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ARTICLES

THE EMERGENCE OF MONEY:
A DYNAMIC ANALYSIS

MAURIZIO IACOPETTA
SKEMA Business School, Université Côte d’Azur (GREDEG)
and
OFCE, Sciences-Po Paris

This paper studies the role of liquidity in triggering the emergence of money in a
Kiyotaki-Wright economy. A novel method computes the dynamic Nash equilibria of the
economy by setting up an iteration of the agents’ profile of (pure) strategies and of the
distribution of commodities across agents. The analysis shows that the evolving state of
liquidity can spark the acceptance of a high-cost-storage commodity as money or cause
the disappearance of a commodity money. It also reveals the existence of multiple
dynamic equilibria with pure strategies. Several simulations clarify how history and the
coordination of beliefs matter for the selection of a particular equilibrium.

Keywords: Speculative Strategy, Dynamic Nash Equilibrium, Liquidity Differential

1. INTRODUCTION

In their well-known paper “On Money as a Medium of Exchange,” Kiyotaki and
Wright (1989) (KW henceforth) study the conditions for the existence of a steady-
state Nash equilibrium in which a low-return object is accepted as money. The
literature, however, has yet to clarify under what conditions the economy could
converge to such an equilibrium and what may the set of strategies look like along
the transition. Does convergence occur from any initial condition? If a low-return
object plays the role of money in the steady state, does it also do so along a dynamic
equilibrium? Conversely, can such an object be used as money temporarily and
then permanently lose this function? To answer these types of questions, this paper
develops a methodology that generates dynamic Nash equilibria in a generalized
KW environment.
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The algorithm builds directly on the concept of Nash equilibrium with many
players as in Fudenberg and Levine (1988). The main idea is to obtain an equi-
librium such that, given the actions of all other players, no player can make any
gain by changing his action. The algorithm creates a sequence of rounds with the
aim of finding a convergence toward an equilibrium for the distribution of assets
and trading strategies. In particular, each round of the iterative scheme consists
of two steps. In the first step, given the initial state of the economy, it derives a
time pattern of the distribution of goods that results from decentralized meetings,
under an educated guess on the profile of trading strategies. In the second step,
the algorithm verifies whether any agent has an incentive to deviate from such a
guess on the profile of strategies. The follow up round uses the information on the
deviation gains, if any, to formulate a new guess.

The analysis sheds new light on the issue of the emergence of money. The
steady-state analysis would suggest that the conditions for an economy to adopt
a low-return object as money are related to the cost of storing commodities, the
matching rate, and the specification of agents’ utility. The dynamic analysis yields
a different insight: It is the evolution of the degree of the liquidity of commodities
that may induce some agents to accept a low-return commodity as money.1 The
paper also discusses equilibria where the reverse phenomenon occurs: A low-
return commodity is initially used as money, and then, as the economy moves
toward its long-run equilibrium, it loses this function due to a gradual decline in
its degree of marketability.

The algorithm is also useful to explore issues of multiple equilibria because
it generates patterns starting from any arbitrary initial condition and because it
admits multiple solutions. It is known that one version of the KW economy, called
Model B, exhibits multiple pure strategies steady states. Little is known, however,
about the initial conditions that could lead to any of these states. As Krugman
(1991), Matsuyama (1991), and Fukao and Benabou (1993) note, the presence of
multiple steady states may or may not be associated with multiple equilibria.2 The
algorithm reveals that in fact in Model B there are multiple dynamic equilibria.

Previous studies have investigated the dynamics of KW with different ap-
proaches. Marimon et al. (1990) and Başçı (1999) explore the question of whether
artificially intelligent agents can learn to play equilibrium strategies. A similar
question is tested in a number of controlled laboratory experiments with real
people [Brown (1996), Duffy and Ochs (1999, 2002)]. Matsuyama et al. (1993),
Wright (1995), Luo (1999), and Sethi (1999) approach the issue through evo-
lutionary dynamics. Duffy (2001) studies the fitness of a hypothetical learning
algorithm against the outcome of laboratory experiments. In contrast to these
studies, here the rational expectations hypothesis is maintained throughout the
dynamics. Each agent views the strategies used by others as being beyond his
control. The algorithm aims at revealing equilibria in Markov strategies, in which
strategies are permitted to depend only on the current cross-agent distribution of
goods, and from any arbitrary initial condition.
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Some have focussed on the dynamics of KW with mixed strategies. Kehoe et al.
(1993) showed that the model features a large multiplicity of dynamic equilibria
that includes cycles, sunspots, and other non-Markovian equilibria. Renero (1998),
however, argued that it is hard to find an initial condition from which an equilibrium
pattern converges to a mixed strategy steady-state equilibrium. More recently,
Oberfield and Trachter (2012) found that, in a symmetric environment, as the fre-
quency of search increases, cycles and multiplicity in mixed strategy tend to disap-
pear. The algorithm discussed in this paper does not explicitly address this debate,
as it is designed to study the emergence of money in a pure strategy environment.

The remainder of the paper is organized as follows. The next section briefly
describes the economic environment, illustrates the evolution of the distribution
of inventories under a given profile of strategies, and defines the best response
function. The section that follows studies the properties of the dynamical system.
Section 4 describes the numerical algorithm. Sections 5 provides simulations
that illustrate the emergence and disappearance of money, and discusses multiple
dynamic equilibria in Model A and Model B of KW. Section 6 concludes.

2. THE MODEL ECONOMY

The economy is essentially the same as that described in KW, except for three
differences. First, agents are not necessarily equally divided among the three
types. Second, to facilitate the description of the dynamics, time is continuous
and the matching technology is governed by a Poisson process. Third, the ranking
of the storage costs across the three goods may change.3 The overall size of the
population is N . There are three types of infinitely lived agents, indexed by Ni ,
where i = 1, 2, 3. The fraction of each type is θi = Ni

N
. A type i agent consumes

only good i and can produce only good i + 1 (mod. 3).4 Production occurs
immediately after consumption. Agent i’s instantaneous utility from consuming a
unit of good i and the disutility of producing good i +1 are denoted by Ui and Di ,
respectively, with Ui > Di > 0, and their difference is ui = Ui −Di . Restrictions
on Ui , Di , and ci are imposed so that no agent wants to drop out of the economy,
no one finds it optimal to dispose of a commodity, and an individual always wants
to consume his preferred good and produce a new one rather than holding it.

At each instant in time, an individual can hold one and only one unit of any type
i good at a cost ci , measured in units of utility.5 The discount rate is denoted by
ρ > 0. A pair of agents is randomly and uniformly chosen from the population to
meet for a possible trade. After a pair is formed, the waiting time for the next pair
to be called is governed by a Poisson process of parameter α. A bilateral trade
occurs if, and only if, it is mutually agreeable. Agent i always accepts good i but
never holds it because, provided that ui is sufficiently large, there is immediate
consumption (see KW, Lemma 1, p. 933). Therefore, agent i enters the market
with either one unit of good i + 1 or one unit of good i + 2.

