Se
Su

(τ (1 + ϕ)− 1) 1
k̃≤Ntot2

)
Sk̃lk̃yk̃,

75



where 1
k̃>

Ntot
2

represents employed agents and 1
k̃≤Ntot2

unemployed ones. It can be checked

from (18) that PΨ = PΠΨΨ and that the vector of the Lagrange multipliers, λ, verify:

λ=
[
Pc + P(I−ΠΨ)

(
diag (ξ ◦Ucc)

(
I− (1 + FK)ΠΛ

))]−1
P(I−ΠΨ)(ξ◦Uc).(84)

Importantly, the right-hand side can be deduced from the Bewley allocations, which makes

the computation of λ straightforward. We then deduce
(
λ̃,Ψ

)
with:

λ̃ = ΠΛλ, and Ψ = ξ ◦Uc − ξ ◦Ucc ◦
(
I− (1 + FK)ΠΛ

)
λ.(85)

Equation (34) that allows to check for the optimality of the planner’s instruments is:

V>×1Ntot×1 = 0,(86)

where:V≡ ϕα
K

(S◦Ψ◦ã + S◦Λ◦ξ◦Uc)+ 1− τ
L

S◦Ψ◦Le−(1− τ + ϕ(α− τ))Se
Su

S◦Ψ◦Lu.

D Supplemental numerical results

D.1 Computational methods

For all simulation methods, we first solve for the steady-state allocation of the original

Bewley model. The consumer’s problem is solved on a grid using the Endogenous Grid

Point Method (EGM) (Carrol, 2006 or Den Haan, 2010). For the decision rules, the asset

grid has 50 points, non-linearly spaced, as in Boppart et al. (2018), and households can

choose points off the grid by linear interpolation. There are 7 different productivity levels

and 2 employment status. We thus solve for 14 policy rules. The Euler equation errors

reported in Table 7 show that the accuracy is satisfactory.

Truncated model. To derive the truncated model for a given N , we first use the steady-

state distribution of the original Bewley model to compute average consumption and

savings in each of the 14 idiosyncratic states. We then use the policy rules gi (a) for savings

and gci (a) for consumption, together with the transition probabilities, (Πi,j)i,j=1,...,14, to

compute the average consumption and saving levels for each idiosyncratic history. For

example, when we know the steady-state beginning-of-period distribution of wealth, Λi (a),

of agents in states i = 1, . . . , 14, we can compute the steady-state distribution of wealth of
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agents with history (i, j), Λ(i,j) (a) by computing:

(87) Λ(i,j)
(
a′
)

= Πi,j

ˆ
a,gi(a)=a′

Λi (a) da.

Once we have the distributions Λ(i,j), the average consumption levels and savings by history

are simply constructed by ci,j =
´
a g

c
j (a) Λ(i,j) (a) da. and ai,j =

´
a aΛ(i,j) (a) da (note

that we use the policy rule of the last states). For histories (i, j, k) with i, j, k = 1, . . . , 14,

we start from Λ(i,j) and construct Λ(i,j,k) as in (87). This strategy allows us to construct

recursively the steady-state distribution of wealth for any idiosyncratic history of arbitrary

length. Once the average values are computed, we deduce the ξs using equation (83). Note

that the Dynare solver can be used to double-check that the steady state computed in

Section C.2 is indeed a steady state of the dynamic equations. Finally, we then compute a

first-order approximation for the aggregate shock of the whole system of equations, given

in Section C.1, using Dynare again.

Reiter model. We implement the algorithm described in Reiter (2009), which is now

standard. For each asset level and for each idiosyncratic state, we perform a first-order

approximation of the policy rule for the aggregate states. We use these approximated

policy rules to simulate the dynamics of the model for 10,000 periods.

