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Abstract

This paper solves rational expectations models in which structural parameters switch
across multiple regimes according to state-dependent (endogenous) transition probabil-
ities. Assuming small shocks and smooth transition probabilities, we apply a perturba-
tion approach. We first provide for conditions under which a unique bounded equilibrium
exists. We then compute first- and second-order approximations. In a new-Keynesian
model with monetary policy switching, we document new effects of monetary policy
switching when transition probabilities depend on inflation.
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1 Introduction

Many structural changes that affect the economy result from rational economic decisions.
They thus are endogenous to the state of the economy at the date of the decision. Among
many others, we find such endogenous regime switching in monetary policy (Davig and Leeper,
2008, 2011), financial crises (Coe, 2002), defaults (Mendoza and Yue, 2011), policy regimes
(Rothert, 2009), and sudden stops (Calvo, 1998). Furthermore, some empirical literature (Kim
et al., 2003) shows that regime switches may be influenced by macroeconomic fluctuations.

However, most of the literature on solving rational expectations models considers exoge-
nous regime switching. When endogenous regime switching is studied, numerical methods
(projection, value function iteration...) involving high computational costs, lack of analytical
results and few results in terms of the existence and uniqueness of equilibrium are used.

In this paper, we generalise standard perturbation methods to solve a class of non-linear
rational expectations models with endogenous regime switching - id est in which transition
probabilities depend on state variables or shocks. We then apply our method in a new-
Keynesian model with different monetary policy regimes and where transition probabilities
depend on inflation. Our contribution is threefold.

First, we apply the Implicit Function Theorem for small shocks and smooth state-dependent
transition probabilities. The existence and uniqueness of a bounded solution in this class of
models rely on the existence of a unique bounded solution for a simplified, linear model with
exogenous regime switching. We thus show how fluctuations of transition probabilities may
modify determinacy conditions.

Second, we derive first- and second-order Taylor expansion of the solution when the solu-
tion is unique. The approximate solution is accurate according to three criteria: the approxi-
mate solution is close to the unknown true solution, model equation errors are small and the
forecast distribution function is well approximated. Finally, we provide for a fast algorithm
and a Dynare-compatible program to solve such models.

Third, we document two new effects of endogenous regime switching in a new-Keynesian
model with a probability to switch to a lower inflation target and more aggressive response to
inflation that increases with inflation.1 First, shocks and regimes are correlated as inflationary
shocks are associated with lower probability of the high inflation regime. Second, economic
agents expect that inflationary shocks increase the plausibility of a low inflation regime in the
future. They thus expect higher real rates leading to stabilize more inflationary shocks. This
second mechanism is preponderant in our calibrated model, reduces the volatility in the high
inflation regime and relaxes determinacy conditions.

Related Literature A substantial line of empirical studies challenges the common assump-
tion of economic agents’ time-invariant behavior. For instance, several papers analyze the
sharp decreases in output and inflation volatility around the mid 80s in the US, the so-called
”Great Moderation”, by allowing for time-varying economic behavior. Among the competing
sources of parameter changes, some papers have allowed for shifts in the parameters of mon-
etary policy rules (Clarida et al., 2000; Lubik and Schorfheide, 2004; Bianchi, 2012), others
for breaks in the variance of structural shocks (Sims and Zha, 2006; Justiniano and Primiceri,
2008; Fernández-Villaverde et al., 2010; Liu et al., 2010).

Within the context of forward looking economic agents, the possibility of future regimes
switches alters agents’ current decision rules (Sims, 1982) through what Leeper and Zha

1Such an endogenous regime switching model captures political pressures that arise when inflation exceeds
too much the central banker’s target.
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(2003) call the expectations formation effects. These effects can modify determinacy condi-
tions (Davig and Leeper, 2007; Farmer et al., 2009a; Barthélemy and Marx, 2012) as well
as economic dynamics (Bianchi, 2013). In most of the literature, the expectations formation
effects are state-invariant as probability of regime switching is constant over time.

Our main contribution is to introduce state-dependent probability distributions. Davig
and Leeper (2008) show that a monetary policy rule that changes when certain endogenous
variables intersect specified thresholds leads to substantial and state-dependent expectations
formation effects. We follow this line but instead of relying on numerical methods that imply
high computational costs and lack of analytical results, we develop an algebraic method that
is tractable even for large-scale model.

