
HAL Id: hal-03471817
https://sciencespo.hal.science/hal-03471817

Submitted on 9 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical, Accurate, Information Criterion for Nth
Order Markov Processes

Sylvain Barde

To cite this version:
Sylvain Barde. A Practical, Accurate, Information Criterion for Nth Order Markov Processes. Com-
putational Economics, 2017, 50 (2), pp.281 - 324. �10.1007/s10614-016-9617-9�. �hal-03471817�

https://sciencespo.hal.science/hal-03471817
https://hal.archives-ouvertes.fr

Comput Econ (2017) 50:281–324
DOI 10.1007/s10614-016-9617-9

A Practical, Accurate, Information Criterion
for Nth Order Markov Processes

Sylvain Barde1,2

Accepted: 5 August 2016 / Published online: 3 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The recent increase in the breath of computational methodologies has been
matched with a corresponding increase in the difficulty of comparing the relative
explanatory power of models from different methodological lineages. In order to help
address this problem a Markovian information criterion (MIC) is developed that is
analogous to the Akaike information criterion (AIC) in its theoretical derivation and
yet can be applied to anymodel able to generate simulated or predicted data, regardless
of its methodology. Both the AIC and proposed MIC rely on the Kullback–Leibler
(KL) distance betweenmodel predictions and real data as ameasure of prediction accu-
racy. Instead of using the maximum likelihood approach like the AIC, the proposed
MIC relies instead on the literal interpretation of the KL distance as the inefficiency
of compressing real data using modelled probabilities, and therefore uses the output
of a universal compression algorithm to obtain an estimate of the KL distance. Sev-
eral Monte Carlo tests are carried out in order to (a) confirm the performance of the
algorithm and (b) evaluate the ability of the MIC to identify the true data-generating
process from a set of alternative models.

Keywords AIC · Minimum description length · Markov process · Model selection

JEL Classification B41 · C15 · C52 · C63

1 Introduction

The rapid growth in computing power over the last couple of decades, combined with
the development of user-friendly programming languages and an improvement of fun-

B Sylvain Barde
s.barde@kent.ac.uk

1 School of Economics, Keynes College, University of Kent, Canterbury CT2 7NP, UK

2 Observatoire Français des Conjonctures Economiques, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-016-9617-9&domain=pdf
http://orcid.org/0000-0003-1465-8236

282 S. Barde

damental statistical and algorithmic knowledge have lead to a widening of the range of
the computational methods available to researchers, from formal modelling to estima-
tion, calibration or simulation methodologies. While this multiplication of available
methods has offered a greater modelling flexibility, allowing for the investigation of
richer dynamics, complex systems, model switching, time varying parameters, etc.,
it has come at the cost of complicating the problem of comparing the predictions or
performance of models from radically different methodological classes. Two recent
examples of this, which are by nomeans exclusive, are the development of the dynamic
stochastic general equilibrium (DSGE) approach in economics, and the increase in the
popularity of what is generally referred to as agent-based modelling (ABM), which
uses agent-level simulations as amethod ofmodelling complex systems, and for which
even the issue of bringing models to the empirical data can prove to be a problem.

Within the DSGE literature on model validation and comparison, one of the first
to identify and address this problem in a direct and systematic manner is Schorfheide
(2000), who introduces a loss function-based method for evaluating DSGE mod-
els. This is then complemented by the DSGE-VAR procedure of Del Negro and
Schorfheide (2006) and Negro et al. (2007), which explicitly sets out to answer the
question ‘Howgood ismyDSGEmodel?’ (p. 28). The procedures gradually developed
over time in this literature are summarised in the section on DSGEmodel evaluation of
Negro and Schorfheide (2011), which outlines several methods for evaluating DSGE
performance, such as posterior odds ratios, predictive checks and the use of VAR
benchmarking.

Similar concerns relating to model evaluation and comparison also exist in the
ABM literature, to the extent that two special journal issues have been published in
order to identify and address them. Fagiolo et al. (2007), as part of the special issue
on empirical validation in ABM of Computational Economics, provide a very good
review of the existing practices and provide advice as to how to approach the problem
of validating an agent-based simulation model. The most obvious example of the need
for validation methodologies is the recent development of several large-scale agent-
based frameworks that allow the investigation of key macroeconomic questions, such
as Keynes/Schumpeter model developed in Dosi et al. (2010, 2013, 2015), which
allows for analysis of fiscal and monetary policies, or the European-wide EURACE
collaboration of Deissenberg et al. (2008), Van Der Hoog et al. (2008) and Holcombe
et al. (2013), which aims to allow large-scale modelling of economic systems. As
pointed out by Fagiolo and Roventini (2012), these would greatly benefit from being
compared to the standard DSGE macroeconomic workhorse models. Nevertheless, as
outlined by Dawid and Fagiolo (2008) in the introduction of the special issue of the
Journal of Economic Behavior and Organization on adapting ABM for policy design,
finding effective procedures for empirical testing, validation and comparison of such
models is still very much an active field of research. Some of the recent developments
in this regard are related to the approach suggested here, for example the state similarity
measure ofMarks (2010, 2013),which aims tomeasure the distance between two time-
series vectors, as is the case here. Similarly, ongoing work by Lamperti (2015) also
explores the possibility of comparing models on the basis of simulated data alone with
an information based measure, using however a very different measurement approach.
Finally, another approach of note is Fabretti (2014), which treats the simulated data

123

An Information Criterion for Markov Processes 283

from an implementation of the Kirman (1993) model as a Markov chain in order to
estimate its parameters. While again the objective and methodology used are different
from what is proposed here, the idea of mapping the simulated data to a Markov
process is very similar in spirit.

The paper aims to contribute to this general issue of comparing different lineages
of models by providing a proof-of-concept for a Markovian information criterion
(MIC) that generalises the Akaike (1974) information criterion (AIC) to any class
of model able to generate simulated data. Like the AIC, the proposed criterion is
fundamentally an estimate of the Kullback and Leibler (1951) (KL) distance between
two sets of probability densities. The AIC uses the maximised value of the likelihood
function as an indirect estimate of the KL distance, however, this obviously requires
the model to have a parametric likelihood function, which is no longer straightforward
for many classes of modelling methodologies. The proposed criterion overcomes this
problem by relying instead on the original data compression interpretation of the KL
distance as the inefficiency resulting from compressing a data series using conditional
probabilities that are an estimate or approximation of the true data generating process.
This fundamental equivalence between data compression and information criteria has
led to the emergence of what is known as the minimum description length (MDL)
principle, which relies on the efficiency of data compression as a measure of the
accuracyof amodel’s prediction.Grünewald (2007) provides a good introduction to the
MDL principle and its general relation to more traditional information criteria, while
Hansen and Yu (2001) explore the use of MDL within a model selection framework,
concluding that “MDL provides an objective umbrella under which rather disparate
approaches to statistical modelling can coexist and be compared” (Hansen and Yu
2001, p. 772).

The proposed methodology provides three key contributions compared to existing
methods. The first is to provide a standardised measurement, as the procedure places
all models on an equal footing, regardless of their numerical methodology or struc-
ture, by treating the simulated data they produce as the result of a Nth order Markov
process, where the number of lags is chosen to capture the time dependency of the
data. As pointed out by Rissanen (1986), Markov processes of arbitrary order form a
large subclass (denoted FSMX) of finite-state machines (FSMs), i.e., systems where
transitions are governed by a fixed, finite transition table. By mapping every model to
be compared to its FSM representation and scoring these transition probabilities on the
empirical data, the MIC is able to overcome differences in modelling methodologies
and produce a standardised criterion for any model reducible to a Markov process.
This is designed to take advantage of the fact, pointed out by Tauchen (1986a, b) and
Kopecky and Suen (2010), that many economic variables and modelling approaches
can in fact be approximated by a Markov process.1 A second contribution is that the
algorithm used to obtain the transition table possess a guaranteed optimal performance

1 This is because, as was pointed out by Shannon (1948) at the very start of the data compression literature,
“any stochastic process which produces a discrete sequence of symbols chosen from a finite set may be
considered a discrete source” and modelled by a Markov process. As shown by Shannon using the example
of the English language, even systems that are not strictly generated through a Markov process can be
successfully approximated by one.

123

284 S. Barde

over Markov processes of arbitrary order, which as will be shown below, allows an
accurate measurement for the MIC. Finally, the algorithm measures cross-entropy at
the observation level, producing a vector which sums up to the MIC which enables
the reliability of a measurement to be tested statistically.

Because purpose of the approach is to use the MIC to compare a set of models
{M1, M2, . . . , Mm} against a fixed-size data set, it is important to also highlight the
data snooping problem identified by White (2000) and the reality check procedures
that must be carried out to avoid it. Essentially, because statistical tests always have
a probability of type I error, repeated testing of a large (and possibly increasing) set
of models on a fixed amount of data creates the risk of incorrectly selecting a model
that is not truly the best model in the set. White (2000) therefore proposes a procedure
that takes into account the size of the model comparison set {M1, M2, . . . , Mm}when
testing for performance against a benchmark model M0. A recent development in this
literature is the model confidence set (MCS) methodology of Hansen et al. (2011),
which differs from White’s reality check in that it does not test against a benchmark
model, but instead identifies the subset M̂1−α of models in the set which cannot be
distinguished from each other at significance level α. This is well suited to the model-
specific vectors of scores produced by the MIC, therefore the MCS is included in the
Monte Carlo analyses presented below.

The remainder of the paper is organised as follows. Section 2 first discusses the use
of universal data compression as an empirical tool for evaluating prediction accuracy
and details the theoretical properties of the MIC. A Monte Carlo analysis is then
performed in Sect. 3 in order to compare the MIC against the AIC benchmark in an
ARMA-ARCH setting and evaluate the criterion’s performance. Section 4 discusses
the use of the methodology in practical settings and Sect. 5 concludes.

2 The MIC: Motivation and Theoretical Properties

Before examining the information-theoretical motivation for the MIC methodology
and the core properties that justify the choice of algorithms, it is important to first
briefly clarify the terminology and notation that will be used throughout the paper.

First of all, we define a prediction as a conditional probabilitymass function over the
discrete states a system can occupy, given knowledge of the system’s history. Amodel
is very loosely defined as any device that can produce a complete set of predictions,
i.e., a prediction for every acceptable history. This is very similar to the loose definition
adopted byHansen et al. (2011) for theirMCS procedure. Furthermore, no assumption
ismade on the quality of the predictions: a uniform distribution over the system’s states
is acceptable. Conceptually, this set of predictions corresponds to the state transition
table of a FSMX or, equivalently, as the transition matrix of a Markov process. This
loose definition of amodel is intended to be very general: anything frompersonal belief
systems to formal analytical models, as well as calibrated simulations or estimated
econometric specifications are reducible to this class of processes, as all can provide
a predictive density for future observations given the history of the system.

Regarding notation, the binary logarithm will be clearly identified as ‘log2’, while
the natural logarithm will be ‘ln’. Xt is an unobserved, real-valued random variable

123

An Information Criterion for Markov Processes 285

describing the state of a system at time t and xt its observed realisation. Data series
are denoted as xt1 = {x1, x2, . . . , xt }. X t , x t and x t

1 are the discretised versions of
the same variables, with r being the number of bits of resolution used for the dis-
cretisation and Ω = 2r the resulting number of discrete states the system can occupy.
Because of the binary discretisation used, x t will refer to both the numerical value of
the observation and the corresponding r -length binary string encoding it. When neces-
sary, the kth bit of a given observation x t will be identified as x t {k}. Pdgp(X t | x t−1

1)

is the true probability distribution over the Ω states at time t conditional on the past
realisations of the variable. PMi (X t | x t−1

t−L) is a corresponding conditional probability
distribution predicted by a model Mi at the same time and over the same state space,
using a limited number of lags L . Using the chain rule for conditional probabilities,
P(x t

1) = P(X t | x t−1
1)P(x t−1

1), the model predictions and true conditional proba-
bilities can be used recursively to build the overall probabilities for the series PMi (x

t
1)

and Pdgp(x t
1).

2.1 Information Criteria and Minimum Description Length

Given a model Mi , a reasonable metric for evaluating the accuracy of the overall
prediction PMi (x

t
1) with respect to Pdgp(xt1) is the Kullback and Leibler (1951) (KL)

distance measure between the two distributions, which was developed as an extension
of the fundamental concept of information entropy introduced in Shannon (1948).

DKL
(
PMi

(
xt1
)∥∥ Pdgp

(
xt1
)) = Edgp

[
ln

Pdgp(xt1)

PMi (x
t
1)

]
. (1)

In terms of notation, the Edgp[. . .] operator indicates that the expectation is taken
with respect to the true distribution Pdgp(xt1). The first obvious consequence of (1)
is that the KL divergence DKL is zero whenever PMi (x

t
1) = Pdgp(xt1). As shown by

Cover and Thomas (1991), by taking into account the strict concavity of the logarithm
and applying Jensen’s inequality to the expectation term in (1) one can show that the
KL distance is strictly positive for PMi (x

t
1) �= Pdgp(xt1), making it a strictly proper

scoring rule in the sense of Gneiting and Raftery (2007). This property underpins the
use of the KL distance as a conceptual criterion for determining the accuracy of a
model, as minimising the KL distance with respect to the choice of prediction model
should theoretically lead to the identification of the true model.

While the KL distance is a desirable measure of accuracy in theory, it suffers from
not being directly computable in practice, as this would require knowledge of Pdgp.
The key insight of Akaike (1974) was to identify that it is possible to use the maximum
likelihood estimation of the model Mi , to obtain an estimate of the following cross
entropy, without requiring knowledge of the true distribution Pdgp:

Edgp

[
ln

1

PMi (x
t
1)

]
= DKL

(
PMi

(
xt1
)∥∥ Pdgp

(
xt1
))+ Edgp

[
ln

1

Pdgp(xt1)

]
. (2)

123

286 S. Barde

Assuming that the model Mi uses a vector of κi parameters θi , and that θ̂i are the
parameter values that maximise the likelihood L(θi |xt1), Akaike (1974) showed the
cross entropy between the data and the model can be estimated asymptotically by the
following relation, directly leading to the classical definition of the AIC for a set of
models:

AICi

2
= Edgp

[

ln
1

PM̂i
(xt1)

]

= − ln
[
L
(
θ̂i

∣∣
∣ xt1
)]

+ κi . (3)

The fact that (3) is not directly an estimate of the KL distance (1) but instead
of the cross entropy (2) explains why Akaike (1974) recommends looking at the
AIC differences between models, ΔAICi, j = AICi − AIC j , as this removes the
model-independent Shannon entropy terms and keep only the relative KL distance
ΔDKL(PMi (x

t
1)‖Pdgp(xt1))i, j .