Boppart, Krusell, and Mitman. Following Boppart et al. (2018), we first simulate

an unexpected shock (MIT shock) to the innovation εzt , to compute the IRFs for the

various variables of interest. The transition path is then solved by iteration on the capital

path, assuming that the economy comes back to its steady state after 400 periods. These

IRFs are then used as numerical partial derivatives for any variable xt under consideration

according to the aggregate shock (which is continuous), at different time-horizons, namely
∂xt+k
∂εzt

for k = 0, . . . , T (where T is chosen high enough for the derivative to be negligible for

k > T ). These derivatives are then used to simulate the economy with aggregate shocks,

using a Taylor-expansion: xt = x̄ss +
∑T
k=0

∂xt
∂εz
t−k

εzt−k for the simulated history associated

to the innovation εzt . The results of these comparisons are presented in Section 6.1.
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D.2 Comparison with other solution methods

Correlation tables We report in Table 8 the correlations between key-variables for the

Reiter’s and the truncation method (Economies (3) and (4)) of Section 6.1. The variables

are: aggregate consumption C, GDP Y , capital K, TFP Z, and aggregate labor supply L.

Again, one can check that the results are very similar to each other.

C Y K Z L

C 1.00 0.96 0.95 0.80 0.96
Y 0.96 1.00 0.83 0.93 1.00
K 0.95 0.83 1.00 0.57 0.83
Z 0.80 0.93 0.57 1.00 0.93
L 0.96 1.00 0.83 0.93 1.00

C Y K Z L

C 1.00 0.96 0.94 0.80 0.96
Y 0.96 1.00 0.81 0.94 1.00
K 0.94 0.81 1.00 0.55 0.81
Z 0.80 0.94 0.55 1.00 0.94
L 0.96 1.00 0.81 0.94 1.00

Truncation Method Reiter method

Table 8: Correlation tables

Comparison for a lower persistence of idiosyncratic shocks In the benchmark

economy, the persistence of the idiosyncratic risk is high, consistently with the data (see

Table 1). One may want to check that the accuracy of the truncation method does not

depend on this high persistence. To do so, we simulate the same economy with the same

parameters, except that we set the persistence of the idiosyncratic risk to ρy = 0.96

(instead of ρy = 0.992). Results are reported in Economies (5)–(8) of Table 9. Once again,

it can be checked that the three solution methods generate very similar results, and that

the ξs are useful in reproducing the dynamics in the truncated economy.

E Supplemental theoretical results

This section contains three parts. Section E.1 provides a simple example to illustrate why

the sign of the Lagrange multiplier on the Euler equation of agent i can be interpreted as

the perception by the planner of the quantity of savings of agent i. Section E.2 presents an

economy in which credit constraints have been substituted by penalty functions. Finally,

Section E.3 generalizes the truncation theory to non-GHH utility functions.
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Methods BKM Reiter Trunc. Trunc.
(ξ = 1)

Simulations (1) (2) (3) (4)

Y mean 1.11 1.11 1.11 1.11
std/mean (%) 1.77 1.77 1.76 1.78

C mean 0.82 0.82 0.82 0.82
std/mean (%) 1.47 1.48 1.47 1.48

L mean 0.29 0.29 0.29 0.29
std/mean (%) 0.59 0.59 0.59 0.59

K mean 11.77 11.77 11.77 11.77
std/mean (%) 1.64 1.66 1.59 1.65

corr(C,C−1) (in %) 99.15 99.15 99.10 99.17
corr(Y, Y−1) 97.52 97.53 97.47 97.54
corr(C, Y ) 96.28 96.25 96.33 99.06

Table 9: Moments of the simulated model for different computational techniques and a
low persistence.

E.1 Understanding Lagrange multipliers on Euler equations

The analysis of the main text uses Lagrange multipliers on Euler equations and claims

that these multipliers can be either positive or negative and that their sign is related to

the distortions on the saving incentives (from the planner’s point of view). This section

provides a very simple example (textbook style) to illustrate this statement. In addition,

it clarifies some properties of exterior penalty functions, which are used in Section E.2

below.

Consider an economy where the planner has an instrument τ , and the agent can choose

a variable a. The agent maximizes a concave objective with a constraint a ≥ −ā:

max
a∈R

− (a− τ)2 − τ2, s.t. a ≥ −ā,

which yields the FOC (ν being the credit-constraint Lagrange multiplier):

(88) a− τ = ν.

This corresponds to a = τ if τ ≥ −ā or a = −ā if τ < −ā.
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The planner’s program can now be written as:

max
a,τ∈R

− (a− τ)2 − τ2

s.t. a− τ = ν and a ≥ −ā.