Endogenous regime switching has also been studied from an econometric standpoint. Fol-
lowing the seminal paper by Hamilton (1989), Filardo (1994) and Filardo and Gordon (1998)
have estimated Markov switching regressions with time-varying transition probabilities. More
recently, Kim et al. (2003) have developed a technique for estimating multivariate models with
endogenous regime switching, i.e. where transition probabilities depend on endogenous vari-
ables. However, these significant progresses cannot be replicated yet to estimate rational
expectations models with endogenous regime switching. We think that our paper contributes
to advance in such a direction.

In addition to papers already mentioned, our paper is closely related to Davig and Doh
(2008), Foerster et al. (2016) and Maih (2015). These papers solve non-linear Markov switch-
ing rational expectations models following perturbation approaches. Davig and Doh (2008) re-
fer to Woodford (2003) to linearise a non-linear new Keynesian model with Markov switching.
Foerster et al. (2016) and Maih (2015) propose algorithms based on successive differentiations
in the vein of Kim et al. (2008). While our approach provides complementary algorithms,
we differ from existing literature by proving the existence of a unique stable solution of the
initial model when shocks are small and the closeness of the approximate solution to the true
solution.

This paper finally extends the seminal paper by Woodford (1986) to models with en-
dogenous regime switching. Assuming small shocks, we relate the stability properties of the
endogenous regime switching model to a linearised exogenous regime switching model. We
thus bridge the gap between the non-linear endogenous regime switching models and litera-
ture on (linear and exogenous) regime-switching models (see for instance Blake and Zampolli,
2006; Davig and Leeper, 2007; Farmer et al., 2009a; Svennson and Williams, 2009; Farmer
et al., 2010b; Cho, 2015; Barthélemy and Marx, 2012).

Two critical and controversial issues emerge when dealing with regime switching: the
choice of the solution space and the concept of stability.

First, we do not restrict the solution space to Minimum state variables and consider all
stochastic processes in the vein of Woodford (1986). We hence do not exclude equilibria
depending on remote past regimes. Fortunately when the model is determinate, the unique
solution only depends on current and past regimes.2

Second, following the influential book by Costa et al. (2005), most of the literature has
turned to the Mean Square Stability concept (see Farmer et al., 2009b; Maih, 2015). However,
there is, at this stage, no theoretical argument ensuring the consistency of this concept of
stability with the perturbation approach for non linear Markov switching DSGE models. We
thus consider standard boundedness concept that is consistent with a local approach as it
prevents the equilibrium to visit (even occasionally) spaces where the model can be highly

2For more about the relationship between solution space and determinacy, the interested reader can refer
to Barthélemy and Marx (2012).
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non-linear.
The remainder of the paper is organized as follows. Section 2 exposes the class of models

and derives theoretical results. Section 3 illustrates our results in a new Keynesian model
with endogenous regime switching. Section 4 concludes.

2 Theory

In this section, we first expose the class of models we consider. We then apply the Implicit
Function Theorem to derive determinacy conditions as well as an approximate solution. We
finally provide an efficient algorithm that implements our method.

2.1 Class of models

Most of recent rational expectations macroeconomic models with regime switching can be
reduced to the following system:

Et[fst(zt+1, zt, zt−1, σvt)] = 0, (1)

where the index t denotes time and belongs to integers, z is a bounded vector of endogenous
variables, v is an i.i.d bounded multi-dimensional stochastic process, and σ is a positive scalar.
The current regime is represented by st in {1, · · · , N}. For any i, fi is a smooth function (at
least C2) and Et is the expectation operator given information available at time t, namely
current and past shocks and regimes. We study models for which the transition probabilities
between regimes are endogenous, i.e. depend on variables and shocks.

Assumption 1 (Transition probability). The transition probability from regime i to regime
j conditional on information available at time t− 1 and about shocks at time t satisfies:

Pr(st = j|st−1 = i) = pij(zt−1, σvt), (2)

where pij is a smooth function (at least C2) with values in [0, 1].