The proportion of all agents of type i that hold good j at time t is denoted
by pi,j (t).6 Then, the vector p̃(t) = {pi,j (t)}, for i = 1, 2, 3, and j = 1, 2, 3,
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describes the state of the economy at time t (henceforth, i and j go from 1 to 3).
However, because pi,i(t) = 0,

pi,i+1(t) + pi,i+2(t) = θi , (1)

for any t > 0, and the state of the economy can be represented in a more parsimo-
nious way by p(t) = [p1,2(t), p2,3(t), p3,1(t)]. An individual i has only to decide
whether to exchange his production good i + 1 for good i + 2. Agent i’s choice
in favor of such a trade (called “indirect trade”) is denoted with σi(t) = 1 and that
against it with σi(t) = 0. Agent i has to select a time path, σi(t), that maximizes
his expected stream of present and future net utility, given other agents’ strategy
paths, s(t) = [s1(t), s2(t), s3(t)], and p(t), for any t > 0, where si(t) has the same
interpretation as σi(t) but refers to the symmetric strategies of the ensemble of
type i agents.7

2.1. Distribution of Assets and Value Functions

For a given profile of strategies, s(t), the evolution in the stock of good i + 1 held
by agents of type i is given by

ṗi,i+1 = α{pi,i+2[pi+1,i (1 − si+1)+pi+2,i +pi+2,i+1(1 − si)] −pi,i+1pi+1,i+2si}.
(2)

The terms inside the brackets before the minus sign calculate the frequency with
which type i agents are called for a match while holding good i + 2 and end up
with good i +1. Specifically, pi+1,i (1−si+1) is the probability of acquiring good i

from type i +1 agents—the good is then consumed and good i +1 is immediately
produced afterward, pi+2,i is the probability of acquiring the consumption good i

from type i + 2 agents, and pi+2,i+1(1 − si) is the probability of obtaining good
i + 1 from type i + 2 agents. Finally, the term pi,i+1pi+1,i+2si accounts for the
probability that an agent of type i, who holds good i + 1, ultimately has good
i + 2. The behavior of pi,i+2 is derived through (1). The system that describes the
evolution of the distribution of inventories is denoted by F(p(t)).

Consider now a representative agent of type i who has to compute her best
profile of strategies, given a pattern of inventories, p(t), and a pattern of strategies
for other agents, s(t)—including those of her own type. Let Vi,j (t) be the value
function when holding good j at time t . When j = i + 1, we have that

Vi,i+1(t) = max
{σi (υ)}υ≥t

∫ ∞

t

αe−α(υ−t)

(
e−ρ(υ−t){[pi,i+2σi(1 − si) + pi+1,i+2σi]Vi,i+2

+ [1 − pi,i+2σi(1 − si) − pi+1,i+2σi]Vi,i+1 + (pi+1,i + pi+2,i si+2)ui}

− 1 − e−(υ−t)ρ

ρ
ci+1

)
dυ, (3)
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where the term αe−α(υ−t)dυ measures the probability that an agent of type i is
called to form a match for the first time after time t in the time interval (υ, υ +
dυ). The term after the discount factor is the probability that this agent engages
in indirect trading—in which case, she is left with Vi,i+2 as his continuation
value. Otherwise, she ultimately has good i + 1 either because no trade occurs or
because she acquired her consumption good—an event that occurs with probability
pi+1,i + pi+2,i si+2—and then produces good i + 1. The last term is the cost on
holding good i+1 from time t to time υ. The appendix derives a similar expression
for Vi,i+2(t).

Let �i(υ) ≡ Vi,i+1(υ)−Vi,i+2(υ), and let σ̃i (υ; s(υ), p(υ)) denote the optimal
(or best) response profile of strategies of representative agent i to other players’
strategies, s(υ), and the pattern of inventories, p(υ), for υ > t . Then, it must be
that

σ̃i(υ; s(υ), p(υ)) =
{

1 if �i(υ) < 0
0 if �i(υ) > 0

, (4)

for any υ ≥ t . In case �i(υ) = 0, the agent is indifferent between the two
alternatives, and the choice is taken at random. Hence, the formulation of the
problem corresponds to a Markov decision process in which the representative
agent optimizes over a sequence of functions, σ̃i (.). The disutility of production
is large enough that it is never optimal to throw good i + 2 away to produce good
i +1, that is Di > −�i(t), for any t > 0 (see KW, p. 939 for a similar restriction).

2.2. Definition of Dynamic Nash Equilibrium

Given an initial distribution of inventories, p(0) = p0, a Dynamic Nash Equilib-
rium (DNE) is a path of strategies, s∗(t), together with a distribution of inventories,
p∗(t), such that for all t > 0:

i. p∗(t) and s∗(t) satisfy the dynamics equations (2) with the initial condition p∗(0) = p0

and subject to the constraint (1);
ii. for all t > 0, every agent maximizes his or his expected utility given the strategy

profiles of the rest of the population; and
iii. σ̃i (t; s∗(t), p∗(t)) = s∗

i (t) for all t > 0.

To obtain the DNE, it is useful first to explore the evolution of the distribution
of inventories, p(t), for any arbitrary set of time-constant strategies, s, and then to
search for all the possible steady-state Nash equilibria.

3. CONVERGENCE TO A STEADY STATE

It is common to compute Nash equilibria by studying simultaneously the evolution
of state and choice variables. In this environment, where there is a multiplicity of
state and choice variables, it is easier to follow an alternative two-step procedure.
First, consider the behavior of the assets p(t) for a set of strategies s(t) that is



2578 MAURIZIO IACOPETTA

not necessarily the one that supports the Nash equilibrium. Then, verify which,
among the different strategies, does support a Nash equilibrium.

Let s(t) be an arbitrary given profile of strategies. Following equation (2), the
evolution of the distribution of assets, p(t), is (the time index is dropped)

ṗ1,2 = α{p1,3[p2,1(1 − s2) + p3,1 + p3,2(1 − s1)] − p1,2p2,3s1}, (5)

ṗ2,3 = α{p2,1[p3,2(1 − s3) + p1,2 + p1,3(1 − s2)] − p2,3p3,1s2}, (6)

ṗ3,1 = α{p3,2[p1,3(1 − s1) + p2,3 + p2,1(1 − s3)] − p3,1p1,2s3}. (7)

PROPOSITION 1. Under any time-constant profile of strategies, s, with the
possible exception of s=(1, 1, 1), p(t) converges to a stationary distribution, p,
from any initial pi,i+1(0) that satisfies 0 ≤ pi,i+1(0) ≤ θi and (1), for i = 1, 2, 3.8

Proof. See the appendix.

3.1. Steady States

The conditions under which a stationary distribution is a Nash equilibrium de-
pends, among other things, on the relative size of the three groups of agents
and the ordering of the storage cost, ci . To facilitate the comparison with KW,
consider for now the case in which there is an equal share of the population of
each type: θi = 1

3 , for i = 1, 2, 3. Even under such a restriction, a number of
steady states may arise, depending on the ordering of the storage cost. In general,
for a given steady-state distribution to be a Nash equilibrium, the sign of �i has to
be consistent with the profile of strategies assumed for that particular steady-state
distribution, namely �i > 0 when si = 0 and �i < 0 when si = 1.