The Lagrangian is (λ is the Lagrange multiplier on the agent’s FOC and µ the multiplier

on the credit-constraint): L = −(a− τ)2 − τ2 − 2λ(a− τ)− 2µ(a+ ā), which yields:

a− τ + λ+ µ = 0(89)

−a+ 2τ − λ = 0(90)

Note that we have λµ = 0 and λν = 0. There are two possible cases, depending on whether

the constraint a ≥ −ā is binding or not (i.e., whether λ 6= 0 or not):

1. λ = 0. So, we have µ = ν = 0. Equation (88) implies a = τ and equations (89) and

(90) become: λ = 0 and τ − λ = 0. So the solution is:

λ = ν = µ = 0, and a = τ = 0.(91)

2. λ 6= 0. So a = −ā and equations (89) and (90) become:

−µ = ν = − ā2 , and τ = − ā2 .(92)

Penalty functions

We define the penalty function g as follows:

g(a) = 1
2 max(−ā− a, 0)2, g′(a) = −max(−ā− a, 0), g′′(a) = 1a≤−ā.

Agent’s program. Let γ be the weight of the penalty function, the agent’s program is:

maxa∈R −(a− τ)2 − τ2 − 2γg(a). The FOC yields:

(93) a− τ − γmax(−ā− a, 0) = 0

So, there are two solutions: (i) a = τ if −ā− τ ≤ 0, or a = τ
1+γ + γ

1+γ (−ā) if −ā− τ > 0.

We can observe than when γ →∞, these two solutions converge to the solutions (91) and

(92) of the Ramsey problem.
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Planner’s program. For the sake of generality, we consider a penalty function with

a different coefficient γ̃ = κγ, where we can have 0 < κ ≤ 1 or κ > 1, depending on

who (the agent of the planner) gives the constraint the highest value. The planner’s

program is: maxa,τ∈R −(a− τ)2 − τ2 − 2γ̃g(a), s.t. a− τ = −γg′(a). The Lagrangian is:

L = −(a− τ)2 − τ2 − 2λ(a− τ + γg′(a)) + 2γ̃g(a), with the FOCs:

0 = a+ λ

2 + λγ1a≤−ā − γ̃max(−ā− a, 0),(94)

τ = a+ λ

2 .(95)

Again, there are two cases:

1. a > −ā. Then (93), (94) and (95) imply: a = τ = a+λ
2 = 0.

2. a ≤ −ā. Then (93) implies τ = (γ + 1)a+ γā. We obtain using (94) and (95):

a = 2γ2 + (κ+ 1)γ
2γ2 + (κ+ 2)γ + 1 ā, τ = − γ2 + κγ

2γ2 + (κ+ 2)γ + 1 ā, λ = − (κ− 1)γ
2γ2 + (κ+ 2)γ + 1 ā.

Remark 1 (Sign of λ) The sign of λ can be positive or negative, depending on

whether κ > 1 or κ < 1, which indicates who (between the planner and the agent)

gives the credit constraint the highest value.

At the limit: a→ −ā, λ→ 0, τ → − ā
2 , which is the solution of the initial program.

E.2 Penalty functions

In this section, we replace the credit constraint with a penalty function denoted by g(a)

for a saving choice a. The functional form of g is standard for exterior penalty function

(see Luenberger and Ye, 2016 for a textbook treatment of penalty functions). For a saving

a < −ā, the distance to the credit limit is −ā− a. The baseline penalty function is thus

g(a) = max(−ā− a, 0)2. We parametrize this penalty function by a scalar γ > 0 such that

all agents face a penalty function γg(a). We denote with a γ superscript the quantities

associated to penalty function γg(a). The goal of this section is to show that the FOCs

(39) and (40) are limits of FOCs for infinitely concave penalty functions, i.e., for γ →∞.
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E.2.1 The truncated economy

In the presence of the penalty function, the agent’s program can be written as

max
(cγ,it ,lγ,it ,aγ,it )t≥0,i

J̃i=E0

∞∑
t=0

βt
(
ξsNU(cγ,it , l̂γ,it )−γg(aγ,it )

)]
,(96)

aγ,it +cγ,it =((1− τt)lγ,it 1eN0 =e+φtl
γ
t,sN ,e

1eN0 =u)yN0 w
γ
t +(1 + rt)aγ,it−1,(97)

cγ,it , lγ,it ≥ 0.(98)

with given initial conditions. Compared to the initial program (5)–(7), the objective

function (96) includes penalty functions, while credit constraint have been removed.