Assumption 1 allows probabilities to depend on past endogenous variables and current
shocks. This is why we call this class of models: endogenous regime switching models. Reg-
ularity of transition probabilities is in general necessary to apply the perturbation approach.
In addition, inextricable simultaneity issues arise when we allow contemporaneous variables
to appear in the transition probabilities. In Appendix A, we give two examples illustrating
why we need these two assumptions.

Equilibrium definition Perturbation approach requires that the evolution of the model
and of the variables remains controlled with respect to a certain norm. We thus define a
stable equilibrium as follows:3

Definition 1 (Stationary equilibrium). A stationary rational expectations equilibrium ( s.r.e.e.)
of model (1) is a stochastic process, zt, such that the process zt

(i) is uniformly bounded.

(ii) depends continuously on all the past shocks.

3We detail notations and definitions in Appendix B.
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(iii) solves equation (1) given transition probabilities (2).

We choose this definition because perturbation approach relies on the local behavior of the
model, i.e. when variables are not too far from a reference point often called a steady state.
Outside this neighborhood around the steady state, perturbation approach is no more valid
and higher order expansions are helpless.4 This definition may be economically restrictive in
certain circumstances (see Cochrane, 2011, for instance). Our solution space is however close
to the set of essentially bounded functions considered by Woodford (1986). We restrict to
boundedness instead of essentially boundedness as a direct consequence of the endogeneity of
transition probabilities: essentially boundedness relies on an intrinsic measure, which does not
exist in our setup since the transition probabilities are not a priori given. Finally, following
Farmer et al. (2007), recent papers consider mean-square stability concept. However, as far as
we know this latter stability concept is not consistent with a standard perturbation approach
for non linear models as it allows for large deviations from the steady state. We give two
simple examples of problems that may arise when using such a stability concept in appendix
A.

Steady state restrictions We define a steady state as a solution of the model when no
shocks affect the economy, i.e. when the scale parameter σ is zero. We then use a perturbation
approach to approximate the solution in a neighborhood of this steady state. By definition,
the steady state abstracts from the volatility of shocks contrary to the risky steady-state
(Coeurdacier et al., 2011) but allows for strong non-linearities as the model’s derivatives are
taken at different points.

Definition 2 (Steady state). A steady state is a s.r.e.e. of the model (1) when the scale
parameter σ is zero.

When the model contains backward-looking components, two problems arise. First the
steady state may depend on all the history of past regimes, second, derivatives of the model
at the steady states can be difficult to handle. Assumptions 2 and 3 exclude such intractable
behaviors.

Assumption 2 (Regime-dependent steady state). There exists a regime-dependent steady
state (z̄1, · · · , z̄N), such that, for any k in {1, · · · , N},

N∑
j=1

pij(z̄i, 0)fi(z̄j, z̄i, z̄k, 0) = 0

Assumption 2 embeds cases in which the endogeneity modifies the steady-state. It however
requires that the steady state depends on the current regime only. This can be extended to
steady states depending on a finite number of past regimes by redefining regimes as the
finite product of past regimes. What we thus rule out is the existence of history-dependent
steady states. While these cases may often appear, in particular when past regimes interact
with backward looking components, there is to our knowledge, no general way to settle this
problem.

Finally, to simplify computations, we assume, without loss of generality, the following
properties of the derivatives of the model:

4The local behavior is controlled by a norm ensuring completeness of the set and by the fact that the
operator defining the model is bounded.
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Assumption 3 (Derivatives). All the derivatives of the model, at least until order 2, are
unaffected by past regimes at the steady state.

This assumption can be relaxed by redefining regimes as the combination of current and
relevant past regimes. Once again, we need this assumption to rule out history-dependent
derivatives.

2.2 Existence and uniqueness

In this subsection, we prove the existence of a unique s.r.e.e. when the shocks are small
enough, i.e. when the scale parameter σ is small.

