HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Estimation précoce de la croissance : De la régression LARS au modèle à facteurs

Abstract : In this paper, nowcasts are provided by a factor model, where factors are extracted from a small number of monthly series, selected using the LARS algorithm (Least Angle Regression). We follow the work of Bai and Ng (2008) which contrasts strongly with the traditional factor model based on a large information set. They recommend selecting only targeted predictors, i.e. the most informative series to forecast growth. A pseudo real time analysis is carried out to estimate French growth over the period 2001-2007.
Document type :
Journal articles
Complete list of metadata

Contributor : Spire Sciences Po Institutional Repository Connect in order to contact the contributor
Submitted on : Sunday, December 12, 2021 - 1:14:39 AM
Last modification on : Friday, March 25, 2022 - 3:41:17 AM


Publisher files allowed on an open archive




Françoise Charpin. Estimation précoce de la croissance : De la régression LARS au modèle à facteurs. Revue de l'OFCE, Presses de Sciences Po, 2009, pp.31 - 48. ⟨10.3917/reof.108.0031⟩. ⟨hal-03476082⟩



Record views


Files downloads