As the replacement rate is exogenous, we make the following additional assumption.

Assumption C We assume that for all t ≥ 0: 1− τt > ϕ
1+ϕ and φt > ϕ

1+ϕ .

Assumption C is purely technical: it guarantees that the utility – with a GHH utility

function – of employed and unemployed agents in autarky is well-defined and finite. This

assumption is obviously verified in our numerical exercise of Section 5.

Lemma 12 For any γ > 0, we have J̃γ > −∞, where J̃γ is defined in equation (96).

Lemma 12 states that the agent’s welfare in the economy is well-defined and finite for

any values of γ. It is a direct consequence of Assumption C.

Proof. We prove that the autarky allocation (i.e., null savings at all dates) is feasible.

We assume that aaut,it = 0, for all t ≥ 0 and all i. The consumption of an agent when

employed and with productivity y is caut,it = (1− τ)laut,it (y)ywt. Since her labor supply is

laut,it (y) = (χwty)ϕ, we have:

(99) caut,it − 1
χ

laut,it (y)1+ 1
ϕ

1 + 1
ϕ

=
(

1− τ − ϕ

1 + ϕ

) (χwty)1+ϕ

χ
,

Similarly for the unemployment case, from which ζ (y) = l (y):

(100) caut,it − 1
χ

laut,it (y)1+ 1
ϕ

1 + 1
ϕ

=
(
φ− ϕ

1 + ϕ

) (χwty)1+ϕ

χ
,

Assumption C ensures that quantities (99) and (100) are bounded away from zero for all

γ. The autarky allocation is thus feasible (independently of γ), and has a finite welfare,

which concludes the proof.
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We now derive the FOCs in the truncated economy and investigate their convergence

when γ →∞. Following the same steps as in Section 4, we deduce from the program (96)

the following Euler equations:

lγ
t,sN

= χ(1− τt)yN0 wtU
γ
c,t,sN

,(101)

ξsNU
γ
c,t,sN

= γg′(aγ
t,sN

) + βEt
[∑
s̃N

Πt+1,sN ,s̃N (1 + rt+1)ξs̃NU
γ
c,t+1,sN

]
,(102)

with Uγ
c,t,sN

= Uc,t,sN ,γ(cγ
t,sN

, lγ
t,sN

). Compared to Euler equations (39) and (40), the labor

Euler equation (101) remains unchanged, while the consumption Euler equation (102)

does not feature a Lagrange multiplier for the credit constraint but instead the derivative

of the penalty function. All other equations characterizing the truncated equilibrium are

unchanged (factor prices, market clearing conditions, etc.).

We can now state our result regarding the limit Euler equation.

Lemma 13 (Limit penalty) When γ →∞, the solution of (36) is such that we have:

limγ→∞ a
γ
t,sN

= −ā or, defining c∞
t,sN

= limγ→∞ c
γ
t,sN

and l̂∞
t,sN

= limγ→∞ l̂
γ
t,sN

:

(103) ξsNUc(c∞t,sN , l̂
∞
t,sN ) = βEt

[∑
s̃N

Πt+1,sN ,s̃N (1 + rt+1)ξs̃NUc(c∞t+1,sN , l̂
∞
t+1,sN )

]
.

Lemma 13 states that, when the penalty function becomes infinitely concave, then either

the borrowing of agents facing a positive penalty tends toward the borrowing limit, or

their limit allocation verifies Euler equation (103), which is the same as Euler equation (8)

in the baseline truncated economy.

Proof. The proof is performed by contradiction. Assume that there exists sN ∈ SN ,

such that limγ→∞ at,sN < −ā. Then, there exists ε > 0, such that at,sN ≤ −ā − ε,

for γ high enough, which implies that limγ→∞ γg(at,sN ) = limγ→∞ γε
2 = ∞. Hence,

limγ→∞ J̃γ = −∞, which contradicts Lemma 12. The second part stems from (102), as

γg′(aγ
t,sN

) = 0 if aγ
t,sN

> −ā.
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E.2.2 The Ramsey program