Linearisation Under assumptions 1, 2 and 3, the first-order Taylor expansion of the model
(1) in (z̄1, · · · , z̄N) with respect to the scale parameter, σ, is:

E0
t [a(st, st+1)zt+1] + b(st)zt + c(st)zt−1 + σd(st)vt = o(σ) (3)

where matrices a, b, c and d are regime-dependent matrices satisfying:

a(st, st+1) = ∂1fst(z̄st+1 , z̄st , z̄st−1 , 0),

b(st) =
∑
j

[∂1pstj(z̄st , 0)fst(z̄j, z̄st , z̄k, 0) + pstj(z̄st , 0)∂2fst(z̄j, z̄st , z̄k, 0)] ,

c(st) =
∑
j

pstj(z̄st , 0)∂3fst(z̄j, z̄st , z̄k, 0), d(st) =
∑
j

pstj(z̄st , 0)∂4fst(z̄j, z̄st , z̄k, 0),

where ∂jfst(.) is the partial derivative of the function fst with respect to the jth component
and similarly for the probabilities. The subscript 0 in E0

t denotes that the underlying transition
probabilities of the expectations operator are constant:

p̄ij = pij(z̄i, 0). (4)

Future regime st+1 appears in expectations as derivatives are taken at the steady state next
period. Proposition 1 links the determinacy of the initial model with the determinacy of its
linearised counterpart.

Proposition 1 (Linearisation). If the linearised model

E0
t [a(st, st+1)zt+1] + b(st)zt + c(st)zt−1 = Ψt (5)

admits a unique s.r.e.e for any bounded stochastic process Ψt, then for the scale parameter σ
small enough, model (1) admits a unique s.r.e.e.

Proposition 1 deduces the determinacy of endogenous regime switching model from its
linearised exogenous Markov Switching counterpart, model (3). Endogeneity of transition
probabilities affects the current variables coefficients b, and therefore determinacy except if
the steady state is constant over regimes.
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Determinacy of linear regime switching We now provide for sufficient determinacy
conditions for model (5) based on a companion paper Barthélemy and Marx (2012) and Cho
(2015). Following this latter paper, we introduce the matrix Rk satisfying:

Rk+1(st) = bst − E0
t [ast,st+1Rk(st+1)−1cst+1 ], (6)

assuming that we can indeed build such a sequence of matrices:

Assumption 4 (Forward condition). For any integer k and any regime st, the sequence
Rk(st) is well-defined and admits a limit R∞(st) which is invertible.

In the absence of regime switching, this condition is linked to the cyclic reduction algo-
rithm, see Theorem 5.9 p. 158 in Bini et al. (2012) which underlines algorithms generally
used to compute the generalized Schur decomposition. In the absence of backward-looking
components, Assumption 4 only requires matrix b(st) to be invertible.

The solution of model 5 then satisfies:

(i) zt = −R−1
∞ (st)cstzt−1 + wt

(ii) wt solves E0
t [ast,st+1wt+1] +R∞(st)wt = Ψt

Assumptions 5 and 6 ensure the existence of a unique stable process zt satisfying conditions
(i) and (ii).

Assumption 5 (Uniqueness). The sequence( ∑
i1,··· ,ik

p̄i1i2 · · · p̄ik−1ik‖|ai1,i2R−1
∞ (i2) · · · aik−1,ikR

−1
∞ (ik)‖|

)1/k

admits a limit ρ+ strictly lower than one when k tends to ∞.

This condition ensures the uniqueness of a bounded equilibrium satisfying (ii) (see Barthélemy
and Marx, 2012).

Assumption 6 (Stability). The joint spectral radius, ρ−, of {R−1
∞ (1)c1, · · · , R−1

∞ (N)cN} is
lower than 1.

Where the joint spectral radius is defined as the maximal asymptotic growth rate of
products of matrices. This condition ensures that the process zt defined in point (i) is stable
if wt is stable.

Proposition 2 (Determinacy). Under assumption 4, there is a unique s.r.e.e for the linear
model (5) if and only if assumptions 5 and 6 are satisfied. In addition, the unique solution is
given by zt = −R−1

∞ (st)cstzt−1 + wt, where wt depends on a weighted sum of expected future
stochastic processes (Ψt) given in Appendix.

Proof. See Appendix D for the complete proof. First, Assumption 5 ensures the uniqueness
of a bounded process wt. Second, Assumption 6 ensures that zt is bounded if wt is bounded.
Third, we prove that if we relax one of the two assumptions then either multiple s.r.e.e. arise
(when the first assumption fails) or no s.r.e.e. exists (when the second assumption fails).

This Proposition is an extension of Blanchard and Kahn (1980) to linear Markov switching
models. In the absence of Markov Switching, assumptions 5 and 6 result from the Blanchard
and Kahn conditions. When the model is purely forward-looking, Assumption 6 is obvious as
ci = 0 for any i.