As emphasised by theMDL literature, the original interpretation of the KL distance
(1) relates to the fundamental theoretical limits to compressibility of data. Given a
discretised data series x t

1, the binary Shannon entropy −Edgp[log2 Pdgp(x t
1)] gives

the number of bits below which the data series cannot be compressed without loss.
Because the true probability over states of nature Pdgp is unknown, practical data
compression has to rely on a predetermined model of how the data is distributed, PMi .
Intuitively, this should introduce some inefficiency, thus increasing the theoretical
limit below which the data cannot be compressed. This higher limit, measured by the
cross entropy (2), is the sum of the Shannon entropy and the KL distance between
M and the true data generating process. In other words, on top of the number of bits
required to encode the true information content of the data, one has to add extra bits
to account for the fact that the model distribution PMi does not exactly match the true
distribution Pdgp.

The MDL principle is at the core of the proposed MIC precisely because of the
flexibility it offers, enabling practical model comparison on the basis of simulated data
alone. However, as pointed out by Grünewald (2007), MDL only provides a guiding
principle for analysis and does not prescribe a specific methodology. It is therefore
important to choose any implementation carefully and verify its efficiency. The context
tree weighting (CTW) algorithm proposed by Willems et al. (1995), which forms the
basis of the proposed MIC, is chosen specifically because of its desirable theoretical
properties, discussed below.

2.2 Theoretical Properties of the MIC Procedure

Discounting a preliminary data preparation step required to convert the real-valued
vector of data xt1 to a discretised vector x

t
1, the methodology uses a two stage proce-

dure to obtain the MIC. In the first stage, the CTW algorithm processes the simulated
data generated by each candidate model Mi and produces a set of tree structures
from which model-specific conditional probabilities PMi (X t | x t−1

t−L) can be recov-
ered. In the second stage, each observation x t of the real data is scored using the
corresponding CTW probability, providing a binary log score λi (X t | x t−1

t−L) which

123

An Information Criterion for Markov Processes 287

sums to the following cross entropy measure (2), which will form the basis of the
MIC:2

λi
(
x t

L+1

) =
∑

t

λi

(
X t
∣∣ x t−1

t−L

)
. (4)

The justification for using the CTW algorithm in a two-stage procedure is that it
endows the resulting criterion with the following properties. First of all, the measure-
ment of cross-entropy (2) is optimal, as the inefficiency resulting from having to learn
a model’s conditional probability structure from simulated data attains the theoreti-
cal minimum and can therefore be controlled for. Importantly, the CTW is universal
over FSMs, i.e., this optimal performance is guaranteed for all Markov processes of
arbitrary order. This key guaranteed performance for all Markov processes underpins
the name of the criterion. Finally, because the methodology processes observations
sequentially in the second stage, it measures entropy at the level of each individual
observation. This key property, which is not present in alternative methods which
measure aggregate entropy by relying on empirical frequencies over the entire set of
observations, allows for both analysis of model fit at the local level and confidence
testing of the aggregate MIC value.

The actual measurement of cross entropy using the CTW probabilities is carried
out using arithmetic encoding, a simple, elegant and efficient approach to data com-
pression initially outlined by Elias (1975), and further developed by Rissanen (1976)
and Rissanen and Langdon (1979) into a practical algorithm. In practice, the cross
entropy of an r -bit observation x t is simply the sum of the binary log scores for each
bit, where pi (k) = PMi (X t {k} = 1| x t−1

t−L , x t {1, 2, . . . , k − 1}) is the probability of
the kth bit being a ‘1’ conditional on L lags of history and the previous k − 1 bits of
the observation:

λi

(
X t
∣∣ x t−1

t−L

)
= −

r∑

k=1

[
x t {k} log2 pi (k) + (

1 − x t {k}
)
log2 (1 − pi (k))

]
. (5)

One of the key contributions of Elias (1975) is a proof that the difference between
the binary log scores summed over the entire length of the data (4) and the theoretical
cross entropy (2) is guaranteed to be less than two bits:

λi
(
x t

L+1

)− Edgp

[

log2
1

PMi (x
t
L+1)

]

≤ 2. (6)

The inefficiency incurred in the first stage by having to learn model probabilities
using theCTWalgorithm can similarly be bounded. The general intuition behindCTW
is that each {0, 1} bit in a binary string is treated as the result of a Bernoulli trial. More
precisely, all the bits in the series that have the same past historical context x t−1

t−L ,

2 Because the aim of the paper is to present the desirable theoretical properties of the proposed criterion and
assess their usefulness in practice, the more technical aspects relating to the algorithmic implementation
are detailed in Appendix 2.

123

288 S. Barde

identified by the binary string s, and the same initial observation bits x t {1, 2, . . . , k},
identified by string o, are governed by the same Bernoulli process with unknown
parameter θs,o. As the training series is processed, each node in the tree maintains a set
of internal counters {as,o, bs,o} for the number of times it has respectively observed a
‘0’ or a ‘1’ after having seen both context s and the first o bits of the current observation.
Given these {as,o, bs,o} counters, the estimator for Bernoulli processes developed by
Krichevsky and Trofimov (1981) (henceforth referred to as the KT estimator) can
be used to update the underlying probability of the binary sequence, by using the
following recursion:

⎧
⎪⎪⎨

⎪⎪⎩

Pe(0, 0) = 1,

Pe(as,o, bs,o + 1) = bs,o+ 1
2

as,o+bs,o+1 Pe(as,o, bs,o),

Pe(as,o + 1, bs,o) = as,o+ 1
2

as,o+bs,o+1 Pe(as,o, bs,o).

(7)

The ratios in the second and third equations of this recursion can be interpreted as
frequency-based estimators of θs,o and 1 − θs,o, respectively. Clearly such a learning
process has an efficiency cost, as one can see that the KT estimator (7) is initialised
with an uninformative prior, where Pe(1, 0) = Pe(0, 1) = 0.5, regardless of the true
value of θs,o. While the frequencies will converge to θs,o and 1− θs,o as more training
data is observed, the cost of compressing the observations sequentially using (7) rather
than the true Bernoulli process with parameter θs,o can be expressed as:3

χ
(
as,o, bs,o

) = log2
(1 − θs,o)

as,oθ
bs,o
s,o

Pe(as,o, bs,o)
. (8)

The key contribution of Willems et al. (1995) is to prove that χ is bounded above
by the following term:

χ
(
as,o, bs,o

) ≤ 1

2
log2

(
as,o + bs,o

)+ 1. (9)

In order to show that this bound on χ is optimal, Willems et al. (1995) refer to the
key contributions of Rissanen (1978, 1984, 1986), which show that if the probabilities
PMi used to encode data come from a Markov process Mi parametrised by a vector
θi that has to be estimated from the observations, then the effective lower bound on
compression is higher than the Shannon entropy alone. This bound, known as the
Rissanen bound, is the denominator of the following expression and depends on the
number of parameters κi used inmodelMi and the number of observations N available
from which to estimate the parameters:

3 One should note that the numerator of (8) differs from a standard binomial probability in that it does not

contain the binomial coefficient
(a + b

b

)
, which counts the number of ways one can distribute b successes

within a + b trials. This is because we are interested in the probability of a specific sequence of zeros and
ones, therefore the multiplicity is omitted.

123

An Information Criterion for Markov Processes 289

lim
N

inf
Edgp

[
log2

1
PMi (x

t
1)

]
− Edgp

[
log2

1
Pdgp(xt1)

]

1
2κi log2 N

≥ 1. (10)

This result, which resembles the Bayesian information criterion (BIC) developed
during the same time period by Schwarz (1978), can be used to show that the bound
on the inefficiency of the (9) estimator is optimal.4 Because the KT estimator (7)
estimates the parameter of a Bernoulli source, the number of ones and zeros observed
must give the total number of observations, so Ns,o = as,o + bs,o, and there is only a
single parameter θs,o, so κs,o = 1, and the Rissanen bound (10) for the KT estimator
can be expressed as:

lim
as,o+bs,o

inf
Edgp[χ(as,o, bs,o)]
1
2 log2(as,o + bs,o)

≥ 1. (11)

As pointed out by Willems et al. (1995), this makes the bound (9) optimal: the
inefficiency of the KT estimator has to be greater in expectation than its Rissanen
bound 1/2 × log2(a + b), yet its realisation is proven to be less than the Rissanen
bound plus the smallest possible information increment, i.e., one bit. This optimality
argument leadWillems et al. (1995) to use the bound (9) as the measure of the learning
cost of each KT estimator (7) in the tree. Because all the nodes in a context tree use
the KT estimator (7), the aggregate inefficiency of learning the full set of transition
probabilities in a context tree is bounded above by the following term, which simply
sums the KT bound (9) over all contexts s and observations o, using a continuation
term γ (x) that ensures that nodes that have never been observed do not contribute to
the expression:

Xi =
∑

s

∑

o

γ
(
as,o + bs,o

)
γ (x) =

{
x for 0 ≤ x < 1,
1
2 log2(x) + 1 for x ≥ 1.

(12)

Crucially,Willems et al. (1995) prove that because all FSMXsources can bemapped
to a context tree, and all nodes in the tree use the KT estimator (7), the aggregate learn-
ing cost for the full tree (12) is itself optimal for all FSMX sources, in particular all
Markov process of arbitrary order L . This proven optimal performance over the very
general class of Markov processes corresponds to the second important property men-
tioned above, universality, and justifies the choice of this algorithm for the proposed
information criterion, rather than other existing Markov approximation methods such
as the ones proposed by Tauchen (1986a, b) or reviewed in Kopecky and Suen (2010).
Furthermore, in line with the MDL literature, this aggregate cost (12) can be used as
a measure of the complexity of a model for the purpose of penalisation, which will be
discussed further in Sect. 4.

4 This similarity becomes even clearer when one considers that, as shown by Akaike (1974), the maximised
likelihood function is a good estimator of the cross entropy (2).Rissanen (1984) is very aware of the similarity
of the bound (10) with the BIC, and refers several time to the lineage of his work with Akaike (1974).

123

290 S. Barde

The final property of interest is the fact that the empirical observations are
scored sequentially in the second stage, generating an observation-specific score
λMi (X t | x t−1

t−L), which sums up to the total length of the code string (4). This has three
important implications, the first of which is the ability to assess the relative accuracy
of models both at the global and local level, which will be illustrated in Sec. 3.3.
Secondly, the availability of an observation-by-observation score provides the basis
for statistical analysis and confidence testing of the MIC measurements obtained. In
fact, as will be shown in Sect. 3.2, this makes the MIC methodology naturally suited
to the MCS approach. Finally, the node counters as,o, bs,o which are used to calculate
the transition probabilities (7) can also be used to produce a correction term for the
measurement bias incurred by using these probabilities to calculate the entropy of the
observation in the log score (5).

This bias occurs due to the fact that the KT estimator (7) uses the as,o and bs,o
counts to approximate the true parameters θs,o, and this approximation may be poor,
especially for transitions that are infrequently observed or for low lengths of training
data. As pointed out in the literature initiated by Miller (1955) and Basharin (1959)
on biased measurement of entropy, such a use of empirical frequencies instead of
true probabilities will create a systematic bias.5 In the case of the KT estimator, it is
possible to take advantage of the optimal bound (9) to correct this bias.

It is important to point out, however, that one cannot directly use expressions (9)
or (12) to correct this bias. These measure the learning cost incurred should one try to
compress the training data in a single pass, i.e., when sequentially compressing each
binary training observation after having used it to update the KT estimator (7). This
is not what is done here: only the empirical data is compressed, and this is processed
separately from the training data.What is required instead is the size of the learning cost
at the margin, for the specific empirical observation being compressed, after having
already observed a sequence of training observations. This can be obtained from (9) by
calculating how much the overall learning cost of the KT estimator increases when an
empirical observation is added to the existing tree built with the training data. Treating
(9) as an equality and calculating the increase in the expression after adding a single
extra zero or one observation provides the following approximation for the learning
cost at the margin:

Δχ(as,o, bs,o)

Δas,o
= Δχ(as,o, bs,o)

Δbs,o
≈ 1

2
log2

as,o + bs,o + 1

as,o + bs,o
. (13)

Because the KT estimator only predicts the value of a single bit, the overall bias for
a given data observation, identified by its specific context string s∗ is calculated by
summing (13) over the r set of counters {as∗,o, bs∗,o} within node s∗ that correspond
to the bits of the observation string o:

5 This literature mainly focuses on biases that occur when measuring Shannon entropy. This is discussed
further in Appendix 1, which derives the expected bias for the case of a cross entropy measurement, which
is what the MIC measures.

123

An Information Criterion for Markov Processes 291

εi

(
X t
∣∣ x t−1

t−L

)
= 1

2

x t∑

o=∅

log2
as∗,o + bs∗,o + 1

as∗,o + bs∗,o
. (14)

Subtracting the observation-level bias vector (14) from the raw score vector (4)
results in a bias-corrected score λεc

i (X t | x t−1
t−L) which sums to the overall MIC:

MICi =
∑

t

[
λi

(
X t
∣∣ x t−1

t−L

)
− εi

(
X t
∣∣ x t−1

t−L

)]
. (15)

One might legitimately worry about the accuracy of the bias correction term (14)
given that (13) is calculated by treating the bound (9) as an equality, rather than
an inequality. However, given the tightness of this bound compared to the theoret-
ical expectation (11), the approximation is expected to be accurate. Furthermore,
it is shown in Appendix 1 that (14) corresponds to the bias one obtains by gen-
eralising Roulston (1999) to cross entropy. The benchmarking exercise carried out
in the next section also establishes that (14) closely tracks the bias observed in
practice.

2.3 Benchmarking the MIC’s Theoretical Efficiency

The MIC (15) aims provide a reliable and statistically testable measurement of the
cross entropy (2) between data and a model, for all models that are reducible to a
Markov process. What makes this proposition feasible are the desirable theoretical
properties of the two algorithms used to generate the MIC, i.e., the fact that difference
between the log score provided by the Elias (1975) algorithm λi (x t

1) and the true cross
entropy over an entire sequence of data is tightly bounded by (6) and that bias term
(14) provides an effective correction for having imperfectly learnt the probabilities in
the first stage. Because these theoretical properties form the central justification for
the procedure, it is important to check, as a first step, that they are achieved in practice
when the procedure is implemented.