We now rewrite the Ramsey program in the presence of penalty functions. The planner’s

program can be written as follows – we drop the dependence in γ to lighten the notation:25

max(
(a
t,sN

,c
t,sN

,l
t,sN

)
sN
,φt,τt

)
t≥0

E0

[ ∞∑
t=0

βt
∑

sN∈SN
St,sN

(
ξsNU(ct,sN , l̂t,sN )− γg(at,sN )

)]
,(104)

s.t. ξsNUc,t,sN = γg′(at,sN )+βEt
[
(1 + rt+1)

∑
s̃N∈SN

Πt+1,sN s̃N ξs̃NUc,t+1,s̃N

]
,(105)

and subject to the same equations as in the main text: (25), (29), (14), and (3). There

are only two differences compared with the Ramsey program in the main text: (i) the

presence of penalty functions in the planner’s objective; and (ii) penalty functions in the

Euler equations (105). We can now state our main equivalence result.

Proposition 6 (Equivalence result) The solution of program (30) is a solution of the

program (104) when the penalty function become infinitely concave.

E.2.3 Proof of Proposition 6

Using Lemma 13, it only remains to be proven that the FOCs of the Ramsey program

(104) converge to those of the Ramsey program (30) when penalty costs become infinitely

large.

Rewriting the Ramsey program. Denoting by βtSt,sNλt,sN the Lagrange multiplier

on (105) and using (32), the planner’s objective, denoted by Jγ , can be expressed as:

Jγ = E0
∑
t,sN

βtSt,sN ξsN
(
Ut,sN −

(
λt,sN − (1 + rt)λ̃t,sN

)
Uc,t,sN

)
,(106)

+ E0
∑
t,sN

βtSt,sN
(
−γg(at,sN ) + λt,sNγg

′(at,sN )
)
.

Solving the Ramsey program. The Ramsey program then consists in maximizing Jγ

in (106) over ((at,sN , ct,sN , lt,sN )sN , φt, τt)t≥0 subject to the relevant constraints. As in the

baseline case, this problem can thus be seen as depending only on saving choices (at,sN )

and the replacement rate φt. The FOC for φt is independent of penalty functions and is
25As illustrated in Section E.1, we can choose the same penalty γ for the agents and the planner.
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identical to (19). We only focus here on the FOC with respect to (at,sN ), which is after

some algebraic manipulations:

Ψt,sN

β
=
∑
s̃N

Et
[
Ψt,s̃N

(
(1 + rt+1)Πt+1,sN s̃N +St+1,s̃N (FKK,t+1+

ϕLt+1
F 2
KL,t+1
FL,t+1

1−ϕLt+1
FLL,t+1
FL,t+1

)ãt,sN

+ (1 + ϕ)St+1,s̃N τ̃t+1ls̃N ,e,t+1ỹ
N
0

FKL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

)]

+ Et
∑
s̃N

St+1,s̃N

(
FKK,t+1 +

ϕLt+1
F 2
KL,t+1
FL,t+1

1− ϕLt+1
FLL,t+1
FL,t+1

)
λ̃t+1,s̃N ξs̃NUc,s̃N ,t+1

− γg′(at,sN ) + λt,sNγg
′′(at,sN ).

Due to the exterior penalty function, for histories for which at,sN ≤ −ā, at,sN → −ā

as γ → ∞ (Assumption C has to be fulfilled at any optimal equilibrium). In addition,

the previous equality implies that λt,sN → 0 when γ → ∞ and that the constraints

“disappear”, as was shown in Section E.1. See Luenberger and Ye (2016) for a proof in

a more general case. Finally, for histories for which at,sN > ā, the previous constraint

converges to the same constraint as in the initial truncated program (given in (33)). In

our truncated equilibrium without penalty function, we have λt,sN = 0 and at,sN = −ā for

the credit-constrained history. As the FOC for φt is the same in our initial problem and

in the problem with a penalty function, our allocation is therefore a solution of the limit

of program with infinitely concave penalty functions. This concludes the proof.

E.3 Generalizing the truncation theory to non-GHH utility functions

We generalize the truncation method to a separable instantaneous utility function, U(c, l) =

u(c) − v(l), instead of the GHH utility function of the main text. The functions u and

v are supposed to be continuous, twice differentiable, increasing, and concave in both

arguments. For the sake of clarity, the presentation follows the same structure as in the

main text.