Settling Assumptions 6 and 5 is an undecidable problem. However, approximation of ρ+

(Barthélemy and Marx, 2012; Ogura and Jungers, 2014) and ρ− (Jungers, 2009) are reasonably
fast in most applications.
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2.3 First and second order approximations

We now apply the Implicit Function Theorem to model (1) assuming that the shocks -as
measured by the scale parameter σ- are small enough and derive the Taylor expansion of the
true solution with respect to the scale parameter.

Proposition 3 (Taylor expansion). Under assumptions 2 to 6 and for a scale parameter σ
small enough, there exists a unique bounded equilibrium of model (1), zt. In addition, the
Taylor expansion of this solution follows:

zt = z̄st + σz1
t +

σ2

2
z2
t + o(σ2), (7)

where
z1
t = R−1

∞ (st)cstz
1
t−1 −R−1

∞ (st)d(st)vt,

z2
t = R−1

∞ (st)cstz
2
t−1 + α(st)z

1
t−1 ⊗ z1

t−1 + β(st)z
1
t−1 ⊗ vt + γ(st)vt ⊗ vt + δ(st)Vect(Σ).

Matrices α, β, γ and δ are given in Appendix. The mathematical operator ⊗ denotes the
Kronecker product, while Vect denotes the vectorization operator.

Proof. . We apply the Implicit Function Theorem in Banach space and Propositions 1 and 2.
See Appendix E for the details of the proof.

The second-order expansion of the solution is given in equation (7). The first (second)
term, z1

t (z2
t resp.) is the first-order (second-order resp.) Taylor expansion.

This Proposition leads to multiple remarks. First, the computations only require ma-
trix manipulations, leading to a very fast algorithm. Second, because we apply the Implicit
Function Theorem we know that the approximate solution is close to the true solution. This
second remark is key as it departs from most of the existing literature that does not prove
theoretically that the approximate solution is close to the true one. Third, the second order
Taylor expansion only depends on its past value and cross products of the first-order Taylor
expansion and shocks. Consequently, we are sure that this solution, z2

t is bounded. We thus
do not need to use pruning algorithm to ensure its convergence contrary to Kim et al. (2008).
Finally, we have a priori conditions to settle determinacy that ensures us that the solution is
unique considering the widest solution space.

Proposition 3 proves that the approximate equilibrium is close to the true one. Corollaries
4 and 5 refine this result by showing that (i) the approximate equilibrium induces small model
equations errors with respect to the scale parameter (ii) the forecast density function using
the approximate equilibrium is close to the one we would find if we knew the true solution.

Corollary 4 (Model equations errors). Under assumptions of Proposition 3, the model equa-
tions errors (defined below) of a p-order approximation of the solution, ẑpt is at least of order
p+ 1:

Et[fst(ẑ
p
t+1, ẑ

p
t , ẑ

p
t−1, σvt)] = o(σp+1), with p(st = j|st−1 = i) = pij(ẑ

p
st , σvt),

where the different approximations are defined as follows: ẑ0
t = zst, ẑ

1
t = zst + σz1

t and
ẑ2
t = zst + σz1

t + σ2/2z2
t .

This result is an obvious corollary of Proposition 3 as the model is sufficiently smooth.
Proposition 4 proves that the standard accuracy criterium used in the computational eco-
nomics literature behave nicely in our context.
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We underline that even if the solving algorithm requires to linearise probabilities around
the steady-state, transition probabilities do not need to be linearised, neither for simulations
nor estimations. As a consequence, probabilities remain bounded between 0 and 1 and hence
interpretable.

Finally, last corollary proves that the trajectory forecasted using the approximate solution
remains close to the true trajectory. In our context, forecasts based on an approximate solution
involves two types of errors: on the value of endogenous variables and on the probability of
regime switching. We thus choose the Lévy-Prokhorov metric to compare forecasting density
functions. This metric measures the distance between two probability measures both in terms
of range and level. Formally, the metric between two measures, µ and ν, is given by π as
follows:

π(µ, ν) = inf{ε > 0| µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for all A ∈ B(M)},

where A is any element of the (Borel) sigma-algebra B(M) associated with the measurable
space M and Aε denotes a ε-neighborhood of A in M .