Model A. When c1 < c2 < c3, which corresponds to the so-called Model A of
KW, the steady-state (pure strategies) equilibrium is given by

s =(0, 1, 0) and p = 1

3

(
1,

1

2
, 1

)
, (8)

if
c3 − c2

u1α
> p3,1 − p2,1 = 1

6
(9)

and by

s =(1, 1, 0) and p = 1

3

(
1

2

√
2,

√
2 − 1, 1

)
,

if
c3 − c2

u1α
< p3,1 − p2,1 =

√
2

3
(
√

2 − 1) (10)

where the pi,j in the inequalities (9) and (10) are evaluated in the respective
steady states. Following KW, these two equilibria are called the fundamental and
speculative equilibrium, respectively, or as (0,1,0) and (1,1,0) equilibrium. Table 1
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TABLE 1. Steady-state equilibria, Model A

Strategies Inventories Money

F S F S F S

(0,1,0) (1,1,0) 1
3 (1, 1

2 , 1) 1
3 (

√
2

2 ,
√

2 − 1, 1) 1 1,3

Note: The table reports the set of strategies, the distribution of inventories, and the type of good
that plays the role of money, under the fundamental (F) and the speculative (S) steady-state
equilibrium for a Model A economy (c1 < c2 < c3).

summarizes the main features of the two equilibria and the appendix details the
derivation of (9) and (10).

4. THE ALGORITHM

The preceding section established that from any initial condition, there exists a
time-constant strategy profile that converges to a steady-state NE. Proposition 1
ensures, for instance, that the economy that follows the (0,1,0) set of strategies
eventually converges to a stationary distribution that coincides with the steady-
state distribution implied by the fundamental strategy. A constant strategy profile,
however, needs not be an NE all along the dynamic pattern. Along the transition
path, one or more groups of agents might find optimal to switch trading strategies,
possibly multiple times. To address this issue, the algorithm builds directly on the
concept of open-loop NE with many players as in Fudenberg and Levine (1988).9

The law of motion of the state variable, p(t), is a function of the profile of
strategies, s(t), (both are multidimensional objects) that can change over time
in discrete steps. Agents use the value functions Vi,j as criteria to select their
optimal patterns of strategies. These can be derived analytically in the steady state
but not along a transition path. The algorithm computes the NE policies and the
distribution of goods iteratively. It uses two properties of the system. One property
was demonstrated by Proposition 1: For any interesting profile of strategies, the
state variable, p(t), converges toward a fixed point, not necessarily an NE. The
second property is that along a given pattern of p(t), the numerical value functions
converge to their theoretical values when integrated backward in time starting from
a neighborhood of the steady state. According to (4), what matters for any agent i’s
decision is only the sign of �i . After some algebra (see the appendix), one obtains

�̇i = (αχi + ρ)�i + ωi, (11)

where χi ≡ pi,i+2σi(1 − si)+pi+1,i+2σi +pi+1,i (1 − si+1)+pi+2,i + (pi,i+1si +
pi+2,i+1)(1−σi) > 0 and ωi ≡ −α[pi+1,i si+1−pi+2,i (1−si+2)]ui −(ci+2−ci+1).
For a given pattern of χi , the solution of �i can be obtained numerically by
integrating (11) backward in time, starting from a neighborhood of the steady
state �∗

i , where this satisfies (αχi + ρ)�∗
i + ωi = 0.

These two properties suggest that one can verify the consistency of the value
function of any particular agent of type i along a specific trajectory, p(t), with the
profile of strategies that are used to obtain such a trajectory, p(t).
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4.1. Iteration on the Profile of Strategies

The algorithm sets up an iteration on the profile of strategies, s(t), and on the
distribution of assets, p(t). The value function, Vi,j (t), of an agent of type i

holding good j serves as a device to update the guess on the profile of strategies
and to determine when the algorithm has converged. As only pure strategies are
considered, an agent i has a binary choice at each point in time.10 The algorithm
seeks the convergence of the best response σ̃i (t; s(t), p0) of a particular agent i,
named ai , to the profile followed by other individuals of his type, si(t). When ai

does not have an interest in deviating from a strategy and this coincides with that
followed by the rest of type i agents, a DNE is found. The algorithm works in
three steps.

Step 1. It integrates the distribution of inventories, F(p(t)), from some p0, under
a guess s(0)(t). The integration is stopped at some time T sufficiently large that
|F(p(T ))| < 10−6. An obvious initial guess is s(0)(t) =sss, where sss is the steady-
state Nash profile of strategies. (For some υ > ῡ with ῡ sufficiently large, one
can expect that σ̃i (υ) = s

(0)
i (υ) for υ > ῡ.) Let p(0)(t) be the inventory solution

under such a guess.

Step 2. It computes the best response of ai on the trajectory p(0)(t). Her �i is
computed integrating (11) backward in time, beginning from the initial condition
[�i(sss, p(0)(T )), p(0)(T )].11 At the end of this step, the algorithm delivers a
trajectory, �(0)(t), and more importantly, the corresponding best response of ai ,
σ̃

(0)
i (t).

Step 3. It verifies the consistency between s
(0)
i (t) and σ̃

(0)
i (t). If these are

different, σ̃
(0)
i (t), becomes the new guess in the next round, namely s

(1)
i (t) =

σ̃
(0)
i (t), and the procedure restarts from step one. The method allows the profile

of strategies to change at any point in time.
The algorithm repeats the iteration until convergence between s

(n+1)
i (t) and

σ̃
(n)
i (t) is achieved or until a maximum number of iterations is reached. If the

iteration converges to a fixed point, say p∗(t) and s∗(t), then p∗(t) and s∗(t) are
the distribution of assets and the trading strategies, respectively, of a Markov-
perfect NE. The procedure verifies that at such a fixed point, the value function of
any agent is at its maximum value, given the actions of the rest of the agents.12

5. NUMERICAL EXAMPLES AND EXTENSIONS

This section provides some applications of the algorithm. It shows how the emer-
gence and the disappearance of money may occur along the dynamic equilibrium.
It also discusses the relationship between multiple equilibria and multiple steady
states. Finally, it illustrates the dynamics of an extension of KW [Wright (1995)]
where agents are unevenly distributed across the three types.
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TABLE 2. Baseline parameters

Population Utility Storage costs

θ1 θ2 θ3 ui c1 c2 c3

A1 1
3

1
3

1
3 100 1 4 9

A2 1
3

1
3

1
3 20 1 4 9

A3 2
9

1
3

4
9 100 1 4 9

A4 0.2 0.2 0.6 100 0 1 10
B 1

3
1
3

1
3 100 9 4 1

Note: The parameters in A1–A3 and B are taken from Duffy and
Ochs (1999, Table 1, p. 851) and in A4 are similar to Wright
[1995, Fig. 1(b) and (c)]. In all economies δ = 0.1 and α = 1.