E.3.1 The set-up

Besides this more general utility function, the rest of the economy is strictly similar to the

economy presented in Section 2.
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The agent’s program can now be written as:

max
{cit,lit,ait}

∞
t=0

E0

∞∑
t=0

βt(u(cit)− v(lit1eit=e + ζyit
1eit=u)),(107)

cit + ait = (1 + rt)ait−1 + ((1− τt)lit1eit=e + φt l̄t
(
yit

)
1eit=u)yitwt,(108)

ait ≥ −ā, cit > 0, lit > 0.(109)

Compared to (5)–(7), the objective function reflects the different utility function, but the

constraints are unchanged. The agents’ first-order conditions become:

u′(cit) = βEt
[
(1 + rt+1)u′(cit+1)

]
+ νit ,(110)

v′(lit) = (1− τt)wtyitu′(cit),(111)

where the Euler equation (111) obviously only holds for employed agents.

Market clearing conditions (12) are unchanged, and the only difference is that Euler

equations for consumption and labor are more involved than in the GHH case. In particular,

the individual labor supply is no longer a linear function of productivity.

E.3.2 The truncated model

Aggregation. As in the GHH economy, we aggregate individual allocations along the

truncated history of agents (i.e., their individual idiosyncratic history over the last N

periods, N being a given truncation length). The process is very similar (for the budget

constraint, and market clearing conditions for instance) and the only difference concerns

Euler equations. The aggregation of (112) and (113) yields:

ξsN ,tu
′(ct,sN ) = βEt

[ ∑
s̃N�sN

Πt+1,sN ,s̃N ξs̃N ,tu
′(ct+1,s̃N )(1 + rt+1)

]
+ νt,sN ,(112)

ξlsN ,tv
′(lt,sN ) = (1− τt)wtyN0 ξsN ,tu′(ct,sN ),(113)

where (ξsN ,t)sN have the same interpretation as in the GHH economy and (ξl
sN ,t

)sN are

their counterparts that are due to the non-linearity of the Euler equation (113) for labor

(unlike in the GHH economy).
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Steady-state economy. Prices and allocations at the steady state of the aggregated

economy are characterized by the Euler equations for consumption and labor (112) and

(113), the collection of (unchanged) budget constraints (25), and the (unchanged) dynamics

of history sizes (22). We have the following for the Euler equations:

ξsNu
′(csN ) = νsN + β(1 + r)

∑
s̃N�sN

ΠsN ,s̃N ξs̃Nu
′(cs̃N ),(114)

ξlsN v
′(lsN ) = (1− τt)wtyN0 ξsNu′(csN ),(115)

As in the GHH economy, the steady-state equilibrium is further characterized by some

unchanged equations: market clearing equations (29), UI scheme budget balance (14), and

factor prices (3).

Computing the ξs and ξls. Determining the ξs and ξls follows exactly the same logic as

in the GHH economy, using the Bewley allocations, in particular of consumption and labor.

The ξs (for consumption) are determined such that the aggregated consumption levels (for

each history) verify the steady-state consumption Euler equation (114). The difference

compared with the GHH case is that, due to the separability of the instantaneous utility

function in consumption and labor, this operation only requires consumption allocations

of the Bewley model. However, this separability also enables us to determine the ξls.

This computation is straightforward and for each history, the ξsN for each history sN is

computed using the Euler equation for labor (115).

We also have a similar convergence result to that of Proposition 2.

Proposition 7 (Convergence of allocations) With similar notation to Proposition 2,

we have the following convergence result for allocations:

(ct,sN , at,sN , lt,sN )sN −→N (ct(s∞), at(s∞), lt(s∞))s∞∈S∞ , almost surely.

Similarly, for preference shifters: ξsN −→N 1 and ξl
sN
−→N 1, almost surely.

In other words, constructing a truncated model in the presence of a separable utility

function is possible and its main properties do still hold.
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The dynamics. As in Section 4.1.3, we make the assumption that in the presence of

aggregate risk, the ξs and ξls remain constant and equal to their steady-state values.

Similarly, the set of credit-constrained histories is assumed to be time-invariant. The

resulting truncated model in the presence of aggregate shocks is then characterized by

Euler equations (112) and (113) with ξsN ,t = ξsN and ξl
sN ,t

= ξl
sN

(the ξs remain equal to

their steady-state values), as well as by the budget constraint (25), the market clearing

conditions (29), the factor prices (3), and the UI budget constraint (14) (which remain

unchanged compared to the GHH economy).