We denote by fq and by f̂pq the density forecast function q-period ahead and its p-order
approximation, conditional on initial conditions (zt, εt).

Corollary 5 (Forecast errors). Under assumptions of Proposition 3, the p-order approximate
of the q-period ahead density forecast, f̂pq is close to the true density forecast, fq in the Lévy
Prokhorov sense:

π(f̂pq , fq) = o(σp+1).

Proof. See Appendix F.

Corollary 5 proves that the errors on transition probabilities and on endogenous variables
are not multiplicative over time and are always small with respect to the scale parameter.
This result suggests that our technique can be used for forecasting purpose as well as for
computing the likelihood of such models.

2.4 Algorithm

We implement previous results using Matlab and the Dynare software (Adjemian et al.,
2011). Our program checks determinacy and provides the first- and second-order Taylor
expansions of the solution with respect to the scale parameter σ.5 The program is flexible,
allowing for relatively large-scale models, and fast, checking determinacy and solving the
model take less than a second in most applications.6

The main steps of the algorithm are the following:

1. Compute all the derivatives around the steady state (Dynare)

2. Compute R∞ and check regularity conditions (Assumption 4): if it fails, either the
approach is irrelevant or the model is misspecified.

5Programs and readme file can be found here: https://sites.google.com/site/jeanbarthelemyeconomist/research-
papers

6The only exception is in the limiting case where the model is close to indeterminacy. In this case, it can
be useful to run the program longer to be sure of the determinacy check (see Barthélemy and Marx, 2012, for
a longer discussion).
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3. Compute approximations of ρ+ and ρ−, if they are both smaller than 1, then next step.
Otherwise the model is either indeterminate or admits no bounded equilibrium.

4. Compute the first- and second-order approximations using Proposition 3.

3 An application to an endogenous monetary policy

regime switching

In this section, we apply our method to a New Keynesian model in which the monetary
authority follows two different Taylor rules depending on the monetary policy regime and
decides to switch from one to the other depending on inflation. We first expose the model.
Then we show the accuracy of our method. Finally, we detail some new effects of endogenous
regime switching.

3.1 The model

Households The representative household chooses consumption Ct, hours worked Lt, and
debt holding Bt to maximize lifetime utility:

Et

∞∑
t=0

ξtβ
t

(
C1−τ
t

1− τ
− Lt

)
,

under the following budget constraint:

PtCt +QtBt = Bt−1 +WtLt + PtDt − PtTt,

where the variable Pt denotes the price level, Qt the price of a zero-coupon bond at time t
yielding 1 in period t+1, Wt the nominal wage per hour, Dt dividend and Tt lump-sum taxes.
The shock ξt corresponds to a preference shock affecting the discount factor. The parameter
τ measures the inverse of the intertemporal elasticity of substitution and the parameter β
denotes the discount factor.

Firms A continuum of firms, denoted by the subscript j ∈ [0, 1], produces an intermediate
goods Yjt using labor Ljt as only input. The production technology is linear in labor for
simplicity:

Yjt = Ljt.

To allow for a real effect of monetary policy, we introduce nominal rigidities à la Rotemberg
(1982). Firms pay a real adjustment cost ACjt when they adjust their price:

ACjt =
φ

2

(
Pjt

π?stPjt−1

− 1

)2

Yt,

where φ determines the magnitude of the adjustment cost, π?st denotes the regime-dependent
steady-state inflation in regime st and Pjt represents the price set by the firm j at time t.
Each intermediate goods-producing firm maximizes their expected present value of profits:

∞∑
s=0

βsλt+s
Djt+s

Pt+s
,
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where λt+s represents the representative’s household discount factor, and Djt are profits of
firm j at time t. The time-t profit equals:

Djt

Pt
=
PjtYjt
Pt

− Wt

Pt
Yjt −

φ

2

(
Pjt

π?stPpjt−1

− 1

)2

Yjt.

Finally, assuming a Dixit-Stiglitz aggregation for intermediate goods, the demand for each
intermediate good is given by:

Yjt =

(
Pjt
Pt

)−θt
Yt,

where θt is the elasticity of substitution between goods.