The benchmarking strategy chosen is to run the MIC procedure on a stream of data
with knowndistribution, and therefore knownentropy, and to compare the performance
achieved in practice to the one expected in theory. In order to provide a reliable test
of performance, 1000 random data series of length N = 219 are generated from the
following beta distribution.6

Xt ∼
i id

Beta(2, 7). (16)

The beta distribution is chosen for its [0, 1] support, which simplifies the process of
discretising the observations, and for its asymmetry under the chosen parameters, in
order to test theCTW’s ability to identify asymmetric distribution shapes. Furthermore,

6 Because of the binary nature of the data and algorithm, the data lengths used throughout the paper are
powers of two as this simplifies calculations requiring the binary logarithm log2 .

123

292 S. Barde

Table 1 Algorithm performance on 1000 eight-bit beta distributed data series

Shannon
benchmark

Elias, fixed
probability

Elias, CTW
probability

λ/N , mean 6.9839 6.9839 6.9852

λ/N , std. dev. 0.0013 0.0013 0.0469

λ/N , P2.5 6.9815 6.9815 6.8942

λ/N , P97.5 6.9864 6.9864 7.0767

Δλ/N , mean – 1.907 × 10−6 3.132 × 10−4

Δλ/N , std. dev. – 1.327 × 10−12 0.0016

Δλ/N , P2.5 – 1.907 × 10−6 −0.0026

Δλ/N , P97.5 – 1.907 × 10−6 0.0037

Theoretical bound – Elias (6) Bias (14)

Value – 3.815 × 10−6 3.172 × 10−4

λ/N measured cross-entropyper observation in bits,Δλ/N measured cross-entropyper observation, relative
to Shannon benchmark, in bits

the iid assumption means that each data series is memoryless, ensuring that the best
possible compression performance per observation is simply the Shannon entropy of
the overall distribution. For the purpose of the analysis, the 1000 series are quantised
to an eight-bit level, i.e., r = 8.

For each of the 1000 data series, the eight-bit theoretical entropy is calculated
by collecting the N observations into a 256 bin histogram on the [0, 1] sup-
port, which when normalised by N provides an empirical frequency vector f from
which the Shannon entropy S = −∑256

i=1 fi log2 fi can be calculated. This pro-
vides the theoretical lower bound for compression and serves as the performance
benchmark, the descriptive statistics of which are presented in the first column of
Table 1.

The bound on the Elias algorithm (6) is tested by scoring each data series with
the algorithm using its corresponding frequency vector f, and comparing the result
against the theoretical benchmark. The result, displayed the second column of Table 1,
confirms that the difference in performance between arithmetic encoding using the
fixed probabilities f and the theoretical benchmark is vanishingly small (on the order
of 1/N) and remains below the Elias bound (6) of 2/N . One can conclude from this
result that as expected the implementation of the Elias algorithmprovides an extremely
reliable measure of cross-entropy (2).

A second test evaluates the learning cost of the CTW algorithm by training it with
an additional, independent, stream of beta distributed data (16) and using the resulting
CTW probabilities to compress the 1000 Monte Carlo data series. In order to provide
an illustration of the literal learning curve of the CTW algorithm, the Monte Carlo
analysis is run for increasing amounts of training data, from T = 1 to T = 219 = N ,

the result being illustrated in Fig. 1.
Along with the third column of Table 1, Fig. 1a provides two key conclusions. The

first is that, as expected, there is a learning curve: the performance of the algorithm

123

An Information Criterion for Markov Processes 293

(a) (b)

(c) (d)

Fig. 1 Effective versus theoretical performance of CTW algorithm. a Relative score per observation.
b Relative MIC per observation. c Learning curves. d CTW probabilities at T = 219

is poor at very low levels of training but converges to the benchmark as the amount
of training data is increased. The second important element is that the bias correction
term (14) closely tracks the mean value of the relative log scores (5) for the fixed
and CTW probabilities, and is noticeable up until 217–218 observations. Using the
bias correction term, as shown in Fig. 1b, c, therefore ensures that even at low levels
of training (around 215 ≈ 32, 000 observations) the expected difference between the
MIC score with CTW probabilities and the score for fixed probability f is near zero.
Beyond that point, additional training data is only useful in reducing the variance of
the measurement, albeit with strongly diminishing returns. Figure 1c shows that most
of the noise reduction is achieved around 218 ≈ 250, 000 observations, and doubling
the amount of training data to 219 observations brings little further improvement. A
final confirmation of the CTW algorithm’s good learning properties is seen in Fig. 1d,
which shows that probability distribution learnt by the algorithm closely follows the
beta distributed probability mass function (16).

3 Monte Carlo Validation on ARMA–ARCH Models

The practical usefulness of the MIC as an information criterion is tested on a series of
ARMA–ARCH models by evaluating its ability to identify the true model as well as
correctly rank the alternative models. This will also illustrate the MIC’s performance
on subsets of data, by attempting to identify portions of the data where the relative
explanatory power of two models switches over.

123

294 S. Barde

Table 2 ARMA–ARCH model structures, parameter estimates and AIC rankings

M0 M1 M2 M3 M4 M5 M6
True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

a0 0 −0.048 0 0 0 0 0

a1 0.7 – 0.957 0.874 0.299 0.694 0.690

a2 0.25 – – 0.087 0.642 0.254 0.256

b1 0.2 0.916 −0.038 – 0.534 0.205 0.212

b2 0.2 0.544 0.211 – – 0.215 0.219

c0 0.25 0.643 0.252 0.265 0.258 1.234 0.405

c1 0.5 0.275 0.492 0.470 0.486 – 0.665

c2 0.3 0.552 0.307 0.332 0.315 – –

E(ΔAICi,0) – 9510.25 38.32 424.95 245.40 4608.41 875.53

std(ΔAICi,0) – 447.90 12.62 40.60 56.65 1438.50 160.10

AIC rank ρ∗
i 1 7 2 4 3 6 5

3.1 The ARMA–ARCH Model Specification and Monte Carlo Analysis

Because the MIC aims to generalise the AIC to all FSMX models, the analysis uses a
set of ARMA models with ARCH errors, as it is possible to obtain the AIC for each
of the models and use this as a basis for comparing the rankings produced by the
MIC. The general structure for the set of models, presented in Eq. (17), allows for two
autoregressive lags, two moving average lags and two ARCH lags.

{
Xt = a0 + a1Xt−1 + a2Xt−2 + b1σt−1εt−1 + b2σt−2εt−2 + σtεt ,

σ 2
t = c0 + c1ε2t−1 + c2ε2t−2.

(17)

The various specifications used in the analysis only differ in their parameters, shown
in Table 2. Only the parameters for the true model M0 are chosen ex-ante with an
aim to generate persistence in the auto-regressive components. The parameters for
the alternate models M1–M6 are estimated using the following procedure. Firstly, a
training data serieswith T = 219 observations is generated using the parameters for the
true model and random draws εt ∼

i id
N(0, 1). The parameters for the alternate models

are then obtained by using this data series to estimate the ARMA–ARCH equation
(17) with the corresponding lag(s) omitted.7

Once the parameters are obtained, the various data series required for the Monte
Carlo analysis of the MIC can be generated using Eq. (17) parameterised with the rel-
evant column from Table 2 and further random draws εt ∼

i id
N(0, 1). T -length training

series are generated for each of the six alternate specifications, and used in stage 1
to train the CTW algorithm. Similarly, 1000 ‘real’ data series of N = 213 = 8192

7 This was done in STATA using the ‘arch’ routine. As a robustness check, the true data series was also
re-estimated, and the chosen parameters for the true model all fall within the 95% confidence interval for
the estimates.

123

An Information Criterion for Markov Processes 295

Table 3 MIC performance on ARMA models, T = 222

r = 7 M0 M1 M2 M3 M4 M5 M6
d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

MICi , mean 23,983.70 30,703.92 23,989.93 24,136.63 24,071.69 26,300.02 24,261.73

P(ρi = ρ∗
i) 0.605 1 0.602 0.993 0.993 1 0.996

ΔMICi,0, mean – 6720.22 6.24 152.93 87.99 2316.32 278.03

P(ΔMICi,0 > 0) – 1 0.605 1 0.999 1 1

P(Mi ∈ M̂0.95) 0.991 0 0.939 0.002 0.110 0 0

P(Mi ∈ M̂0.9) 0.978 0 0.899 0.001 0.057 0 0

P(ρi = ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to AIC rank ρ∗, ΔMICi,0 mean

MIC difference between Mi and the true model M0, with Monte Carlo probability of being positive,
P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

observations are generated using the parameters for M0. These are used in a Monte
Carlo analysis of the MIC’s ability to correctly rank the set of models.

The test benchmark is obtained by estimating the set of models using the 1000 N -
length data series and calculating the respective AIC for each model and estimation.
The descriptive AIC statistics are shown at the bottom of Table 2 and, as expected,
the true model is consistently ranked first. An important point to keep in mind for the
following section is that because the two AR parameters for M0 are chosen so as to
approach a unit-root behaviour, the AR(1) model M2 is ranked an extremely close
second. In fact, given the average ΔAIC2,0 = 38.32, normalising by the number of
observations N gives a mean AIC gap per observation of 4.7 × 10−3, making those
models difficult to distinguish in practice.

Finally, for the purpose of illustrating the local version of the MIC explored in
Sect. 3.3, two additional sets of 1000 N -length data series are generated using model
switching. In the first case, the data generating process uses M0 for the first half of the
observations before switching to M2. In the second case, the data generating process
starts with M5 for half the observations before switching to M0 for N/4 observations
and then switching back to M5 for the remainder of the series.

3.2 MIC Performance on ARMA–ARCH Models

The Monte Carlo analysis carried out on the ARMA–ARCH models follows the pro-
tocol outlined in Appendix 2. As a preliminary step, the data and training series are
all discretised to a r = 7 bit resolution over the [−30, 30] range. In the training stage
(stage 1), the CTW algorithm was run on varying lengths of training series with a
chosen tree depth of d = 21 bits, which corresponds to 3 observation lags L if one
accounts for the seven-bit resolution. Finally, in stage 2, the trees are used to compress
the 1000 data series, providing aMICvalue for each of themodels on each of the series.

Table 3 summarises the three main tests that were carried out to evaluate the MIC
performance.8 The first section examines whether the ranking assigned by the MIC to

8 More detailed tables, which present the results for the MIC (15) at several values of the training length
T and including upper/lower tail critical values for 95% significance levels, are available in Appendix 3.

123

296 S. Barde

each model, ρi , matches the AIC ranking ρ∗
i in Table 2. This is a relatively strict test

because the ranking for a given model i is affected by the performance of the MIC
on all the other models, making this a global test of performance on the full model
comparison set. Nevertheless, at training lengths T = 222 the probability P(ρi = ρ∗

i)
of correctly replicating the AIC relative ranking is high for most models, except for
M0 and M2, where the MIC does little better than random chance. The second test is
less strict, as it instead looks at the probability of correctly selecting the best model in
a simple head-to-head competition against the true model M0. The P(ΔMICi,0 > 0)
values reveal that theMIC performs as expected, with a high probability of identifying
the true model M0, in all cases except M2, where again the MIC does little better than
a coin flip.

In addition to using Monte Carlo frequencies to evaluate the MIC’s ability to rank
models, one can take advantage of the availability of an N -length observation-level
score λεc

i (X t | x t−1
t−L) which sums to the MIC to directly test the statistical reliability

of the overall measurement at the level of each individual series. As stated previ-
ously, availability of this score means that the most natural and rigourous testing
approach for the MIC is the reality check proposed White (2000) or the MCS of
Hansen et al. (2011). The last part of Table 3 reveals the percentage of series for
which the i th model is included in the MCS M̂1−α at the 5 and 10% confidence
levels. The MCS procedure relies on 1000 iterations of the Politis and Romano (1994)
stationary bootstrap for each of the Monte Carlo series, the block length for the boot-
strap being determined using the optimal block length procedure of Politis and White
(2004). Even accounting for the conservative nature of the MCS test, the procedure
is able to effectively narrow down the confidence set to the subset of models that
have the lowest MIC ranking. The MCS procedure also confirms the MIC’s inability
to distinguish M0 and M2, as they are almost always included in the confidence set
M̂1−α .

3.3 Localised MIC Performance on ARMA–ARCH Models

The availability of the observation-level score λεc
i (X t | x t−1

t−L) also enables the calcu-
lation of a local version of the MIC, allowing models to be compared over subsets of
the data. This is illustrated by running the procedure on the two sets of 1000 model-
switching series mentioned in Sect. 3.1 using the CTW trees obtained for T = 222

training observations in the previous section. The results, which are presented in Fig. 2,
have been smoothed using a 200 observation-wide moving average window. In order
to also illustrate the small-sample properties of the MIC, the MCS procedure is run on
the resulting 200-observation averages. These are shown in Fig. 2c, d, where the dark
gray areas indicate observations for which the confidence set M̂0.95 only includesM0,

and the lighter gray cases where the procedure is unable to separate M0 from the alter-
nate model (M2 or M5 depending on the case) and both remain in the confidence set
M̂0.95. The areas in white implicitly identify those data points where the confidence
set M̂0.95 is reduced to the alternate model.

In the first case, the localised version of the algorithm is unable to detect the transi-
tion from M0 to M2, for both the individual data series and the Monte Carlo average.

123

An Information Criterion for Markov Processes 297

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Localised MIC performance. a Single data series, M0 and M2 switching. b Single data series,
M0 and M5 switching. c Corresponding ΔMIC2,0. d Corresponding ΔMIC5,0. e ΔMIC2,0, Monte Carlo
average. f ΔMIC5,0, Monte Carlo average

This is not surprising given that the MIC is unable to reliably distinguish between M0
and M2 at the aggregate level in Table 3. In the second case, however, the temporary
switch from M5 to M0 is clearly visible in the Monte Carlo average and is detected by

123

298 S. Barde

the MCS procedure on the individual data series. This localised version of the MIC
may prove to be as useful for comparing model performance as the aggregate version
presented above. It is indeed reasonable to expect that in practical situations onemodel
may outperform others on aggregate yet may be beaten on some specific features of
the data, as is the case in Fig. 2.