E.3.3 The Ramsey program

Formulation. We now formulate the Ramsey program in the presence of the separable

utility function. The Ramsey program of equation (15) becomes:

max
((a

t,sN
,c
t,sN

,l
t,sN

)
s∈SN ,φt,τt,rt,wt)t≥0

E0

[∑
t,sN

βtSt,sN (ξsNu(ct,sN )− ξlsN v(l̂t,sN ))
]
,(116)

subject to Euler equations for (112) and (113), as well as the same set of equations as in

the GHH case: (i) the budget constraints (25), (ii) the UI scheme budget balance (14),

(iii) the market clearing constraints (29), and finally (iv) the factor prices (3).

Ramsey first-order conditions. To simplify the derivation of first-order conditions,

we will also assume that the labor supply (lt,sN )sN∈SN is a choice variable, in addition to

savings choices (at,sN )sN∈SN and the replacement rate φt (already present in the GHH

case).

The Lagrange multiplier for the consumption Euler equation is still βtSt,sNλt,sN , while

the one for the labor Euler equation is βtSt,sNµt,sN . We introduce Ψ̃t,sN , defined as:

Ψ̃t,sN = Ψt,sN + (1− τt)FL,tµt,sN ξsNu′′(ct,sN ),

which reflects the value of liquidity. In addition to the GHH case, it accounts for the fact
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that the labor supply diminishes if consumption increases. The FOC for saving choices is:

Ψ̃t,sN = β
∑
s̃N

Et
[(

(1 + rt+1)Πt+1,sN ,s̃N + FKK,t+1St+1,s̃N ãs̃N ,t

)
Ψ̃t+1,s̃N

]
(117)

+βFKL,t+1
∑
s̃N

Et

[
St+1,s̃N Ψ̃t+1,s̃N((1− τt+1)1ẽN0 =e+

St+1,e
St+1,u

τt+11ẽN0 =u)ỹN0 lt+1,s̃N

]

+β
∑
s̃N

Et
[
St+1,s̃N

(
FKK,t+1λ̃t+1,s̃N +(1− τt+1)FKL,t+1µt+1,s̃N ξs̃N

)
ξs̃Nu

′
t+1,s̃N

]
.

The two first lines are very similar to the GHH case, while the last one includes a term

that is specific to our separable utility function. The FOC with respect to labor supply is:

ξl
sN

y0

(
v′(lt,sN ) + µt,sN v

′′(lt,sN )
)
−
(

(1− τt)1ẽ0=e + St,e
St,u

τt1ẽ0=u

)
FL,tξsN Ψ̃t,sN(118)

=
∑

s̃N∈SN
St,s̃N ξs̃N Ψ̃t,s̃N

(
FKL,tãsN ,t−1+((1− τt)1ẽ0=e + St,e

St,u
τt1ẽ0=uy0)FLL,tlt,s̃N

)

+
∑
s̃N

St,s̃N
(
FKL,tλ̃t,s̃N + (1− τt)FLL,tµt,s̃N

)
ξs̃Nu

′
t,s̃N .

Finally, the first-order equation with respect to the replacement rate is:

∑
sN∈SN

St,sNµt,sN ξsNu
′(ct,sN )=

∑
sN∈SN

St,sN ξsN Ψ̃t,sN (−1eN0 =e + St,e
St,u

1eN0 =u)yN0 lt,s̃N ,(119)

which balances the benefits of a higher replacement rate with its cost. The proofs for

expressions (117)–(119) follows the exact sames lines as the one of Section 4.2 (with GHH

utility function) and is skipped for the sake of conciseness.

The algorithm for simulation the Ramsey solution remains the same as the one of

Section 4.2.2 in the GHH case, except that both the ξs and ξls have to be computed using

the steady-state allocations (Step 4.a).

E.3.4 Conclusion

Section E.3 has shown that our truncation method can be readily extended to a more

general utility function. The only difference is that due to the non-linearity of the Euler

equation for labor supply, we need to include ξs that are specific to the labor Euler

equation. The rest (including the Ramsey problem) is mostly unchanged.
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