Monetary Policy First, following a tradition initiated by Clarida et al. (2000), we describe
a regime switching as a change in the monetary policy rule. The central bank sets its interest
rate according to two potential rules. The first rule, defining regime 1, is characterized by a
high inflation target and a modest response to inflation. The second rule - regime 2 - describes
a central bank aiming at stabilizing inflation to a lower rate more aggressively. The generic
formula defining the rules is given by the following equation:

Rt =

[
Rt−1

R?
st−1

]ρr [
R?
st

(
πt
π?st

)αst
(
Yt
ȳ

)γ
et

]1−ρr
,

where parameters αst and γ measure the long-run reaction to inflation gap and output gap
- as approximated by the deviation from the productivity trend. The parameter ρr captures
the smoothing motive of interest rates. We assume for simplicity that the weight on inflation
can switch between two values depending on the regime, st, but not the other parameters γ
and ρr. The inflation target π?st also changes across regimes. We suppose that the targeted
nominal interest rate R? is chosen such that inflation equals its target in each regime in the
absence of shocks. Finally, the monetary policy shock et stands for the unsystematic monetary
policy component.

Second, we suppose that the monetary authority chooses the regime at each point of time
in the spirit of Davig and Leeper (2008). We model this choice as transition probabilities
depending on the level of inflation. The higher the level of inflation the more likely the
central banker will choose the more aggressive monetary policy rule in an attempt to stabilize
the economy. The probability to remain in a particular regime j ∈ {1, 2} follows:

Pr(st = j|st−1 = j, πt−1) = pjj + λjj(πt−1 − π∗i )

where pjj will be the steady state level of the probability of remaining in regime j and
λjj measures the sensitivity of transition probabilities to inflation. When λjj equals zero,
probabilities are constant.

Such endogenous regime switching is a shortcut to model the different intensity of political
pressures to change the objective of the central banker depending on the current level of
inflation. We however do not present a theory of why such political pressures emerge and
instead we posit an ad hoc specification of transition probabilities.

We choose linear probabilities to simplify the interpretation of the sensitivity parameter
λjj. To ensure that probabilities remain in [0, 1], one can instead use a more complex prob-
ability function like a logit function. However, since we use a perturbation approach, such a
change does not modify qualitatively the approximate solutions as only the second order is
affected by such a change.
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Shocks We consider three types of shocks that reproduce the three shocks estimated by
Lubik and Schorfheide (2004) in a reduced form model. The preference shock, ξt follows a
first order autoregressive process:

ln ξt = ρξ ln ξt−1 + εξt ,

where the parameter ρξ < 1 denotes the autocorrelation and the innovation εξt follows a

zero-mean Gaussian law with a standard deviation σξ. We denote by ξ̂t the log deviation
ln ξt.

The steady-state price markup is u = θ/(θ − 1), while the time-t markup follows:

lnut = (1− ρu) lnu+ ρu lnut−1 + εut ,

where εut follows a zero-mean Gaussian law with a standard deviation σu. We denote by ût
the log deviation ln(ut/u).

Finally, the monetary policy shock, êt = ln et follows a zero-mean Gaussian law with a
standard deviation σe.

First-order conditions The first-order conditions and market clearing conditions lead to
the following non-linear system:

θutC
τ
t −φ(θut−θ+1)

πt
πst

[
πt
πst
− 1

]
+βφ(θut−θ+1)Et

[
Yt+1

Yt

C−τt+1

C−τt

πt+1

πst+1

(
πt+1

πst+1

− 1

)]
=

θ

θ − 1
,

Yt = Ct +
φ

2

[
πt
πst
− 1

]2

Yt,

Rt =

[
Rt−1

R?
st−1

]ρr(st) [
R?
st

(
πt
π?st

)α(st)(Yt
ȳ

)γ(st)

et

]1−ρr(st)

Et

[
βRt

πt+1

(
Ct
Ct+1

)τ (
ξt+1

ξt

)]
= 1,

where c̄ = ȳ = (1/θ)1/τ . The first equation is a (non-linearised) new Keynesian Phillips
curve reflecting the optimal price setting of intermediate firms, the second equation reports
market clearing condition; the third equation is the monetary policy rule and the last equation
is the Euler equation of households.