4 Robustness and Practical Applicability

The Monte Carlo analysis of Sect. 3 is designed in order to establish that the MIC
can replicate the rankings of a known experimental setting under ideal conditions, as
there is little purpose to a methodology that cannot achieve even this most basic task.
It is therefore important to also clarify some of the practical issues related to using
the methodology in a more realistic and restricted setting, as well as present some
supplementary Monte Carlo analyses corresponding to those more realistic settings.
An outline of the overall protocol and the more technical aspects of the algorithms
are detailed in Appendix 2, while the extended tables of the Monte Carlo analyses are
presented in Appendix 3.

4.1 Transforming and Discretising the Data

Because the MIC protocol operates on a binary description of the data, the first task to
be carried out is to discretise the data to a binary resolution. This is done by choosing a
set of bounds {bl , bu} representing the range of variation of the data, and a resolution
parameter r which both determines the number of bits used to describe an observation
and the number of distinct discrete values the variable can take, i.e., 2r . The bounds
{bl , bu} on the range of variation can be set in such a way that a small fraction of
the observations are allowed to be out of bounds, in which case they are assigned the
value of the corresponding bound, in what is essentially a winsorization of the data.

The first issue that discretisation procedure raises is one of stationarity. Clearly, the
fact that the data have to be bounded within a range of variation imposes a requirement
that the empirical and training data series used be weakly stationary, as is the case for
example of the ARMA–ARCH processes used in Sect. 3. This is not the case of many
economic variables in their original form, which are typically integrated of degree one.
This imposes a prior transformation of data in order to ensure they can be bounded.
As is the case for many econometric applications, the recommendation is to take first
differences or growth rates (first log-differences) of variables before discretising them,
in order to ensure that the number of observations falling out of bounds does not exceed
a small fraction of the sample (5%, for example).

A second, related, issue is the ergodicity and time-homogeneity of the training
data. Both are standard assumptions in the data compression literature, starting with
Shannon (1948), as they underpin the ability to learn the stable transition probabilities
of a data source by taking the time average of its output. While time-homogeneity is
not a strict requirement for the CTW algorithm, if a model possesses a tipping point
which irreversibly changes the transition probabilities, CTWwill learn amixture of the
two regimes. In practice, it might then be preferable to learn two separate sub-models

123

An Information Criterion for Markov Processes 299

corresponding to each regime. Similarly, if a model possesses absorbing states, it is
preferable to run multiple simulations, each cut at the point of absorbtion, in order to
improve the learning of the transition probabilities before absorbtion. It is important
to point out that neither time homogeneity or ergodicity are required for the empirical
data. As shown in Sect. 3.3, any tipping point in the empirical probabilities will be
detected by a sharp degradation (or improvement) in the performance of the MIC for
a given fixed model.

Finally, one must choose a resolution parameter r for the discretisation, which
is also relatively straightforward. As explained in Appendix 2, discretising the data
creates a quantisation error, and the resolution parameter should be chosen such that
this error is distributed as an iid uniform variable over the discretisation interval. This
can be tested statistically, and the recommended procedure is to run the quantisation
tests from Appendix 2 on the empirical data and to choose the smallest value of r
which satisfies the tests.

4.2 Choosing the Lags and Training Length

Once the resolution parameter has been set the next parameter to choose is the order of
the Markov process L , or equivalently, the depth d = r L of the tree. Two conflicting
factors have to be considered in this decision. The first is that the worst-case memory
requirement of the binary tree is O(2d). Even though the implementation detailed
in Appendix 2 uses the integer arithmetic of Willems and Tjalkens (1997) to reduce
memory costs, this implies that setting d > 32 can potentially require an infeasible
amount of memory to store the nodes. A related consideration is that the higher the
order of the Markov process, the more training data will be required to adequately
explore the larger transition space.

Conversely, there is the risk that setting the order of the Markov process too low
compared to the true order of the underlying process will distort the measurement.
Given the memory constraint previously mentioned, the immediate implication is that
situations where the empirical data exhibits long memory will pose a problem for
the methodology, and this should be tested for beforehand by looking, for instance,
at the number of significant lags of the partial autocorrelation function.9 The MIC
methodology does seem to be robust to L , however, and in situations of non-persistent
time dependence it should perform well. As an example, the order is set to L = 3 in
theMonte Carlo analysis of Sect. 3, which is already less than the correct length L = 4
given (17).10 This is tested further in Tables 8 and 9, which show the results of the
ARMA–ARCH Monte Carlo analysis for L = 2, which is even more misspecified.
As one would expect, this reduces the ability of the MIC to identify the true model, as
is visible from the fact the number of models included in the MCS increases and the
frequency at which models are correctly ranked falls. Nevertheless, when comparing
the specifications head-to-head with the true model, the MIC is still able to correctly

9 It is important to note, however, that long memory processes are typically problematic regardless of the
statistical method used to analyse them.
10 One can see from (17) that Xt depends on σt−2, which itself depends on εt−4.

123

300 S. Barde

pick the true model in the great majority of cases. In practice, given resolutions of
around 6–8 and having tested for long-range dependence, it is therefore reasonable to
set the Markov order L to 3–4.

The final choice for any practical application is the amount of training and empirical
data to be used for the analysis. Because the purpose of Sect. 3 is to establish that the
MIC rankings can match the AIC rankings in the limit, long training sequences of
between 219 and 222 are used, as well as a relatively large ‘empirical’ sample size
N = 213 = 8192. This is unrealistic for a practical setting, therefore further Monte
Carlo robustness checks are carried out Tables 6, 8 and 10, for shorter training lengths
of 215 ≈ 32,000 to 218 ≈ 250,000 and Tables 10 and 11 for shorter empirical series
of N = 500, in order to clarify these choices.

The findings for the shorter empirical setting of N = 500, first of all, confirm that
sample size is important for a correct identification of the model rankings, which is
what one would expect intuitively. TheMIC is able to correctly rank and reject the two
worst models for even relatively low levels of training, but it has trouble distinguishing
the remainingmodels, as seen both by the size of theMCS and the frequency of correct
rankings. As was the case for the misspecified L = 2 example, however, head-to-head
comparisons with the true model do frequently lead to the true model being correctly
picked. This is also in line with the analysis in Fig. 2, which used a moving average
window of N = 200 for its head-to-head analysis.

Finally, the Monte Carlo analyses for T = 215 to 222 help to confirm the learning
curve of the MIC for a more complex setting than the Beta benchmarking exercise in
Sect. 2.3. Crucially, the main finding is consistent with the benchmarking in that for
the three settings examined, the mean MIC measurement converges relatively quickly
(stabilising after about T = 217), while the variance (as measured by the MCS size)
takes longer to settle down. In most cases, the results seem reliable at some point
between T = 218 and 219, suggesting that 250,000–500,000 training observations
provide a good learning performance. An important clarification in this regard is that
the training observations need not be generated in a single simulation run, as is the
case for the simple ARMA–ARCH example used here. As an example, one could also
use a set of 1000 Monte Carlo runs of 250 or 500 observations each. Given that ABM
simulations or DSGE stochastic simulations often generate such Monte Carlo sets as
part of their internal validation, these can directly be re-used in the MIC procedure.

4.3 Penalising Complexity

At this stage, it is important to mention how the penalisation of model complexity
can be handled within the methodology. This has not been done in the main analysis,
as its main focus is to test the accuracy of the cross entropy measurement based on
the CTW algorithm, and the benchmark for comparison is therefore the AIC, which
does not strongly penalise the complexity of the models involved. Furthermore, given
the similar parameter dimensions of the ARMA models in Table 2, simply adding a
BIC-like penalisation term κi/2 × log2 N to the MIC (15), where κi is the number of
parameters in the i th model, will not generate meaningful differences in complexity.

123

An Information Criterion for Markov Processes 301

Table 4 MDL complexity XN
i of ARMA models, L = 3, N = 213

log2 T M0 M1 M2 M3 M4 M5 M6
True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

15 73,230.81 77,705.93 74,631.46 72,258.36 71,462.14 92,564.47 77,437.20

16 73,039.02 76,701.42 73,327.23 72,099.97 70,946.11 91,425.17 77,129.25

17 73,186.13 76,516.12 73,792.56 71,622.96 71,028.26 91,008.78 77,200.49

18 73,547.16 76,316.96 73,157.97 71,447.64 71,003.63 90,770.46 77,456.41

19 73,331.10 76,008.85 73,071.52 71,373.93 71,159.21 90,852.24 77,557.02

20 73,050.36 75,810.05 73,169.77 71,472.16 71,157.35 90,715.94 77,619.32

21 72,808.90 75,575.97 72,985.64 71,105.81 70,729.82 90,642.48 77,295.94

22 72,206.85 75,051.22 72,517.48 70,610.63 70,221.86 90,191.76 76,806.39

A more interesting penalisation strategy, following Grünewald (2007) and consis-
tent with theMDLunderpinning of themethodology, is to use a two-part code based on
the complexity cost of the context tree corresponding to each mode Mi . This accounts
not only for the parameter dimension of the models, but also for their stochastic com-
plexity, by taking advantage of the fact this complexity is directly measured by the
cost term (12) of the context tree corresponding to each model. As was the case for the
calculation of the bias correction term (14), however, onemust account for the fact that
the length of the training data T and empirical data N are not the same: naively using
(12) would make the relative weight of the penalisation and the cross entropy directly
dependent on T .11 This implies that the calculation of the complexity (12) must be
modified in order to produce a stablemeasurement. This canbedonebynormalising the
(as,o, bs,o) to their expectationvalues hadonly N trainingobservations beenobserved:

XN
i =

∑

s

∑

o

γ

(
N (as,o + bs,o)

T

)
γ (x) =

{
0 for 0 ≤ x < 1,
1
2 log2(x) + 1 for x ≥ 1.

(18)

Normalised penalisations (18) for various training lengths T in the main Monte
Carlo exercise with L = 3 and N = 213 are presented in Table 4.12 Although these
values do seem to decrease with increasing T, the sensitivity is very limited, and the
relative complexity of the models is stable. Interestingly, the results suggest that from
a complexity viewpoint, the simplest models from the set in Table 2 are the ones with
little or no moving average component, while dropping either the autoregressive or
ARCH components significantly increases the complexity of the resulting model.

11 As an example, note the similarity of MIC scores in Table 7 for T = 221 and 222. One would expect a
penalised version of theMIC scores to also be similar in both cases, given the large training lengths involved.
However, the naive complexity (12) of the trees for T = 222 will be much higher than for T = 221 even
thought the number of empirical observations is unchanged at N = 8192, as twice as many (as,o, bs,o)
observations will have been processed.
12 These would be appropriate for penalising the MIC measurements in Tables 6 and 7.

123

302 S. Barde

5 Conclusion

This paper develops amethodologywhich follows theMDLprinciple and aims provide
an information criterion with practically no formal requirement on model structure,
other that it be able to generate a simulated data series. While the MDL-inspired
algorithms might be unfamiliar, it is important to emphasise that this methodology
nevertheless follows the same logic as the AIC, which is that one can measure the
cross entropy between some data and a model without knowing the true conditional
probability distributions for the events observed. Because these measurements contain
an unobservable constant (the true information entropy of the data generating process),
one then has to take differences across models to obtain the difference in KL distance,
which is the desired indicator of relative model accuracy. The difference between the
AIC and the methodology suggested here rests simply in the choice of method used
to measure the cross entropy.

The main benefit of the proposed methodology is that it compares models on the
basis of the predictive data they produce, by using the CTW algorithm to estimate the
transition tables of the underlying FSMs corresponding to the candidate models. This
mapping of models to a general class of FSMs explains why there is no requirement
that the candidate models have a specific functional form or estimation methodology,
only that they be able to generate a predicted data series. It is this specific aspect
which, while unfamiliar, enables the information criterion to compare across classes
of models, from regression to simulation.

The Monte Carlo analyses in Sects. 2.3 and 3 provide several validations of the
methodology by demonstrating that, given enough training data, the MIC procedure
provides model ranking information that is comparable to the AIC, and also illus-
trates a bias correction procedure that can be used to increase the accuracy of the
MICmeasurement and a penalisation term based on the complexity of the context tree
corresponding to each model. The main drawback of the procedure is that some ineffi-
ciency is incurred by the CTW algorithm having to learn the transition table of a model
from the training data. A large part of this can be corrected using the known theoretical
bounds of the CTW algorithm, however the residual variation creates a “blind spot”
which limits theMIC’s ability to distinguish similarMarkovmodels. TheMonte Carlo
analysis shows that this blind spot is reduced by increasing both training and empir-
ical data, and crucially because cross entropy is measured at the observation level,
the reliability of any comparison between models can be tested statistically using the
MCS approach. This feature also allows comparison of models on subsets of the data,
thus detecting data locations where the relative performance of models switches over.

This paper only provides a proof-of-concept, however, and it is important to point
how one might extend this methodology to more common settings. Indeed, the work
presented here focuses on a univariate time-series specification, where the candidate
models attempt to predict the value of a single random outcome conditional on its
past realisations, i.e., P(Xt |xt−1

t−L). While this is reasonable as a starting point for
establishing that the methodology works on small-scale problems, it is important to
outline how it can be scaled up to larger settings.

First of all, extending the approach to multivariate models poses no conceptual
problem, as the current state of a FSM does not have to be restricted to a single vari-

123

An Information Criterion for Markov Processes 303

able. Supposing that Xt represents instead a state vector made up of several variables
{At , Bt , Ct , . . .}, one could use the preliminary step of the protocol in Appendix 2
to discretise each variable at its required resolution r(a), r(b), r(c), . . . The binary
string for an observation x t is then simply the concatenation of the individual observa-
tions a t , b t , c t , and its resolution r is the sum of the individual variable resolutions,
i.e., �i r(i).

Secondly, in the time-series setting presented here, the observations in xt1 are used
both as the outcome to be predicted (in the case of the current observation) and the
conditioning information for the prediction (for past observations). However, there
no reason why the outcome and conditioning data could not be separated. Keeping
xt1 as the conditioning data, the methodology can also generate predictions about the
state of a separate outcome variable or vector Yt , i.e., probability distributions of the
type P(Yt |xtt−L), which can be used to extend the MIC approach beyond time-series
analysis.

While both these extensions are conceptually feasible, they create implementation
challenges. As stated previously, the larger resolution �i r(i) of a multivariate setting
implies a correspondingly larger depth d of the binary context tree for any given
number of time lags L , increasing the memory requirement for storing the tree nodes.
Ongoing work on the implementation of the CTW algorithm is specifically directed
at improving the memory efficiency of the algorithm in order to address this last point
and turn the proposed methodology into a practical tool.