5.1. The Emergence of Money

Section 3.1 clarified that for the existence of a speculative steady-state equilibrium,
where commodity 3 plays the role of money, p2,1 − p3,1 < c2−c3

αu1
[condition (10)]

must hold. This section argues, however, that such a condition conveys limited
information to evaluate the existence of commodity money when the economy is
not in steady state. First, there are cases for which p2,1 − p3,1 > c2−c3

αu1
and yet

Nash speculative strategies are played along the dynamic equilibrium. Second,
and more importantly, commodity 3 may not be accepted as money in a dynamic
equilibrium, despite the validity of (10) in steady state. The main result is that
money emerges endogenously along the transition. Such a process is in line with
Menger (1892)’s idea that the emergence of money is triggered by changes in
the relative marketability of commodities: “When the relatively most saleable
commodities have become ‘money,’ the event has in the first place the effect of
substantially increasing their originally high salableness. ... On the other hand,
he who brings other wares than money to market, finds himself at a disadvantage
more or less.” [Menger (1892, p. 250)]

Figure 1a illustrates a numerical example that captures Menger’s observation. Its
left plot depicts the evolution of the distribution of inventories in a phase diagram
of p2,1 − p3,1 against p1,2, of the A1 economy in Table 2. Clearly, the lower
p2,1 − p3,1, the greater the likelihood that a type 1 agent obtains his consumption
good when carrying good 3 than when carrying good 2. Because at the initial
point of the trajectory shown in the left plot of Figure 1(a), the difference between
p2,1 and p3,1 is relatively high, it is optimal for type 1 agents to play fundamental
strategies. The dynamics follow the laws (5–7) with s= (0, 1, 0) (all agents follow
fundamental strategies), generating a pattern that initially points in the direction
of the fundamental (F) steady-state equilibrium. Nevertheless, along the transition
good 3 becomes more marketable relative to good 2; as a result the value of �1(t)

declines until it changes sign from positive to negative, implying that type 1 agents
switch from fundamental to speculative strategies. The figure shows a threshold
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FIGURE 1. The emergence and disappearance of commodity money. In all simulations
θi = 1

3 , ρ = 0.1, c = (1, 4, 9). In Panel a, ui = 100; in Panel b, ui = 20 (see rows A1 and
A2 of Table 2). Type 1 agents optimally switch from fundamental to speculative strategies
at the threshold “Emergence of Money” (Panel a) and from speculative to fundamental
strategies at the threshold the “Disappearance of Money” (Panel b). The initial distribution,
p0, is 1

3 (0.30.25 0.3) and 1
3 (1 1 1) in Panel a and b, respectively. The dotted horizontal

line δ1 = c2−c3
αu1

. The points F and S denote the steady-state distribution of assets under the
fundamental and speculative strategies, respectively. The numbers inside the acceptability
plots identify the type of good. The changes in acceptability are calculated with respect to
the starting level.

switch line on the (p2,1 − p3,1, p1,2) space that slopes upward: At higher initial
levels of p1,2, corresponding to lower levels of p1,3, there is an anticipation that
there will be greater demand for commodity 3 on the part of type 1 agents. Such
anticipation accelerates the switch.
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The right plot of Figure 1(a) shows the behavior of a liquidity index, li , known
as “acceptability.” This measures the probability that an object is traded given
that someone offers it.13 It demonstrates that after the switch, the acceptability of
commodity 3, which has just become money, increases dramatically. Conversely,
that of commodity 2 declines substantially. An agent holding good 2 finds himself
at a disadvantage relative to the situation before the switch because type 1 agents
no longer accept it in trade, now preferring good 3. This result echoes that obtained
by Araujo and Minetti (2011), who demonstrate that the intensification of trade
is associated with the issuing of inside money. In contrast to Arajuo and Minetti
(2011), however, the emergence of a new asset as money comes in an environment
where all trades are anonymous and nonmonitored. What does change is the
“thickness” of the market along the dynamics. When a group of individuals comes
to realize that a high-storage-cost asset is more marketable, it accepts it in indirect
trade. Therefore, pair-meetings that formerly resulted in no trade now result in
trade.

5.2. The Disappearance of Money

That commodity money can lose the function of money is a well-documented
historical event [see the excellent review by the anthropologist Quiggin (1949)]
that has not yet been the subject of theoretical investigation. The dynamics of
the KW model would explain such a phenomenon with changes in the relative
degrees of liquidity across goods along the transition. Intuitively, if the emergence
of money is due to the higher marketability of commodity 3, its disappearance
could, in principle, be caused by a decline in its rate of acceptability along the
transition. Figure 1(b) illustrates a numerical example in which commodity 3
permanently loses its role as money. The set of parameters of this economy is in
row A2, Table 2. Its left plot shows the phase diagram of the liquidity differential
p2,1 − p3,1 against p1,2, and its right plot the time evolution of the acceptability
index li introduced in the previous example.

The set of parameters that characterize the A2 economy supports the funda-
mental long-run equilibrium (see condition 9)—the benefits derived from the
marketability of good 3 are not large enough relative to the storage cost, c3.
Despite the large values of c3 and the maintenance of condition (9) in steady
state, commodity 3 can be a medium of exchange if its level of marketability
is significantly higher than in the steady state. In the initial state, all agents are
endowed with their production goods, that is, p0 = 1

3 (1 1 1). The dynamic solution
calls for type 1 agents to play speculative strategies at the beginning. As the left
plot of Figure 1(b) shows, along the transition p2,1 − p3,1 increases. Therefore,
the marketability of good 3 drops and type 1 agents move from speculative to
fundamental strategies. The acceptability of good 2 and 3, shown in the right plot
of Figure 1(b), drops substantially after the switch, although that of good 2 regains
some of the lost ground as the number of type 2 agents holding good 1 increases
over the transition. Conversely, the liquidity of type 1 commodity money is not
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affected much by the strategy switch, as type 2 agents keep playing their role of
intermediation between type 3 and type 1 agents.

Finally, note that the threshold that indicates when type 1 agents switch strategies
slopes upward [left plot, Figure 1(b)], similarly to that built for the emergence of
money [left plot, Figure 1(a)]. The implication with respect to the switching time
is, however, different. The greater the initial level of good 2 in the hands of type
1 agents, p1,2, the longer it takes for the switch to take place.

5.3. Uneven Distribution of Agents

Altering the proportion of agents across types has important consequences on the
type of strategies that support a Nash equilibrium. For instance, in an effort to
induce a higher fraction of individuals to play a speculative strategy, Duffy (2001)
also considers an experimental design in which the share of type 3 individuals is
larger than 1

3 . Wright (1995) noted that multiple steady-state equilibria may emerge
when agents are unevenly distributed across the three types. First, consider the
effects that altering the distribution of agents across types have on the emergence
of money in economies with unique equilibria. Figure 2(a) compares the threshold
level of liquidity, p2,1−p3,1, that induces type 1 agents to switch from fundamental
to speculative strategies—the threshold for the emergence of money—in an A3
economy where θ = ( 2

9 , 1
3 , 4

9 ) and an A1 economy where agents are equally split
across the three types (see Table 2, rows A3 and A1, respectively). Either economy
has a unique (1,1,0) steady-state equilibrium, with an asset distribution p =(p∗

1,2,

p∗
2,3, θ3), where p∗

2,3 = 1
2 [−(θ1 + θ3) +

√
(θ1 + θ3)2 + 4θ1θ2] and p∗

2,1 = θ1θ3
θ3+p∗

2,3

(derivations are in the appendix).
The patterns of the two economies are constructed to start from comparable

initial positions. Initially, in both economies, liquidity favors a s1 = 1 strategy.
While money emerges in both economies, in the A1 economy the threshold level of
liquidity for the emergence of money is closer to the steady state than that of the A3
economy. Additional simulations, not illustrated, show that as the share of θ3 tends
to 1

3 in the A3 economy, the difference in switching time between two economies
gradually converges to zero. They also indicate that further reductions of θ3 below
the value of 1

3 may cause the A3 economy’s steady-state equilibrium (1,1,0)
to disappear altogether and to give rise to the (0,1,0) steady state. Conversely,
increasing the level of the population θ3 from the initial value of 4

9 , may generate
multiple steady states {see also Wright [1995, Fig. 1(a)–(c)]}.

5.4. Multiple Equilibria

Previous studies have focussed on parameter sets of the model that imply a unique
steady state, partly because this provides sharper predictions about agents’ be-
havior. Nevertheless, it has also been argued that the self-referential nature of
liquidity could be the source of multiplicity [Ennis (2001), Trejos and Wright
(2013)]. This section expands the dynamic analysis to specifications of KW that
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FIGURE 2. Multiple equilibria in Models A and B. In Panel a, for the unequal economy
θ1 = 2

9 , θ2 = 1
3 , and θ3 = 2

9 c = (1, 4, 9), the initial position is p0 = ( θ1
2 , θ2

8 , 0) = ( 1
9 , 1

24 , 0).
For the economy with θi = 1

3 , one initial position is equivalent in values [p0 = ( 1
9 , 1

24 , 0)]
and the other is equivalent in proportions [p0 = ( θ1

2 , θ2
8 , 0) = ( 1

6 , 1
24 , 0)]. In Panel b,

c = (9, 4, 1), and θi = 1
3 (see Table 2, rows A1, A3, and B, respectively). In Panel c,

c = (0, 1, 10), and θ1 = θ2 = 0.2 (row A4, Table 2). Welfare comparisons are in Table 3.

generate multiple steady states. The Model B of KW, for instance, where type
i agents can produce good i + 2 instead of good i + 1, is known to give rise
to multiple steady states under the same storage cost specification of Model A
and with θi = 1

3 for all i. An equivalent Model B economy can be obtained by
maintaining the same specialization in production of Model A—type i produces
good i + 1—but reversing the storage cost ordering, namely c3 < c2 < c1 [see,
for instance, Lagos et al. (2017)]. Another situation of multiple steady states has
been pointed out by Wright (1995) for a Model A economy, i.e., c1 < c2 < c3,
in which type 3 agents are more than half of the population. In such a case, the
(1,1,0) equilibrium may coexist with (0,0,1) {see Wright [1995, Fig. 1(a)–(c)]}.

Krugman (1991), Matsuyama (1991), and Fukao and Benabou (1993) note,
however, that the presence of multiple steady states is not necessarily associated
with multiple equilibria. It could be that once the initial condition is specified, there
is a unique pattern that leads to one of the steady-state equilibria. In such a case, it
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is history that matters. Conversely, from some initial conditions, individuals may
coordinate on either of the two steady states. In this case, expectations determine
which equilibrium emerges.

Model B. To get further insights on whether multiple steady-state equilibria
are associated with multiple equilibria,14 consider first a Model B environment
obtained by rearranging the ranking of the storage cost as follows: c3 < c2 < c1.
The fundamental and the speculative steady states are characterized by the set of
strategies (1,0,1) and (0,1,1), respectively. In the (1,0,1) equilibrium, good 2 and
good 3 are used as commodity money. In the (0,1,1) equilibrium, good 1 and good
2 play the role of money. The (1,0,1) equilibrium always exists. The (0,1,1) exists
if

p3,2 − p1,2 <
c3 − c1

αu2
, (12)

and
p2,1 >

c2 − c3

αu1
, (13)

are satisfied, where p1,2, p3,2, and p1,2 are evaluated on the (0,1,1) steady state.
Condition (12) is the marketability requirement from the perspective of type 2
agents: When the demand for good 1 is sufficiently large relative to good 3, good
1 becomes commodity money, as long as the number of type 2 agents supplying
good 1 is large enough (condition 13). Table 3 summarizes the main features of
the two steady-state equilibria. The appendix derives the conditions (12) and (13)
and explains why the (1,0,1) equilibrium always exist.

It is easy to find regions in the inventory space from which, given an initial con-
dition p0, an equilibrium pattern converges to the (1,0,1) steady-state equilibrium
and another one to a (0,1,1) equilibrium. The algorithm delivers one or the other
pattern depending on the initial guess on the set of strategies s(0)(t). Figure 2(b)
illustrates a numerical example of a Model B economy characterized by the set
of parameters in Table 2, row B. It shows that two qualitative different patterns
originate from a certain initial condition, on a phase diagram p3,2 − p1,2 against
p2,3. Along the pattern that converges to the fundamental steady state (dashed
line), the set of strategies is (1,0,1) at all times. Conversely, the pattern converging
to the speculative steady state (0,1,1) features the emergence of money. In the
early phase of the transition, the gap p3,2 − p1,2 is relatively large and the Nash
set of strategies is (0,0,1). As this gap declines, the high-storage good 1 becomes
more marketable. When �2 switches signs from positive to negative, type 2 agents
engage in indirect trade and good 1 becomes money. The phenomenon is similar
to that illustrated in Figure 1(a) for Model A except that type 2 agents take the
place type 1 agents and that the high-storage good that becomes money is now
good 1 instead of good 3.