Acknowledgements The author is grateful to WEHIA 2013, CFE 2013 and CEF 2014 participants for
their comments and suggestions on earlier versions of this paper. The author would like to thank particularly
Jagjit Chadha, Stefano Grassi, Philipp Harting, Sander van der Hoog, Sandrine Jacob-Léal, Miguel León-
Ledesma, Thomas Lux, Mauro Napoletano, Lionel Nesta, John Peirson and the two anonymous referees
whose suggestions greatly helped to improve the manuscript. Finally, a special thanks to James Holdsworth,
SteveSanders andMarkWallis for their invaluable help in settingup andmaintaining theSALandPHOENIX
Computer Clusters on which the Monte Carlo analysis was run. Any errors in the manuscript remain of
course the author’s.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Bias Correction in Measured Cross-Entropy

It has been known since Miller (1955) and Basharin (1959) that measuring Shannon
entropy using observed frequencies rather than the true underlying probabilities gen-
erates a negative bias due to the interaction of Jensen’s inequality with the inherent
measurement error of the frequencies. A large literature exists calculating analytical
expressions for this bias, good examples of which are Carlton (1969), Panzeri and
Treves (1996) or Roulston (1999). These expressions can be generalised to the case of
measuring the cross entropy between empirical and simulated data, in order to provide
a clarification of the bias correction term derived in Sect. 2.2. As will be shown in the
derivation below, which generalises the approach of Roulston (1999), in the case of
cross entropy the resulting bias is in fact positive.

123

http://creativecommons.org/licenses/by/4.0/

304 S. Barde

Letting B be the number of states a system can occupy, qi the probability of observ-
ing the i th state in the empirical data and pi the corresponding model probability, the
theoretical cross entropy is given by:

H = −
B∑

i

qi ln pi . (19)

In practice, this is measured using frequencies fi and gi , where ni , ti are the
observed realisations for the i th state in the empirical and simulated data, respectively,
with N and T as the overall number of observations.

Ĥ = −
B∑

i

ni
N

ln
ti
T

= −
B∑

i

fi ln gi . (20)

The count variables ni and ti can be considered as binomial distributed variables
with parameters qi and pi , with the following expectations and variances:

{
E[ni] = Nqi
E[ti] = T pi

{
V [ni] = Nqi (1 − qi),
V [ti] = T pi (1 − pi).

(21)

Following Roulston (1999), the frequencies fi and gi can be redefined in terms of
a measurement error relative to the true underlying probabilities qi and pi .

{
fi = qi (1 + ηi)

gi = pi (1 + εi)

{
ηi = fi−qi

qi
,

εi = gi−pi
pi

.
(22)

Given the mean and variance of the binomial counts (21), one can see that the
measurement errors have mean E[ηi] = E[εi] = 0 and variances:

E
[
η2i

]
= 1 − qi

Nqi
E
[
ε2i

]
= 1 − pi

T pi
. (23)

Replacing (22) into the measured cross entropy term (20) allows the bias to be
expressed in terms of ηi and εi :

Ĥ = H −
B∑

i

qi [ηi ln pi + (1 + ηi) ln (1 + εi)] . (24)

Because it is expected that |εi | < 1, Roulston (1999) uses a second order Taylor
expansion for the logarithmic term, ln(1+ εi) ≈ εi − ε2i /2. Replacing in the previous
expression and rearranging provides the following expression.

Ĥ ≈ H −
B∑

i

qi

⎡

⎣ηi ln pi + εi + ηiεi︸︷︷︸
b

−ε2i

2
− ηi

ε2i

2

⎤

⎦ . (25)

123

An Information Criterion for Markov Processes 305

The critical component of the bias is the product of errors, labeled b. Suppose for
the moment that the empirical and simulated data are identical, so that qi = pi , fi =
gi , ηi = εi and N = T . In that case the cross entropy term (19) measures the
Shannon entropy, b offsets the negative ε2i /2 term in equation (25), and one recovers
the derivation in Roulston (1999):

Ĥ ≈ H −
B∑

i

pi

[

εi (ln pi + 1) + ε2i

2
− ε3i

2

]

. (26)

Given E[εi] = 0 and the variance E[ε2i] in (23) the second order approximation
for the bias is given by the following expression, where B∗ corresponds to the number
of states for which pi �= 0.

E[Ĥ] ≈ H −
B∑

i

pi E[ε2i]
2

= H − B∗ − 1

2N
. (27)

This is the finding reported by Roulston (1999), which is that measured Shannon
entropy systematically underestimates the true Shannon entropy, and to a second order
the bias does not depend on the distribution pi .

This is not the case for the more general situation where qi �= pi and fi �= gi .
Because it is reasonable to assume that the measurement errors on the real and sim-
ulated probabilities are independent, their covariance E[ηiεi] will be zero and the
bias term b in (25) no longer counteracts the negative ε2i /2 term. Furthermore, the
weighting of the bias terms by qi rather than pi means that the pi denominator in the
variance of εi will not cancel out. The expectation of the second order approximation
is now:

E[Ĥ] ≈ H +
B∑

i

qi E[ε2i]
2

= H + 1

2T

[
B∑

i

qi
pi

− 1

]

. (28)

This produces a situation which is the opposite of the one observed for Shannon
entropy in (27): measured cross entropy systematically overestimates the true cross
entropy and the bias (28) now depend on the unknown qi and pi distributions. We now
show that the bias correction term (14) approximates this bias in expectation. Recall
that given an observation x t , identified by the binary string o and a context x t−1

t−L ,
identified by the binary string s, the correction is given by:

ε
(
X t
∣∣ x t−1

t−L

)
= 1

2

x t∑

o=∅

log2
as∗,o + bs∗,o + 1

as∗,o + bs∗,o
= 1

2

x t∑

o=∅

log2

[
1 + 1

as∗,o + bs∗,o

]
.

(29)

Letting τs,o = as∗,o +bs∗,o be the number of times the Markov transition identified
by the s, o binary strings has been seen in the training data, and taking a first order

123

306 S. Barde

approximation of the binary logarithm, the correction for that specific observation x t

is approximated by

ε
(
X t
∣
∣ x t−1

t−L

)
≈ log2 e

2

x t∑

o=∅

1

τs∗,o
. (30)

Summing this term over all the observations in the empirical data on the left hand
side is equivalent to summing over all the contexts and observation strings s, o on the
right hand side:

N∑

t=L+1

ε
(
X t
∣∣ x t−1

t−L

)
≈ log2 e

2

∑

s

∑

o

ns∗,o

τs∗,o
. (31)

Dividing both sides by the number of transitions observed N − L provides the
expected correction term for the empirical data set. Note that the total number of
observations T is added to both the numerator and denominator of the right hand side:

E
[
ε
(
X t
∣∣ x t−1

t−L

)]
≈ log2 e

2T

∑

s

∑

o

ns∗,o

N − L

T

τs∗,o
. (32)

The two ratios in the right hand side terms correspond to the observed frequencies
of the Markov transition identified by binary strings s, o in the empirical and training
data, respectively, therefore E[ns∗,o/(N − L)] = qs∗,o and E[τs∗,o/T] = ps8,o. One
can therefore see that allowing for the change in logarithmic base, the expectation of
(32) is essentially equivalent to (28). The main advantage of using the error correction
term (14) is that the bias is corrected at the level of each observation rather than over
the entire empirical data, which facilitates the evaluation of model performance at the
local level.

Appendix 2: Technical Appendix—The MIC Protocol

Only two inputs are required in order to run the protocol. The first is a N×1 data series
that provides the empirical benchmark for model comparison. The second input is a
set of training series produced from the various fitted, calibrated or simulated models
in the comparison set {M1, M2, . . . , Mm}, etc., which should be T
 N observations
in length. An overview of the stages of the methodologies is provided in Table 5, and
each stage is discussed in the subsequent subsections

Stage 0: Discretising the State Space and Testing for Quantisation Error

TheKrichevsky andTrofimov (1981) estimator, at the core of theCTWand context tree
maximising (CTM) algorithms, can only be used to predict the probability distribution
of a binary event, and can only therefore dealwith binary data.As a result, a preliminary

123

An Information Criterion for Markov Processes 307

Table 5 Overview of the methodology stages

Stages Names Inputs Outputs Parameters Comments

0 Discretisation N × 1 real-valued
empirical series

N × 1 discretised
empirical series

r, resolution Quantisation tests
can be carried out
to choose r

T × 1 real-valued
simulated series

T × 1 discretised
simulated series

bl , lower variation
bound

bu , upper
variation bound

1 Training T × 1 discretised
simulated series

Context tree
structure Ti

d, tree depth The number of
significant lags in
the PACF can help
choose the
Markov order L

Depth is d = r L

2 Scoring Ti Context tree
structure

N − L × 1 log
score λi

–

N × 1 real-valued
empirical series

N − L × 1 bias
correction εi

Penalisation term
Xi

step is to digitise the data andmodel training series and convert them into binary strings.
It is important, ensure that the no essential information about the variation in the data
is lost through the quantisation error.

Data Discretisation and Observation Structure

The discretisation of the data is controlled by two sets of parameters, first a set of
bounds {bl , bu} representing the range of variation of the data, and secondly a resolu-
tion parameter r,which determines the number of bits used to describe an observation
and the number of distinct discrete values the variable can take, i.e., 2r . It needs to
large enough to capture the significant variation in the data and training series, but
not so large that it increases the complexity and memory requirements of the CTW
algorithm unnecessarily. Figure 3 provides an illustration of the process for r = 3.

The digitisation itself is carried out in a straightforward manner: Given a choice of
bounds {bl , bu} and a resolution r, the data vector x is first normalised to the [0, 2r−1]
interval as follows:

x ′ = x − bl
bu − bl

2r−1. (33)

The normalised data values x ′ are then rounded to the nearest integer, with any
values outside the bounds being rounded to the bounds themselves.

x = �x ′
 . (34)

123

308 S. Barde

bl

bu

ra
ng

e

0

1

00

10

01

11

000
100
010
110
001
101
011
111

Fig. 3 Converting observations to binary strings

Fig. 4 Structure of a binary data string

The resulting vector of integers x is mapped to its binary values, using the scheme
illustrated in Fig. 3. The most significant bit (MSB), which indicates whether the
observation is in the top or bottom half of the range is on the right, with the least
significant bit (LSB) on the left. It is this structure which allows the Krichevsky
and Trofimov (1981) estimator, which can only deal with Bernoulli processes, to be
extended to any arbitrary categorical distribution.

Once each observation is discretised, the binary strings are concatenated, as shown
in Fig. 4. The specific configuration illustrated in the figure corresponds to the one
used for the ARMA–ARCH analysis presented in the paper: the range of variation
was bounded within [−30, 30], 7 bits were chosen to represent each observation and
the tree depth was set at 21 bits, or 3 lags.

The Choice of r: Testing for Quantisation Error

It should be apparent that the rounding operation (34) creates a quantisation error
ε = x ′−x which given the normalisation (33) is distributed over the unit length interval
[−0.5, 0.5[. Some of the information content of the data x is therefore inevitably
discarded by the quantisation (34), and it is important to check that this does not affect
the measurements. If the quantisation error ε satisfies the following two assumptions,
then the information loss will not affect the MIC:

iid Uniformity: ε ∼
i id

U(−0.5, 0.5),

Uncorrelatedness: corr(ε, x) = 0.

Proposition If the quantisation error ε = x ′ − x satisfies iid uniformity and uncor-
relatedness at a resolution r∗, then choosing a larger r = r∗ + φ increases the log
score λi (X) by an additive constant for all models Mi .

123

An Information Criterion for Markov Processes 309

Proof Given a data vector x, let r∗ be the lowest resolution such that the quantisation
error ε∗ resulting from the corresponding digitisation x∗ satisfies the iid uniformity
and uncorrelatedness assumptions. Let x be an alternative digitisation of x with the
same bounds {bl , bu} but a higher resolution r = r∗ +φ. Let us calculate the number
of bits required to encode the t th observation at resolution r :

λi

(
X t
∣∣ x t−1

t−L

)
= Edgp

[

log2
1

PMi (X t | x t−1
t−L)

]

. (35)

First, because the conditional probability of each of the r observation bits is con-
ditioned on the values of previous observation bits, the chain rule for conditional
probabilities ensures that (35) is simply the sum of the cross entropies for each bit.

∀t,i Edgp

[

log2
1

PMi (X t | x t−1
t−L)

]

= Edgp

[
r∑

k=1

log2
1

PMi (X t {k}| x t−1
t−L , x t {1, 2, . . . , k − 1})

]

.

(36)

Additivity of the expectations operator Edgp[. . .] then implies:

∀ t,i Edgp

[

log2
1

PMi (X t | x t−1
t−L)

]

=
r∑

k=1

Edgp

[

log2
1

PMi (X t {k}| x t−1
t−L , x t {1, 2, . . . , k − 1})

]

.

(37)

Second, the normalisation (33) and rounding (34) operations ensure that by con-
struction the binary string formed by x t contains the shorter x

∗
t as a substring:

∀ k ∈ {1, 2, . . . , r∗}, x t {k} = x∗
t {k}. (38)

Regarding the first r∗ bits in the sum (37), the nesting of x∗
t in x t implies that the

only difference between predicting X t {1, 2, . . . , r∗} and X∗
t {1, 2, . . . , r∗} is that

each of the lagged observations in x t−1
t−L contains more information than in x∗ t−1

t−L ,
specifically, φ bits of information drawn from the quantisation error ε∗. However, ε∗
is iid and uncorrelated with x∗ , therefore this extra information cannot improve the
conditioning compared to what is achieved using only the r∗-length substring x∗ :

∀ t,i, k ≤ r∗ PMi

(
X t {k} = 1

∣∣ x t−1
t−L , x t {1, 2, . . . , k − 1}

)

= PMi

(
X∗

t {k} = 1
∣∣ x∗ t−1

t−L , x∗
t {1, 2, . . . , k − 1}

)
.

(39)

123

310 S. Barde

Predicting the values of the last φ bits of X t in (37) is equivalent to predicting the
value of ε∗

t at a resolution φ.However, ε∗ is iid uniformly distributed over [−0.5, 0.5]
and uncorrelated with x therefore:

∀ t, i, k > r∗ PMi

(
X t {k} = 1

∣∣ x t−1
t−L , x t {1, 2, . . . , r∗}

)
= 0.5. (40)

Replacing (39) and (40) in the sum of conditional entropies (37) provides the
following result:

∀ t,i Edgp

[

log2
1

PMi (X t | x t−1
t−L)

]

= Edgp

[

log2
1

PMi (X
∗
t | x∗ t−1

t−L)

]

+ φ. (41)

One therefore has λi (X t | x t−1
t−L) = λi (X

∗
t | x∗ t−1

t−L) + φ. ��
In essence, if the iid uniformity and uncorrelatedness assumptions on ε are satisfied

at resolution r∗, then choosing a higher resolution r∗ + φ for the N data observations
will simply result in a log score λ equal to the one obtained at resolution r∗, plus an
additional φ × N extra bits, for all models in the comparison set {M1, M2, . . . , Mm}.
This additive term will drop out when taking differences between models.

We therefore suggest an incremental testing procedure, starting at r = 1,where the
following three tests are carried out to ensure that the quantisation error satisfies the
uniformity, independence and uncorrelatedness assumptions above. The correct value
of r is the lowest value that satisfies the three following tests:

– A Kolmogorov–Smirnov (KS) test on the quantisation error η, where H0 is that η
is uniformly distributed over the range [−0.5, 0.5[.

– A Ljung–Box (LB) test on the autocorrelation coefficients of η, where H0 is that
η is independently distributed.

– A second LB test on the cross correlation coefficients of η and the quantised values
x , where H0 is that η and x are independent.

Stage 1: The Context Tree Weighting (CTW) and Maximising (CTM)
Algorithms

The general implementation of the CTW and CTM algorithms in the MIC toolbox
broadly follows the technical report of Willems and Tjalkens (1997), however, some
aspects have been modified. It is recommended that the reader download this report
from http://www.ele.tue.nl/ctw for more general background information.

Tree Structure

The information used to reconstruct the 2d ×2r Markov transition table of modelMi is
stored in a set of 2r−1 binary trees, one ofwhich is illustrated in Fig. 5. Following from
the discussion in 2.1 each tree is indexed by a k ≤ r length string o corresponding to
possible substrings of the observation string x t , and each node within a tree is indexed

123

http://www.ele.tue.nl/ctw

An Information Criterion for Markov Processes 311

by a substring s of the full context x t−1
t−L . As is illustrated in Fig. 6, each node contains

two internal counters as,o and bs,o which count the number of times a 0 or a 1 have been
observed after context s and observation bits o, as well as two internal ratios βs,o and
Qs,o which are used respectively to weight the probabilities of the node with respect
to its children nodes and to select between the node and its children when drawing
probabilities. As a result each node in a tree can be used to generate the probability
that X t {k} = 1 conditional on the history of the system, given by the context string s
and on the previous k − 1 bits of the observation string o.

Given a full context of length d = r L , one can identify a path in each tree (in bold
in Fig. 5) linking the corresponding leaf node to the root node ∅.13 Selecting which
node on the path to draw the probability from involves a tradeoff between precision
and conditioning. Nodes close to the leaf benefit frommore conditioning information,
as the context string s is longer, but suffer from not being observed very often. Nodes
closer to the root will be visited more often and produce more precise probabilities,
but suffer from weaker conditioning.14 The intuition behind the effectiveness of the
CTW and CTM algorithms is that they provide a method of optimally resolving this
tradeoff and selecting the point on the leaf-to-root path which minimises prediction
error.

Updating the Tree During Training

During the training stage, the simulated data from model Mi is used sequentially
to update the trees. Starting at the beginning of the training data string, the first L
observations x L

1 specify the d-length context string with the following r bits making
up the observation string x L+1, as shown in Fig. 4. The bits in o are used to identify
the r trees corresponding to the observation and the bits in s identify the nodes making
up the leaf to root path.

For each of the r trees, the node on the path is updated in sequence, as illustrated
in Fig. 6. Because leaf nodes do not have any children, there is no weighting to be
performed, and the probabilities in the node are directly given by the Krichevsky and
Trofimov (1981) estimates using counts as,o and bs,o:

Pe
s,o (Xt = 0) = as,o + 1

2

as,o + bs,o + 1
Pe
s,o (Xt = 1) = bs,o + 1

2

as,o + bs,o + 1
. (42)

The probabilities from the leaf node are used to calculate the initial value of the
odds ratio η, which is send to the parent of the leaf node.

η = Pe
s,o(Xt = 0)

Pe
s,o(Xt = 1)

= 1 − Pe
s,o(Xt = 1)

Pe
s,o(Xt = 1)

. (43)

13 In the interest of simplification, the tree in Fig. 5 is truncated at a depth d = 3.
14 In particular, the root node ∅ is visited every time the tree is updated, however it corresponds to an
unconditional probability as no historical conditioning information is used.

123

312 S. Barde

Fig. 5 A context tree, truncated
at d = 3

1

↑ 1

11 ↑ 1

111 ↑ 1

011 ↓ 0

01
↓ 0

101 ↑ 1

001 ↓ 0

0

↓ 0

10 ↑ 1

110 ↑ 1

010 ↓ 0

00
↓ 0

100 ↑ 1

000 ↓ 0

Fig. 6 Updating a tree node
identified by context s and
observation o

β, Q
a, b

(s, o)

η out →

(1s, o)

(0s, o)

η in →

The incoming odds ratio are used to calculate the weighted probability given by
the child node:15

Pw
0s,o (Xt = 0) = ηin

1 + ηin
Pw
0s,o (Xt = 1) = ηin

1 + ηin
. (44)

15 For the parent of the leaf node, it is the case of course that Pe
0s,o = Pw

0s,o, however for nodes deeper in
the tree this will no longer be the case.

123

An Information Criterion for Markov Processes 313

These allow the η odds ratio to be updated, using the internal mixing ratio βs,o,
which weight the probabilities that X t {k} = 1 as measured in the current node (42)
and as measured in the child node (44):

ηout = βs,oPe
s,o(Xt = 0) + Pw

0s,o(Xt = 0)

βs,oPe
s,o(Xt = 1) + Pw

0s,o(Xt = 1)
. (45)

The outgoing odds ratio ηout will become the incoming odds ratio ηin for the next
node on the leaf to root path. Before proceeding to the next node, the algorithm updates
the internal βs,o, Qs,o ratios and as,o, bs, o counters. First of all, the internal βs,o ratio
is updated as follows, in order to reflect the new observation, and the internal counter
corresponding to the observation is incremented by one.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βs,o = βs,o
Pe
s,o(Xt = 0)

Pw
0s,o(Xt = 0)

, as,o = as,o + 1 if xt = 0,

βs,o = βs,o
Pe
s,o(Xt = 1)

Pw
0s,o(Xt = 1)

, bs,o = bs,o + 1 if xt = 1.

(46)

Secondly, the Q-ratio is updated using βs,o and the Q-ratios of the two children of
node (s, o), following the CTM procedure of Willems et al. (2006):

Qs,o = max

(
Q0s,oQ1s,o

βs,o + 1
,

βs,o

βs,o + 1

)
. (47)

Once the node has been updated, the algorithm passes the updated value of η (45)
to the next node on the path and updates it using (44)–(47). This process continues
until the root node is reached for all r trees, at which point the algorithm moves on to
the next context/observation pair x L+1

2 , x L+2, the procedure continuing until all the
training data has been processed.

Stage 2: Scoring the Empirical Data

The N − L empirical observations are processed sequentially, starting with the first
context/ observation pair x L+1

2 , x L+2, and finishing with the last one, x N−1
N−L , x N .

The conditional probabilities PMi (X t = x t | x t−1
t−L) required to score each observation

are drawn from the context trees corresponding to model Mi .

Drawing Probabilities from the Tree

As was the case for the training data in stage 1, each context/observation pair is used
to identify the r trees corresponding to the observation string and the leaf-to-root path
corresponding to the context. Because each node on this path can potentially be used to
generate a conditional probability, the context tree maximisation approach ofWillems
et al. (2006) is used to select the correct node on the path. Starting at the root of the

123

314 S. Barde

tree, the βs,o ratio of the node is compared to product of the Q ratio of the children
nodes as follows:

{
if Q0s,oQ1s,o > βs,o move to child node on path,
if Q0s,oQ1s,o < βs,o halt → current node optimal.

(48)

Once the best node on the path s∗ is identified, its as∗,o, bs∗,o counters are used to
calculate the probability of the kth bit being a ‘1’, PMi (Xt {k} = 1| x t−1

t−L = s∗, x t

{1, 2, . . . , k − 1} = o), using the Krichevsky and Trofimov (1981) estimator. This
is carried out for all r bits in the observation string, providing a r length vector of
probabilities p:

pi (k) = PMi

(
X t {k}=1

∣∣ x t−1
t−L , x t {1, 2, . . . , k − 1}

)
= bs∗,o+ 1

2

as∗,o + bs∗,o + 1
. (49)

Scoring the Observations

The nested binary structure of the r -bits in an observation, explained in Sect. 1, means
that the log score for the observation is simply sum of the individual binary log scores
obtained using the vector of model probabilities p and observation bits x t {k}:

λi

(
X t
∣∣ x t−1

t−L

)
= −

r∑

k=1

[
x t {k} log2 pi (k) + (

1 − x t {k}
)
log2 (1 − pi (k))

]
. (50)

In addition to this, the as∗,o, bs∗,o counters used to generate the vector of probabil-
ities (49) are used to generate the marginal bound of the KT estimator (13) which is
used in the MIC procedure to correct for the measurement bias induced by the stage
1 learning process:

εi

(
X t
∣∣ x t−1

t−L

)
= 1

2

x t∑

o=∅

log2
as∗,o + bs∗,o + 1

as∗,o + bs∗,o
. (51)

Finally, an MDL complexity penalisation can be obtained by summing the log of
the normalised counter observations for all the nodes in the tree:

XN
i =

∑

s

∑

o

γ

(
N (as,o+bs,o)

T

)
γ (x)=

{
0 for 0 ≤ x < 1,
1
2 log2(x) + 1 for x ≥ 1.

(52)

123

An Information Criterion for Markov Processes 315

Appendix 3: Extended Monte Carlo Results

Table 6 Monte Carlo analysis of MIC on ARMA models, L = 3, short T

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 215

MICi , mean 25,226.93 30,933.42 25,186.39 25,248.77 25,235.21 26,383.53 25,298.7

P(ρi = ρ∗
i) 0.137 1 0.227 0.287 0.298 1 0.704

P(ρi > ρ∗
i) 0.863 – 0.206 0.144 0.292 0 0

P(ρi < ρ∗
i) – 0 0.567 0.569 0.41 0 0.296

ΔMICi,0, mean – 5706.49 −40.54 21.84 8.28 1156.60 71.77

ΔMICi,0, P2.5 – 5150.72 −157.41 −97.77 −113.83 884.81 −57.41

ΔMICi,0, P97.5 – 6285.01 61.33 228.30 178.28 1509.14 206.68

P(ΔMICi,0 > 0) – 1 0.231 0.557 0.506 1 0.881

P(Mi ∈ M̂0.95) 0.974 0 0.998 0.967 0.975 0 0.623

P(Mi ∈ M̂0.9) 0.931 0 0.995 0.928 0.941 0 0.498

T = 216

MICi , mean 24,950.47 30,748.75 24,982.44 25,003.14 24,993.01 26,357.2 24,986.35

P(ρi = ρ∗
i) 0.504 1 0.227 0.302 0.195 1 0.23

P(ρi > ρ∗
i) 0.496 – 0.609 0.332 0.48 0 0

P(ρi < ρ∗
i) – 0 0.164 0.366 0.325 0 0.77

ΔMICi,0, mean – 5798.27 31.97 52.67 42.53 1406.73 35.87

ΔMICi,0, P2.5 – 5231.67 −58.52 −39.57 −54.23 1093.81 −51.24

ΔMICi,0, P97.5 – 6373.71 133.72 157.08 171.59 1855.40 127.10

P(ΔMICi,0 > 0) – 1 0.748 0.871 0.782 1 0.767

P(Mi ∈ M̂0.95) 1 0 0.967 0.917 0.977 0 0.950

P(Mi ∈ M̂0.9) 0.998 0 0.939 0.856 0.945 0 0.917

T = 217

MICi , mean 24,736.78 30,646.67 24,735.29 24,786.95 24,774.35 26,423.05 24,794.21

P(ρi = ρ∗
i) 0.387 1 0.308 0.371 0.269 1 0.446

P(ρi > ρ∗
i) 0.613 – 0.253 0.292 0.401 0 0

P(ρi < ρ∗
i) – 0 0.439 0.337 0.33 0 0.554

ΔMICi,0, mean – 5909.88 −1.49 50.16 37.57 1686.26 57.42

ΔMICi,0, P2.5 – 5353.38 −93.61 −41.06 −61.91 1331.06 −26.55

ΔMICi,0, P97.5 – 6470.10 98.61 140.95 182.14 2199.09 146.06

P(ΔMICi,0 > 0) – 1 0.468 0.884 0.719 1 0.91

P(Mi ∈ M̂0.95) 0.984 0 0.991 0.847 0.952 0 0.813

P(Mi ∈ M̂0.9) 0.970 0 0.981 0.768 0.903 0 0.728

T = 218

MICi , mean 24,495.31 30,745.8 24,515.46 24,598.97 24,569.58 26,449.52 24,633.98

P(ρi = ρ∗
i) 0.703 1 0.633 0.598 0.65 1 0.761

123

316 S. Barde

Table 6 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

P(ρi > ρ∗
i) 0.297 – 0.092 0.192 0.254 0 0

P(ρi < ρ∗
i) – 0 0.275 0.21 0.096 0 0.239

ΔMICi,0, mean – 6250.49 20.15 103.66 74.27 1954.22 138.67

ΔMICi,0, P2.5 – 5676.61 −53.52 26.11 −4.29 1566.46 57.56

ΔMICi,0, P97.5 – 6833.33 98.56 185.57 158.62 2549.27 221.66

P(ΔMICi,0 > 0) – 1 0.719 0.994 0.969 1 1

P(Mi ∈ M̂0.95) 0.995 0 0.949 0.412 0.661 0 0.192

P(Mi ∈ M̂0.9) 0.988 0 0.913 0.288 0.532 0 0.125

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

Table 7 Monte Carlo analysis of MIC on ARMA models, L = 3, long T

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 219

MICi , mean 24,308.29 30,762.66 24,326.00 24,445.68 24,404.13 26,395.72 24,499.15