Model A, unequal distribution. The A4 economy specified in Table 2 exhibits
multiple steady states. There is a (1,1,0) speculative equilibrium and a (0,0,1)
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TABLE 3. Steady-state equilibria, Model B

Strategies Inventories Money

F S F S F S

(1,0,1) (0,1,1) 1
3 (

√
2 − 1, 1,

√
2

2 ) 1
3 (1,

√
2

2 ,
√

2 − 1) 3, 2 1, 2

Note: The table reports the set of strategies, the distribution of inventories, and the type of good
that plays the role of money, under the fundamental (F) and the speculative (S) steady-state
equilibrium for the Model B economy (c3 < c2 < c1). The two equilibria may coexist.

reverse speculative equilibrium—“reverse” because agents have their strategies
flipped relative to the speculative equilibrium. The conclusion reached for the
Model B economy, namely that steady states are associated with multiple dy-
namic equilibria, also applies to the Model A economy. The example of Figure
2(c) depicts the adjustment process of an A4 economy starting from an initial
condition, p0, where the level of liquidity is unfavorable to good 3. Two patterns
originate from such a point. On the pattern that converges to the (1,1,0) steady
state, money emerges along the transition—type 1 agents switch from s1 = 0 to
s1 = 1. Conversely, on the (0,0,1)-bound path, all agents keep the same set of
strategies (0,0,1) forever. Nevertheless, when the initial condition p0 = ( θ1

2 , 0, θ3)

is unfavorable to the liquidity of good 3, as in Figure 2(d), no strategy switch is
observed on the (1,1,0)-bound path. This time, it is on the (0,0,1)-bound pattern—
this starts from the same initial condition p0 = ( θ1

2 , 0, θ3)—that a switch of strategy
is observed: s2 changes from 1 to 0 and the low-storage-cost good ceases to play
the role of money.

5.5. Welfare

The previous analysis has clarified that the presence of multiple steady states goes
along with multiple equilibria. Therefore, when multiple steady states exist, it is
expectations rather than history that determine which path an economy undertakes.
A natural question is whether a Pareto ranking of multiple equilibria can be
obtained. To answer this question, a payoff criterion must be established. It is
convenient to focus on two criteria that are easily related to the previous analysis.
One is Vi,j that represents the payoff of type i conditioned on holding the particular
good j . The other is payoff to type i, not conditioned on holding good j . This can
be calculated as an average of Vi,j at a point in time across type i agents:

Wi(t) = 1

θi

[pi,i+1Vi,i+1 + (θi − pi,i+1)Vi,i+2].

From this expression, it also follows that the payoff of the whole society would be

W(t) =
∑

i

θiWi(t).
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TABLE 4. Welfare comparison

Model B

Average welfare Vi,j

W1 W2 W3 W V1,2 V1,3 V2,3 V2,1 V3,1 V3,2

Steady state −8.0 −10.6 9.1 −4.4 −6.9 −12.9 −11.9 3.1 13.2 −3.0
p0 = 1

3 (0.3, 0.25, 0.3) 3.7 −27.0 22.5 −4.1 7.5 2.1 −33.2 −24.4 20.3 23.4

Model A, unequal distribution

Average welfare Vi,j

W1 W2 W3 W V1,2 V1,3 V2,3 V2,1 V3,1 V3,2

Steady state 71.8 23.6 53.7 50.2 75.4 30.0 30.6 21.6 23.0 93.0
p0 = ( θ1

2 , 0, θ3) 110.9 23.8 14.6 51.4 148.7 81.1 19.9 23.8 14.6 40.0
p0 = ( θ1

2 , 0, 0) 76.7 −19.7 −23.9 −4.9 78.3 75.1 7.2 −19.7 −46.5 −23.9

Note: The values are percentage differences of the Wi and Vi,j , evaluated at p0 and at the steady state, of the (0,1,1) over the (1,0,1) bound equilibrium for
the B economy, and of the (0,0,1) over the (1,1,0) bound equilibrium for the A4 economy [see Figure 2(b)–(d)].
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First, consider the Model B economy in Table 1, row B. Table 4 reports the
percentage gap of Wi , W , and Vi,j between the (0,1,1) and the (1,0,1) steady state.
The average welfare is lower in the (0,1,1) equilibrium, but only by about 4.4%.
The table also indicates that the average payoff, Wi , is not uniformly lower in the
(0,1,1) equilibrium for all types i. While on average type 1 and type 2 agents are
worse off, type 3 agents are better off. A closer inspection of Vi,j reveals diverging
interests even within type 2 and type 3 agents, depending on their holdings.

A welfare comparison between equilibria away from the steady state for the
same B economy, also reveals gains for some and losses for others. For instance,
in the position p0 = 1

3 (0.3, 0.25, 0.3)—the subject of the numerical example in
Figure 2(b)—while type 1 and type 3 enjoy a higher payoff on the (0,1,1) than on
the (1,0,1) path, type 2 agents would prefer that the economy undertake the (1,0,1)
path.

The welfare calculations of the A3 economy, also reported in Table 3, give
sharper predictions—at least as long as the economy is close to the steady state:
The (1,1,0) equilibrium is Pareto dominated by the (0,0,1), both when considering
the conditional and the unconditional payoffs, Vi,j and Wi , respectively. The
Pareto dominance is also observed in some regions of the inventory space, as, for
instance, around p0 = ( θ1

2 , 0, θ3)—the initial condition of paths in Figure 2(d).
It is, nevertheless, possible to find situations where no Pareto dominance can be
established. The point p0 = ( θ1

2 , 0, 0)—the initial condition of the two paths in
Figure 2(c)—is one example.

In sum, although welfare analysis gives some hints on who may lose or gain from
coordinating on one or another equilibrium, additional institutional mechanisms
are needed to understand which groups are more likely to tilt the economy toward
a particular equilibrium.

6. CONCLUSION

This paper studied dynamic Nash equilibria in KW by means of an algorithm de-
signed to create an iteration over the patterns of strategies and of the distribution of
commodities. Numerical simulations revealed two main results. First, when multi-
ple steady states exist, two paths that start from the same initial condition approach
two different steady states. This implies that two initially identical economies may
generate different flows of production and consumption because of differences
in beliefs. Second, the simulations showed that, while some DNE trigger the
emergence of commodity money, others do not. The algorithm could characterize
scenarios of unique DNE in which the evolving state of liquidity triggers the emer-
gence of a high-storage cost good as money, hence highlighting the role of history.

Future research could clarify the modifications to the original framework that
could discipline agents’ beliefs in the presence of multiple DNE. One obvious
modification is the addition of fiat money. Mechanisms that slow down the trans-
mission of information across agents [see, for instance, Araujo and Camargo
(2006)] may also provide a tool to select among equilibria. Another important
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aspect that is left open for further research is the usefulness of computing a DNE
to interpret historical accounts about the emergence of money. The simulation
shown in Figure 2(a), for instance, suggests that the distribution of the population
with respect to specialization in production and consumption affects the waiting
time before a high-storage-cost commodity is used as money. It would be inter-
esting to assess the relevance of such a conjecture by reviewing the adoption of
money across different civilizations in the premodern world.

NOTES

1. The literature on money has recently emphasized the aspect of liquidity [see Lagos et al. (2017)].
2. It could be that once the initial condition is specified, a unique pattern leads the economy to one

of the steady-state equilibria. Alternatively, it is possible that from some initial conditions, individuals
coordinate on any of the steady states (see Section 5.4 of this paper).

3. For a similar generalization also see Lagos et al. (2017, Sec. 2).
4. Where no confusion arises, I will use the loose language of calling an agent of type i simply

agent or individual i.
5. While in KW ci is assumed positive, such a restriction is not necessary for computing the

dynamics of the model. A commodity with negative storage cost can be interpreted as an asset that
fetches a positive return.

6. The notation used here follows Wright (1995), except that, to simplify the description of the
dynamical system, pi,j measures type i agents holding good j as a fraction of the overall population
rather than as a share of type i agents.

7. The distinction between the trading strategy of a particular individual of type i, σi , and that of
the rest of type i agents, si , facilitates the explanation of the solution algorithm that aims to seek a
convergence between σi and si .

8. The appendix clarifies that, while proving convergences with s =(1,1,1) is challenging, this set
of strategies does not support any steady-state Nash equilibrium—at least when agents are equally
divided among the three types.

9. While the steady-state results were presented for θi = 1
3 to facilitate the comparison with KW,

no such restriction is imposed on the construction of the algorithm. Section 5.4, for instance, discusses
the dynamics of economies where agents are unevenly distributed across the three types.

10. Kehoe et al. (1993) build cyclical equilibria in a similar environment under sets of parameters
that do not admit pure strategy equilibria. On this point, see also Renero (1998), and more recently
Oberfield and Trachter (2012).

11. �i(θ
ss, pss) could also be used as the initial point. In principle, on �i(θ

ss, pss), the system stays
still, but if computed numerically, there is always a small machine error that allows the integration
to begin. In the experiments, the difference—in norm— between the two points is smaller than 10−5

when |F(p(t)| < 10−6.
12. All the programming is done in Matlab. The files are available upon request.
13. It is calculated as the ratio between the frequency of trade ti (the number of times good i is

traded in a unit of time) and the frequency with which good i is offered in a period of time, oi . The
appendix derives ti and oi .

14. A recent work on the subject by Oberfield and Trachter (2012) studies how the number of
equilibria is related to the frequency of search in a symmetric environment.
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APPENDIX

A.1. PROOF OF PROPOSITION 1

The claim is that under any time-constant profiles of strategies, s, with the possible exception
of s=(1, 1, 1), the system (5)–(7), under the constraint (1), converges globally to the unique
steady state.

Case (0,1,0). Equation (5) reduces to ṗ1,2 = αp1,3θ3, implying that the line p1,2 = θ1 is
globally attractive. Similarly, in equation (7), ṗ3,1 = αp3,2(p1,3 + θ2), the line p3,1 = θ3 is
globally attractive. Finally, along these lines, the system collapses to

ṗ2,3 = (θ2 − p2,3)θ1 − p2,3θ3,

that converges globally to θ2θ1
θ3+θ1

. In summary, under the profile of strategies
(0,1,0), the distribution of inventories converges globally to the stationary distribution
(θ1,

θ2θ1
θ3+θ1

, θ3).

Case (0,0,1) and Case (1,0,0). One can verify that the stationary distribution converges
to (θ1, θ2,

θ1θ3
θ1+θ2

) and ( θ1θ3
θ2+θ3

, θ2, θ3), respectively, using the same observations as in the
previous case.

Case (1,1,0). Equation (7) becomes ṗ3,1 = θ2(θ3 − p3,1). Consequently, θ3 = p3,1 is an
invariant set. The Jacobian, J , of the system of the two remaining equations (5) and (6)
along the line θ3 = p3,1 is

J = α
−(θ3 + p2,3) −p1,2

(θ2 − p2,3) −(θ3 + p1,2)
.

The determinant is positive, and the trace is negative; therefore, both eigenvalues are
negative. The system, having two dimensions, is globally stable. To find the stationary
distribution, set (5) and (6) to zero. They yield p1,2 = θ1θ3

θ3+p2,3
and p1,2 = θ3

θ2/p2,3−1 , respec-
tively. The two lines necessarily cross once and only once for p2,3 in the interval [0, θ2].
The fixed point is (p∗

1,2, p∗
2,3, θ3), where p∗

2,3 = 1
2 [−(θ1 + θ3) +

√
(θ1 + θ3)2 + 4θ1θ2] and

p∗
2,1 = θ1θ3

θ3+p∗
2,3

.

Cases (1,0,1) and (0,1,1). A Jacobian with similar properties to that of the (1,1,0) case
can be obtained when the profiles of strategies are (1,0,1) or (0,1,1). The fixed point
with (1,0,1) is (p#

1,2, θ2, p
#
3,1), where p#

1,2 = 1
2 [−(θ3 + θ2) +

√
(θ3 + θ2)2 + 4θ3θ1] and

p#
3,1 = θ1θ3

p#
1,2+θ2

. Similarly, under (0,1,1), the fixed point is (θ1, p
xo
2,3, p

xo
3,2), where pxo

3,1 =
1
2 [−(θ2 + θ1) +

√
(θ2 + θ1)2 + 4θ2θ3] and pxo

2,3 = θ1θ2

pxo3,1+θ1
.

Case (0,0,0). The system converges globally to p = (θ1,θ2,θ3). In this stationary state,
agents keep their production goods.
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The following table summarizes these results.

Strategies Assets distribution Strategies Assets distribution

(0,1,0) (θ1,
θ2θ1

θ3+θ1
, θ3) (1,0,1) (p#

1,2, θ2, p
#
3,1)

(1,0,0) ( θ1θ3
θ2+θ3

, θ2, θ3) (0,1,1) (θ1, p
xo
2,3, p

xo
3,2)

(0,0,1) (θ1, θ2,
θ1θ3

θ1+θ2
) (0,0,0) (θ1, θ2, θ3)

(1,1,0) (p∗
1,2, p

∗
2,3, θ3)

While proving stability for the (1,1,1) case is challenging, because the inventory system
cannot be reduced to two dimensions, such set of strategies does not support a Nash
equilibrium in Model A when the population is equally split across types (see Section A.3).

A.2. DERIVATION OF EQUATION (12)

Equation (3) describes Vi,i+1(t). The following does the same for Vi,i+2(t)

Vi,i+2(t) = max
{σi (υ)}υ≥t

∫ ∞

t

αe−α(υ−t)

(
e−ρ(υ−t){[pi+1,i (1 − si+1) + pi+2,i](Vi,i+1 + ui)

+ (pi,i+1si + pi+2,i+1)(1 − σi)Vi,i+1

× [1 − pi+1,i (1 − si+1) − pi+2,i − (pi,i+1si + pi+2,i+1)(1 − σi)]Vi,i+2}

− 1 − e−(υ−t)ρ

ρ
ci+2

)
dυ, (A.1)

Taking derivatives of equations (3) and (A.1) with respect to time yields

V̇i,i+1 = −α{[pi,i+2σi(1 − si) + pi+1,i+2σi]Vi,i+2

+ [1 − pi,i+2σi(1 − si) − pi+1,i+2σi]Vi,i+1

+ (pi+1,i + pi+2,i si+2)ui} + ci+1 + (α + ρ)Vi,i+1, (A.2)

and

V̇i,i+2 =−α([pi+1,i (1 − si+1) + pi+2,i](Vi,i+1 + ui) + [pi,i+1si + pi+2,i+1](1 − σi)Vi,i+1

+ [1 − pi+1,i (1 − si+1) − pi+2,i − (pi,i+1si + pi+2,i+1)(1 − σi)]Vi,i+2)

+ ci+2 + (α + ρ)Vi,i+2,

respectively.
The last two expressions can also be written as

V̇i,i+1 = − α{[pi,i+2σi(1 − si) + pi+1,i+2σi](−�i) + Vi,i+1

+ [pi+1,i + pi+2,i si+2]ui} + ci+1 + (α + ρ)Vi,i+1,
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and

V̇i,i+2 = −α{[pi+1,i (1 − si+1) + pi+2,i + (pi,i+1si + pi+2,i+1)(1 − σi)]�i

+ [pi+1,i (1 − si+1) + pi+2,i]ui + Vi,i+2} + ci+2 + (α + ρ)Vi,i+2.