P(ρi = ρ∗
i) 0.687 1 0.665 0.78 0.85 1 0.887

P(ρi > ρ∗
i) 0.313 – 0.024 0.106 0.122 0 0

P(ρi < ρ∗
i) – 0 0.311 0.114 0.028 0 0.113

ΔMICi,0, mean – 6454.38 17.71 137.39 95.84 2087.43 190.86

ΔMICi,0, P2.5 – 5878.78 −48.45 63.14 26.37 1654.28 115.25

ΔMICi,0, P97.5 – 7042.87 85.21 212.30 169.73 2704.73 272.93

P(ΔMICi,0 > 0) – 1 0.687 0.999 0.993 1 1

P(Mi ∈ M̂0.95) 0.998 0 0.924 0.094 0.324 0 0.011

P(Mi ∈ M̂0.9) 0.988 0 0.876 0.049 0.230 0 0.003

T = 220

MICi , mean 24,171.54 30,708.71 24,181.76 24,308.26 24,260.10 26,328.56 24,391.47

P(ρi = ρ∗
i) 0.626 1 0.612 0.921 0.924 1 0.977

P(ρi > ρ∗
i) 0.374 – 0.015 0.021 0.059 0 0

P(ρi < ρ∗
i) – 0 0.373 0.058 0.017 0 0.023

ΔMICi,0, mean – 6537.17 10.21 136.72 88.56 2157.02 219.93

ΔMICi,0, P2.5 – 5947.40 −47.96 68.34 22.15 1725.87 141.59

ΔMICi,0, P97.5 – 7162.27 72.85 203.58 158.51 2820.34 302.93

P(ΔMICi,0 > 0) – 1 0.627 1 0.996 1 1

P(Mi ∈ M̂0.95) 0.995 0 0.946 0.041 0.309 0 0

P(Mi ∈ M̂0.9) 0.976 0 0.902 0.023 0.210 0 0

123

An Information Criterion for Markov Processes 317

Table 7 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 221

MICi , mean 24,061.74 30,709.54 24,067.33 24,210.05 24,152.46 26,285.81 24,316.84

P(ρi = ρ∗
i) 0.575 1 0.574 0.972 0.981 1 0.99

P(ρi > ρ∗
i) 0.425 – 0.001 0.01 0.018 0 0

P(ρi < ρ∗
i) – 0 0.425 0.018 0.001 0 0.01

ΔMICi,0, mean – 6647.80 5.59 148.31 90.77 2224.08 255.11

ΔMICi,0, P2.5 – 6025.87 −45.61 83.31 32.68 1795.72 173.36

ΔMICi,0, P97.5 – 7282.78 59.00 211.67 149.48 2870.99 342.03

P(ΔMICi,0 > 0) – 1 0.575 1 1 1 1

P(Mi ∈ M̂0.95) 0.986 0 0.959 0.008 0.170 0 0

P(Mi ∈ M̂0.9) 0.966 0 0.921 0.003 0.115 0 0

T = 222

MICi , mean 23,983.70 30,703.92 23,989.93 24,136.63 24,071.69 26,300.02 24,261.73

P(ρi = ρ∗
i) 0.605 1 0.602 0.993 0.993 1 0.996

P(ρi > ρ∗
i) 0.395 – 0.003 0.004 0.003 0 0

P(ρi < ρ∗
i) – 0 0.395 0.003 0.004 0 0.004

ΔMICi,0, mean – 6720.22 6.24 152.93 87.99 2316.32 278.03

ΔMICi,0, P2.5 – 6080.26 −36.15 93.82 37.51 1853.71 201.62

ΔMICi,0, P97.5 – 7367.55 52.34 211.11 142.37 3018.52 361.99

P(ΔMICi,0 > 0) – 1 0.605 1 0.999 1 1

P(Mi ∈ M̂0.95) 0.991 0 0.939 0.002 0.110 0 0

P(Mi ∈ M̂0.9) 0.978 0 0.899 0.001 0.057 0 0

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

Table 8 Monte Carlo analysis of MIC on ARMA models, L = 2, short T

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 14 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 215

MICi , mean 25,237.59 30,950.94 25,192.1 25,245.42 25,240.6 26,386.74 25,295.39

P(ρi = ρ∗
i) 0.1 1 0.211 0.24 0.291 1 0.652

P(ρi > ρ∗
i) 0.9 – 0.224 0.137 0.314 0 0

P(ρi < ρ∗
i) – 0 0.565 0.623 0.395 0 0.348

ΔMICi,0, mean – 5713.35 −45.49 7.83 3.01 1149.15 57.80

ΔMICi,0, P2.5 – 5162.28 −166.16 −114.43 −116.38 878.39 −72.27

ΔMICi,0, P97.5 – 6297.20 57.85 216.45 172.40 1504.34 195.88

123

318 S. Barde

Table 8 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 14 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

P(ΔMICi,0 > 0) – 1 0.198 0.472 0.473 1 0.835

P(Mi ∈ M̂0.95) 0.966 0 0.998 0.982 0.977 0 0.691

P(Mi ∈ M̂0.9) 0.910 0 0.995 0.951 0.942 0 0.567

T = 216

MICi , mean 24,970.78 30,759.39 24,989.92 24,997.91 24,997.63 26,360.39 24,973.88

P(ρi = ρ∗
i) 0.306 1 0.179 0.274 0.184 1 0.148

P(ρi > ρ∗
i) 0.694 – 0.652 0.267 0.505 0 0

P(ρi < ρ∗
i) – 0 0.169 0.459 0.311 0 0.852

ΔMICi,0, mean – 5788.60 19.14 27.13 26.85 1389.60 3.10

ΔMICi,0, P2.5 – 5222.24 −68.30 −66.12 −66.46 1079.23 −82.85

ΔMICi,0, P97.5 – 6364.14 120.25 123.74 152.44 1855.98 86.12

P(ΔMICi,0 > 0) – 1 0.657 0.724 0.667 1 0.534

P(Mi ∈ M̂0.95) 0.994 0 0.980 0.958 0.988 0 0.987

P(Mi ∈ M̂0.9) 0.986 0 0.957 0.921 0.970 0 0.975

T = 217

MICi , mean 24,801.11 30,732.69 24,791.17 24,799.82 24,795.46 26,420.98 24,806.15

P(ρi = ρ∗
i) 0.148 1 0.225 0.227 0.135 1 0.297

P(ρi > ρ∗
i) 0.852 – 0.512 0.194 0.341 0 0

P(ρi < ρ∗
i) – 0 0.263 0.579 0.524 0 0.703

ΔMICi,0, mean – 5931.58 −9.94 −1.28 −5.65 1619.87 5.04

ΔMICi,0, P2.5 – 5379.29 −90.51 −88.71 −96.19 1266.63 −73.04

ΔMICi,0, P97.5 – 6491.13 81.18 76.45 138.82 2126.06 83.33

P(ΔMICi,0 > 0) – 1 0.377 0.496 0.389 1 0.555

P(Mi ∈ M̂0.95) 0.973 0 0.993 0.963 0.994 0 0.956

P(Mi ∈ M̂0.9) 0.942 0 0.976 0.930 0.989 0 0.919

T = 218

MICi , mean 24,630.97 30,806.13 24,659.9 24,659.23 24,654.89 26,447.94 24,690.49

P(ρi = ρ∗
i) 0.596 1 0.221 0.274 0.25 1 0.634

P(ρi > ρ∗
i) 0.404 – 0.668 0.123 0.324 0 0

P(ρi < ρ∗
i) – 0 0.111 0.603 0.426 0 0.366

ΔMICi,0, mean – 6175.16 28.93 28.27 23.92 1816.97 59.52

ΔMICi,0, P2.5 – 5605.29 −30.71 −35.79 −41.49 1421.16 −9.22

ΔMICi,0, P97.5 – 6765.68 94.65 91.59 88.77 2415.88 128.09

P(ΔMICi,0 > 0) – 1 0.837 0.803 0.771 1 0.953

P(Mi ∈ M̂0.95) 0.998 0 0.953 0.939 0.965 0 0.782

P(Mi ∈ M̂0.9) 0.996 0 0.912 0.885 0.922 0 0.676

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

123

An Information Criterion for Markov Processes 319

Table 9 Monte Carlo analysis of MIC on ARMA models, L = 2, long T

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 14 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 219

MICi , mean 24,537.20 30,870.74 24,547.77 24,560.59 24,562.01 26,469.34 24,600.05

P(ρi = ρ∗
i) 0.519 1 0.314 0.31 0.285 1 0.784

P(ρi > ρ∗
i) 0.481 – 0.409 0.084 0.424 0 0

P(ρi < ρ∗
i) – 0 0.277 0.606 0.291 0 0.216

ΔMICi,0, mean – 6333.54 10.57 23.39 24.81 1932.14 62.84

ΔMICi,0, P2.5 – 5744.34 −37.37 −32.78 −31.30 1508.02 −0.56

ΔMICi,0, P97.5 – 6925.50 62.52 79.29 80.81 2564.46 120.17

P(ΔMICi,0 > 0) – 1 0.647 0.793 0.821 1 0.972

P(Mi ∈ M̂0.95) 0.998 0 0.976 0.932 0.934 0 0.685

P(Mi ∈ M̂0.9) 0.992 0 0.955 0.880 0.885 0 0.573

T = 220

MICi , mean 24,471.66 30,868.36 24,479.13 24,484.99 24,490.77 26,462.23 24,531.14

P(ρi = ρ∗
i) 0.471 1 0.329 0.26 0.247 1 0.862

P(ρi > ρ∗
i) 0.529 – 0.425 0.034 0.479 0 0

P(ρi < ρ∗
i) – 0 0.246 0.706 0.274 0 0.138

ΔMICi,0, mean – 6396.70 7.47 13.33 19.11 1990.57 59.48

ΔMICi,0, P2.5 – 5807.51 −35.65 −28.95 −29.64 1561.01 2.07

ΔMICi,0, P97.5 – 7006.12 49.96 58.07 67.26 2636.28 114.04

P(ΔMICi,0 > 0) – 1 0.637 0.728 0.779 1 0.98

P(Mi ∈ M̂0.95) 0.999 0 0.981 0.945 0.938 0 0.597

P(Mi ∈ M̂0.9) 0.989 0 0.963 0.902 0.870 0 0.488

T = 221

MICi , mean 24,428.22 30,917.28 24,432.73 24,440.82 24,447.83 26,445.25 24,497.17

P(ρi = ρ∗
i) 0.471 1 0.348 0.25 0.258 1 0.953

P(ρi > ρ∗
i) 0.529 – 0.337 0.009 0.53 0 0

P(ρi < ρ∗
i) – 0 0.315 0.741 0.212 0 0.047

ΔMICi,0, mean – 6489.06 4.51 12.60 19.61 2017.03 68.95

ΔMICi,0, P2.5 – 5883.99 −28.48 −24.82 −19.88 1592.25 21.36

ΔMICi,0, P97.5 – 7113.15 40.78 52.43 58.81 2657.47 117.99

P(ΔMICi,0 > 0) – 1 0.589 0.736 0.836 1 0.997

P(Mi ∈ M̂0.95) 0.995 0 0.983 0.926 0.913 0 0.369

P(Mi ∈ M̂0.9) 0.993 0 0.961 0.886 0.834 0 0.268

T = 222

MICi , mean 24,408.03 31,018.51 24,413.63 24,426.75 24,431.41 26,476.42 24,480.06

P(ρi = ρ∗
i) 0.59 1 0.433 0.324 0.263 1 0.979

P(ρi > ρ∗
i) 0.41 – 0.251 0.004 0.586 0 0

P(ρi < ρ∗
i) – 0 0.316 0.672 0.151 0 0.021

123

320 S. Barde

Table 9 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 14 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