Subtracting side-by-side, we obtain

�̇i = (αχi + ρ)�i + ωi,

where χi ≡ pi,i+2σi(1−si)+pi+1,i+2σi +pi+1,i (1−si+1)+pi+2,i +(pi,i+1si +pi+2,i+1)(1−
σi) and ωi ≡ −α([pi+1,i si+1 − pi+2,i (1 − si+2)]ui) − (ci+2 − ci+1). The above expression
corresponds to (11). Because the term αχi + ρ > 0, for any given pattern of the asset
distribution, (11) is unstable.

A.3. STEADY-STATE NASH EQUILIBRIA FOR MODEL A AND B

The stationary distribution of inventories is derived from (2) under the assumption that
θ1 = θ2 = θ3 = 1

3 . The key condition for determining whether a stationary distribution is a
NE is the sign of �i . From (11), it follows that because αχi + ρ > 0, �i > 0 if −ωi > 0,
namely if

pi+1,i si+1 − pi+2,i (1 − si+2) >
ci+1 − ci+2

αui

.

Consistency requires that si = 0 (1) with �i > 0 (< 0). This consistency condition is
reviewed below both for the Model A and the Model B economy when θi = 1

3 .

Model A (c1 < c2 < c3). There are two unique NE: (0,1,0) and (1,1,0). The (0,1,0)
equilibrium requires that

p2,1 − p3,1 >
c2 − c3

αu1
(A.3)

−p1,2 <
c3 − c1

αu2
, (A.4)

and

0 >
c1 − c2

αu3
, (A.5)

with p2,1 = 1
3 − p2,3, p1,2 = 1

3 , p2,3 = 1
6 , and p3,1 = 1

3 . Conditions (A.4) and (A.5) are
clearly verified. From (A.3), it follows that the (0,1,0) equilibrium exists if c3−c2

u1α
> 1

6 .

For the (1,1,0) equilibrium the stationary distribution is p = 1
3 (

√
2

2 ,
√

2 − 1, 1). The
above three conditions for the existence of NE are therefore replaced by

p2,1 − p3,1 <
c2 − c3

αu1
,

0 <
c3 − c1

αu2
,

and

p1,3 >
c1 − c2

αu3
,
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respectively, with p2,1 = 1
3 − p2,3, p1,2 =

√
2

6 , p2,3 =
√

2−1
6 , and p3,1 = 1

3 . It is evident
that under the constraint c1 < c2 < c3 the last two conditions are always satisfied. The first
condition says that in a NE, type 1 agents play speculative if

−
√

2 − 1

6
<

c2 − c3

αu1
.

As for the remaining six sets of strategies, θ , there is at least one inconsistency between
the value of θi and the sign of �i . Consider, for instance, the (1,1,1) case mentioned
at the end of the first section of this appendix. For such a set of strategy to support
a Nash strategy, �i < 0, for i = 1, 2, 3. Specifically, the requirement would be that
pi+1,i si+1 − pi+2,i (1 − si+2) <

ci+1−ci+2
αui

for all i, that is

p2,1 <
c2 − c3

αu1
,

p3,1 <
c3 − c1

αu2
,

and

p1,3 <
c1 − c2

αu3
.

Clearly, the first condition can never be satisfied because c3 > c2. Similar inconsistencies
between θi and the sign of �i are found for the remaining five sets of strategies (0,0,0),
(0,0,1), (0,1,1), (1,0,1), and (1,0,0). To summarize, only (1,1,0) and (0,1,0) may support a
pure strategy NE.

Model B. One fundamental NE always exists. This could coexist with another equilibrium
in which two types of agents play speculative strategies (multiple equilibria). Consider the
case in which c3 < c2 < c1. Then, the fundamental NE is (1,0,1). It exists for any set of
parameters—the inequalities �1 < 0, �2 > 0, and �3 < 0 hold in the (1,0,1) steady state
for any set of parameters.

To verify the statement about the existence of the (1,0,1) NE, one needs to check that
pi+1,i si+1 − pi+2,i (1 − si+2) <

ci+1−ci+2
αui

holds for i = 1, 3 and that the reverse inequality
holds for i = 2. Specifically, the set of conditions is

0 <
c2 − c3

αu1
,

p3,2 >
c3 − c1

αu2
,

and

p1,3 − p2,3 <
c1 − c2

αu3
.

The top and the middle inequalities hold for any pi,j . The bottom one is also verified
because in the (1,0,1) equilibrium p1,3 − p2,3 < 0 [see Table 3, inventories (F)].

Turning now to the conditions for the existence of the (0,1,1) NE equilibrium, the
inequalities to be verified are as follows:

p2,1 >
c2 − c3

αu1
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p3,2 − p1,2 <
c3 − c1

αu2

p1,3 <
c1 − c2

αu3
,

where the various pi,j are to be evaluated in the inventories (S) of Table 3. The bottom
inequality is always verified because p1,3 = 0. The top and the middle inequalities are
equivalent to 1

3 (1 −
√

2
2 ) > c2−c3

αu1
and − 1

3 (
√

2 − 1) < c3−c1
αu2

, respectively.

A.4. LIQUIDITY INDEX: ACCEPTABILITY

Let oi(υ)dυ be the probability that good i is offered (but not necessarily traded) on the
market between time υ and υ + dυ. Then,

oi(υ) = αpi+2[pi+1 + (θi − pi) + (pi + θi+2 − pi+2)si+2]+
α(θi+1 − pi+1)[pi + (θi+2 − pi+2) + (pi+1 + θi − pi)(1 − si+1)].

Let ti (υ)dυ the probability that good i is traded on the market between time υ and
υ + dυ. Then,

ti (υ) = α{pi+2[θi − pi(1 − si+2) + si+1pi+1] + (θi+1 − pi+1)[pi+
(θi − pi)(1 − si+1) + (θi+2 − pi+2)(1 − si+2)]}.

The acceptability of commodity i is

li (υ) = ti (υ)

oi(υ)
.

This indicates how willing people are to accept commodity i, once it is being offered.