ΔMICi,0, mean – 6610.48 5.60 18.72 23.39 2068.39 72.03

ΔMICi,0, P2.5 – 5996.51 −23.45 −10.61 −7.85 1603.77 27.79

ΔMICi,0, P97.5 – 7239.11 33.91 49.49 55.43 2758.82 119.04

P(ΔMICi,0 > 0) – 1 0.661 0.896 0.923 1 1

P(Mi ∈ M̂0.95) 0.999 0 0.959 0.828 0.779 0 0.251

P(Mi ∈ M̂0.9) 0.993 0 0.921 0.742 0.686 0 0.171

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

Table 10 Monte Carlo analysis of MIC on ARMA models, L = 3, short T, N = 500

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 215

MICi , mean 1538.93 1887.44 1536.64 1540.54 1539.76 1609.25 1543.40

P(ρi = ρ∗
i) 0.198 0.999 0.223 0.221 0.196 0.995 0.362

P(ρi > ρ∗
i) 0.802 – 0.484 0.178 0.365 0.001 0

P(ρi < ρ∗
i) – 0.001 0.293 0.601 0.439 0.004 0.638

ΔMICi,0, mean – 348.52 −2.28 1.61 0.83 70.33 4.47

ΔMICi,0, P2.5 – 222.22 −32.21 −25.42 −24.70 22.18 −22.95

ΔMICi,0, P97.5 – 489.37 20.86 26.36 27.96 165.52 29.93

P(ΔMICi,0 > 0) – 1 0.426 0.534 0.496 0.999 0.645

P(Mi ∈ M̂0.95) 0.980 0 0.991 0.967 0.985 0.219 0.918

P(Mi ∈ M̂0.9) 0.965 0 0.978 0.936 0.966 0.152 0.875

T = 216

MICi , mean 1522.30 1876.45 1523.84 1525.84 1524.39 1607.48 1524.36

P(ρi = ρ∗
i) 0.248 0.996 0.193 0.262 0.193 0.996 0.242

P(ρi > ρ∗
i) 0.752 – 0.586 0.25 0.372 0.004 0

P(ρi < ρ∗
i) – 0.004 0.221 0.488 0.435 0 0.758

ΔMICi,0, mean – 354.16 1.54 3.54 2.10 85.19 2.06

ΔMICi,0, P2.5 – 229.07 −20.32 −18.47 −20.50 33.87 −20.61

ΔMICi,0, P97.5 – 495.76 24.00 26.50 31.68 199.75 23.97

P(ΔMICi,0 > 0) – 1 0.552 0.641 0.548 1 0.581

P(Mi ∈ M̂0.95) 0.992 0 0.987 0.963 0.987 0.159 0.951

P(Mi ∈ M̂0.9) 0.973 0 0.974 0.92 0.968 0.096 0.916

T = 217

MICi , mean 1509.10 1870.21 1508.91 1512.25 1511.24 1611.38 1512.26

P(ρi = ρ∗
i) 0.259 0.995 0.239 0.235 0.201 0.995 0.293

123

An Information Criterion for Markov Processes 321

Table 10 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

P(ρi > ρ∗
i) 0.741 – 0.494 0.251 0.398 0.005 0

P(ρi < ρ∗
i) – 0.005 0.267 0.514 0.401 0 0.707

ΔMICi,0, mean – 361.11 −0.19 3.15 2.15 102.28 3.17

ΔMICi,0, P2.5 – 240.21 −20.49 −17.63 −20.52 45.31 −17.70

ΔMICi,0, P97.5 – 501.82 21.03 23.05 29.58 238.17 23.71

P(ΔMICi,0 > 0) – 1 0.486 0.619 0.564 1 0.603

P(Mi ∈ M̂0.95) 0.991 0 0.991 0.944 0.980 0.119 0.941

P(Mi ∈ M̂0.9) 0.977 0 0.978 0.901 0.962 0.07 0.905

T = 218

MICi , mean 1494.14 1876.38 1495.38 1500.99 1499.08 1612.77 1502.50

P(ρi = ρ∗
i) 0.362 0.993 0.27 0.29 0.235 0.993 0.412

P(ρi > ρ∗
i) 0.638 – 0.429 0.278 0.415 0.007 0

P(ρi < ρ∗
i) – 0.007 0.301 0.432 0.35 0 0.588

ΔMICi,0, mean – 382.24 1.25 6.85 4.94 118.64 8.37

ΔMICi,0, P2.5 – 253.41 −16.34 −13.47 −14.78 55.92 −12.32

ΔMICi,0, P97.5 – 524.57 21.05 28.29 25.66 279.69 30.81

P(ΔMICi,0 > 0) – 1 0.543 0.767 0.684 1 0.789

P(Mi ∈ M̂0.95) 0.993 0 0.982 0.904 0.945 0.105 0.885

P(Mi ∈ M̂0.9) 0.983 0 0.968 0.857 0.896 0.067 0.831

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

Table 11 Monte Carlo analysis of MIC on ARMA models, L = 3, long T, N = 500

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 220

MICi , mean 1482.34 1877.35 1484.14 1491.46 1489.17 1608.99 1494.72

P(ρi = ρ∗
i) 0.465 0.991 0.326 0.359 0.292 0.991 0.51

P(ρi > ρ∗
i) 0.535 – 0.349 0.261 0.419 0.009 0

P(ρi < ρ∗
i) – 0.009 0.325 0.38 0.289 0 0.49

ΔMICi,0, mean – 395.01 1.80 9.12 6.83 126.64 12.37

ΔMICi,0, P2.5 – 264.05 −15.51 −9.47 −10.80 60.53 −8.01

ΔMICi,0, P97.5 – 545.30 19.24 28.48 26.38 294.40 34.23

P(ΔMICi,0 > 0) – 1 0.598 0.839 0.778 1 0.885

P(Mi ∈ M̂0.95) 0.987 0 0.982 0.865 0.918 0.102 0.844

P(Mi ∈ M̂0.9) 0.979 0 0.965 0.791 0.860 0.062 0.756

123

322 S. Barde

Table 11 continued

r = 7 M0 M1 M2 M3 M4 M5 M6

d = 21 True No AR No AR-2 No MA No MA-2 No ARCH No ARCH-2

T = 220

MICi , mean 1474.23 1873.88 1475.47 1483.05 1480.34 1604.53 1488.38

P(ρi = ρ∗
i) 0.453 0.991 0.336 0.403 0.345 0.991 0.606

P(ρi > ρ∗
i) 0.547 – 0.318 0.229 0.349 0.009 0

P(ρi < ρ∗
i) – 0.009 0.346 0.368 0.306 0 0.394

ΔMICi,0, mean – 399.65 1.24 8.82 6.11 130.30 14.15

ΔMICi,0, P2.5 – 267.28 −14.49 −8.86 −10.49 65.20 −3.66

ΔMICi,0, P97.5 – 549.11 16.54 25.55 23.60 303.07 34.49

P(ΔMICi,0 > 0) – 1 0.567 0.842 0.767 1 0.921

P(Mi ∈ M̂0.95) 0.996 0 0.983 0.852 0.926 0.090 0.798

P(Mi ∈ M̂0.9) 0.990 0 0.967 0.766 0.875 0.057 0.694

T = 221

MICi , mean 1467.89 1873.92 1468.53 1477.45 1473.38 1601.49 1483.64

P(ρi = ρ∗
i) 0.444 0.993 0.357 0.462 0.418 0.993 0.663

P(ρi > ρ∗
i) 0.556 – 0.264 0.248 0.299 0.007 0

P(ρi < ρ∗
i) – 0.007 0.379 0.29 0.283 0 0.337

ΔMICi,0, mean – 406.03 0.65 9.56 5.49 133.61 15.75

ΔMICi,0, P2.5 – 269.33 −12.65 −7.01 −9.24 69.17 −3.04

ΔMICi,0, P97.5 – 558.25 14.93 25.41 20.90 265.24 36.96

P(ΔMICi,0 > 0) – 1 0.549 0.890 0.785 1 0.942

P(Mi ∈ M̂0.95) 0.993 0 0.978 0.799 0.903 0.085 0.745

P(Mi ∈ M̂0.9) 0.977 0 0.954 0.699 0.840 0.052 0.636

T = 222

MICi , mean 1463.30 1873.51 1463.78 1473.18 1468.70 1602.26 1480.55

P(ρi = ρ∗
i) 0.45 0.99 0.378 0.501 0.454 0.99 0.712

P(ρi > ρ∗
i) 0.55 – 0.228 0.233 0.261 0.01 0

P(ρi < ρ∗
i) – 0.01 0.394 0.266 0.285 0 0.288

ΔMICi,0, mean – 410.21 0.48 9.88 5.40 138.96 17.25

ΔMICi,0, P2.5 – 268.40 −10.94 −4.91 −7.51 71.72 −0.94

ΔMICi,0, P97.5 – 568.72 12.12 25.18 18.41 295.64 39.28

P(ΔMICi,0 > 0) – 1 0.528 0.903 0.797 1.000 0.965

P(Mi ∈ M̂0.95) 0.992 0 0.985 0.740 0.895 0.092 0.724

P(Mi ∈ M̂0.9) 0.981 0 0.962 0.650 0.818 0.053 0.584

P(ρi � ρ∗
i) Monte Carlo probabilities of MIC rank ρ being equal to, greater or smaller than AIC rank

ρ∗, ΔMICi,0 mean MIC difference between Mi and the true model M0, with 2.5 and 97.5% percentiles,

P(Mi ∈ M̂1−α) Monte Carlo probability of Mi being included in the MCS at α% confidence

123

An Information Criterion for Markov Processes 323

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic
Control, AC–19, 716–723.

Basharin, G. P. (1959). On a statistical estimate for the entropy of a sequence of independent random
variables. Theory of Probability and Its Applications, 4(3), 333–336.

Carlton, A. (1969). On the bias of information estimates. Psychological Bulletin, 71(2), 108–109.
Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
Dawid, H., & Fagiolo, G. (2008). Agent-based models for economic policy design: Introduction to the

special issue. Journal of Economic Behavior and Organization, 67, 351–354.
Deissenberg, C., VanDer Hoog, S., &Dawid, H. (2008). EURACE:Amassively parallel agent-basedmodel

of the European economy. Applied Mathematics and Computation, 204(2), 541–552.
Del Negro, M., & Schorfheide, F. (2006). How good is what you’ve got? DGSE-VAR as a toolkit for

evaluating DGSE models. Economic Review: Federal Reserve Bank of Atlanta, 91, 21–337.
Del Negro, M., & Schorfheide, F. (2011). Chapter: Bayesian Macroeconometrics. In The Oxford handbook

of Bayesian econometrics. Oxford: Oxford University Press.
Del Negro, M., Schorfheide, F., Smets, F., & Wouters, R. (2007). On the fit of new Keynesian models.

Journal of Business and Economic Statistics, 25, 123–143.
Dosi, G., Fagiolo, G., & Roventini, A. (2010). Schumpeter meeting Keynes: A policy-friendly model of

endogenous growth and business cycles. Journal of Economic Dynamics and Control, 34(9), 1748–
1767.

Dosi, G., Fagiolo, G., Napoletano,M., &Roventini, A. (2013). Income distribution, credit and fiscal policies
in an agent-based Keynesian model. Journal of Economic Dynamics and Control, 37(8), 1598–1625.

Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., & Treibich, T. (2015). Fiscal and monetary policies
in complex evolving economies. Journal of Economic Dynamics and Control, 52, 166–189.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on Infor-
mation Theory, IT–21, 194–203.

Fabretti, A. (2014). A Markov chain approach to ABM calibration. In F. J. Miguel Quesada, F. Amblard,
J. A. Barcel, & M. Madella (Eds.), Advances in computational social science and social simulation.
Barcelona: Autonomous University of Barcelona.

Fagiolo, G., & Roventini, A. (2012). Macroeconomic policy in DSGE and agent-based models. Revue de
l’OFCE, 5, 67–116.

Fagiolo, G., Moneta, A., & Windrum, P. (2007). A critical guide to empirical validation of agent-based
models in economics: Methodologies, procedures, and open problems. Computational Economics,
30, 195–226.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of
the American Statistical Association, 102, 359–378.

Grünewald, P. D. (2007). The minimum description length principle. Cambridge: MIT Press.
Hansen, M. M., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal

of the American Statistical Association, 96, 746–774.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79, 453–497.
Holcombe, M., Chin, S., Cincotti, S., Raberto, M., Teglio, A., Coakley, S., et al. (2013). Large-scale

modelling of economic systems. Complex Systems, 22(2), 175–191.
Kirman, A. (1993). Ants, rationality and recruitment. Quarterly Journal of Economics, 108, 137–156.
Kopecky, K. A., & Suen, R. M. (2010). Finite state Markov-chain approximations to highly persistent

processes. Review of Economic Dynamics, 13(3), 701–714.
Krichevsky, R. E., & Trofimov, V. K. (1981). The performance of universal encoding. IEEE Transactions

on Information Theory, IT–27, 629–636.
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics,

22, 79–86.
Lamperti, F. (2015). An information theoretic criterion for empirical validation of time series models. LEM

working paper series 2015/02.
Marks, R. (2010). Comparing two sets of time-series: The state similarity measure. In 2010 Joint statis-

tical meetings proceedings—Statistics: A key to innovation in a data-centric world (pp. 539–551).
Alexandria, VA: Statistical Computing Section, American Statistical Association.

Marks, R. E. (2013). Validation and model selection: Three similarity measures compared. Complexity
Economics, 2(1), 41–61.

123

324 S. Barde

Miller, G.A. (1955).Note on the bias of information estimates. Information Theory in Psychology: Problems
and Methods, 2, 95–100.

Panzeri, S., & Treves, A. (1996). Analytical estimates of limited sampling biases in different information
measures. Network: Computation in Neural Systems, 7, 87–107.

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Asso-
ciation, 89, 1303–1313.

Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econo-
metric Reviews, 23, 53–70.

Rissanen, J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and
Development, 20, 198–203.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.
Rissanen, J. (1984). Universal coding, information, prediction and estimation. IEEE Transactions on Infor-

mation Theory, IT–30, 629–636.
Rissanen, J. (1986). Complexity of strings in the class ofMarkov sources. IEEETransactions on Information

Theory, IT–32, 526–532.
Rissanen, J., & Langdon, G. G. J. (1979). Modeling by shortest data description. IBM Journal of Research

and Development, 28, 149–162.
Roulston, M. S. (1999). Estimating the errors on measured entropy and mutual information. Physica D,

125, 285–294.
Schorfheide, F. (2000). Loss function-based evaluation of DSGEmodels. Journal of Applied Econometrics,

15, 645–670.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27,

379–423.
Tauchen, G. (1986a). Finite state Markov-chain approximations to univariate and vector autoregressions.

Economics Letters, 20(2), 177–181.
Tauchen, G. (1986b). Statistical properties of generalized method-of-moments estimators of structural

parameters obtained from financial market data. Journal of Business and Economic Statistics, 4(4),
397–416.

VanDer Hoog, S., Deissenberg, C., &Dawid, H. (2008). Production and finance in EURACE. InComplexity
and artificial markets (pp. 147–158). Berlin: Springer.

White, H. (2000). A reality check for data snooping. Econometrica, 68, 1097–1126.
Willems, F. M. J., & Tjalkens, T. J. (1997). Complexity reduction of the context-tree weighting algorithm:

A study for KPN research. EIDMA Report RS.97.01.
Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J. (1995). The context-tree weighting method: Basic

properties. IEEE Transactions on Information Theory, IT–41, 653–664.
Willems, F.M. J., Tjalkens, T. J.,& Ignatenko, T. (2006)Context-treeweighting andmaximizing: Processing

betas. In Proceedings of the inaugural workshop of the ITA (information theory and its applications).

123

	A Practical, Accurate, Information Criterion for Nth Order Markov Processes
	Abstract
	1 Introduction
	2 The MIC: Motivation and Theoretical Properties
	2.1 Information Criteria and Minimum Description Length
	2.2 Theoretical Properties of the MIC Procedure
	2.3 Benchmarking the MIC's Theoretical Efficiency

	3 Monte Carlo Validation on ARMA--ARCH Models
	3.1 The ARMA--ARCH Model Specification and Monte Carlo Analysis
	3.2 MIC Performance on ARMA--ARCH Models
	3.3 Localised MIC Performance on ARMA--ARCH Models

	4 Robustness and Practical Applicability
	4.1 Transforming and Discretising the Data
	4.2 Choosing the Lags and Training Length
	4.3 Penalising Complexity

	5 Conclusion
	Acknowledgements

	Appendix 1: Bias Correction in Measured Cross-Entropy
	Appendix 2: Technical Appendix---The MIC Protocol
	Stage 0: Discretising the State Space and Testing for Quantisation Error
	Data Discretisation and Observation Structure
	The Choice of r: Testing for Quantisation Error
	Stage 1: The Context Tree Weighting (CTW) and Maximising (CTM) Algorithms
	Tree Structure
	Updating the Tree During Training
	Stage 2: Scoring the Empirical Data
	Drawing Probabilities from the Tree
	Scoring the Observations
	Appendix 3: Extended Monte Carlo Results
	References