Steady state To simplify the interpretation of inflation targets, we suppose that the tar-
geted interest rate R?

st satisfies:

R?
st
−1 = β

[
pst1(π?st)

π?1
+
pst2(π?st)

π?2

]
.

The steady state is denoted by ct = c̄, yt = ȳ, πt = π?st and Rt = R?
st . It defines a steady

state consistent with assumptions 2 and 3, that changes over regimes but is unaffected by the
fluctuations of transition probabilities.7

7This is not a general property, as already mentioned in subsection 2.1, the steady state can be affected
by the endogeneity of regime switching.
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Perturbation approach If the linearised model satisfies Assumptions 4-6, then Proposition
3 holds, and we can compute the approximate solution.

Linearisation In the absence of endogenous regime switching, the log-linearisation of the
model leads to the canonical 3-equations system. The new Keynesian Phillips curve can be
rewritten as:

π̂t = βEtπ̂t+1 + κ(Ŷt +
ût
τ

),

where the hat denotes the log-deviation around the steady state defined above. And the Euler
equation is the standard IS curve:

Ŷt = EtŶt+1 − τ−1(R̂t − Etπ̂t+1 + (ξ̂t − Etξ̂t+1)).

Finally, the monetary policy rule writes:

R̂t = ρrR̂t−1 + (1− ρr)[α(st)π̂t + γŶt + êt].

These three equations are similar to those estimated by Lubik and Schorfheide (2004)
over sub-samples and by Bianchi (2013) over the whole US post war period. We thus take
advantage from these estimations to calibrate our model.

3.2 Calibration

Calibration of non-regime switching parameters is reported in Table 1. Structural pa-
rameters are calibrated as in Woodford (2003) and are standard. Variances and persistences
of shocks are calibrated following Lubik and Schorfheide (2004). Policy parameters are also
calibrated as in this latter paper. When Lubik and Schorfheide (2004) estimate two different
values on the two regimes, pre- and post- Volcker, we choose a value in between and close to
Davig and Doh (2008). We only allow for variation across regimes for the weight of inflation
and the inflation target in the Taylor rule as these two parameters have been put forward in
explaining the shift in volatility and level of inflation from the 70s to the post Volcker period.

Parameters Calibration
Structural parameters

Slope of the NKPC, κ 0.17
Relative risk aversion, τ 1
Discount factor, β 0.99
Elasticity between goods, θ 10
Reaction of interest rate to output, γ 0.2

Persistence parameters
Interest rate, ρr 0.7
Preference, ρξ 0.8
Price mark-up, ρu 0.8

Standard deviation parameters
Preference, σξ 0.0007
Price mark-up, σu 0.002
Monetary policy σe 0.001

Table 1: Calibration of non regime-switching parameters.
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Table 2 reports the calibration of regime switching parameters. Inflation targets are set to
match their average empirical counterpart considering that regime 1 is supposed to describe
US Great Inflation in the 70s while regime 2 describes the post-1981 US history. The reactions
to inflation as well as transition probabilities are calibrated at the posterior mean estimated
by Bianchi (2013). As far as we know, the only parameters for which there is no existing
literature are sensitivity parameters, λstst+1 . As an illustration, we calibrate these parameters
such that (i) the probability of remaining in regime 2 is constant (ii) the probability of exiting
the high inflation regime, st = 1, is increasing with inflation. Hence, we calibrate λ11 equal
to −30.

Parameters Calibration
Regime 1: 1970-1980

Response to inflation, α1 1.1
Inflation target, π?1 7% (annualized)
Probability of remaining in 1, p̄11 0.90
Probability sensitivity to inflation, λ11 -30

Regime 2: Post 1981
Response to inflation, α2 2.3
Inflation target, π?2 2% (annualized)
Probability of remaining in 2, p̄22 0.95
Probability sensitivity to inflation, λ22 0

Table 2: Calibration of regime switching parameters.

3.3 Accuracy

We check accuracy by computing the errors when evaluating the model equations at the
approximate solution. We report the errors of all the non-linear equations except the monetary
policy equation since this equation is linear in log. In Figure 1, we display the errors when
considering the first- and the second-order Taylor expansion of the solution for the Euler
equation, the New Keynesian Phillips Curve and the Market clearing condition with respect
to the scale parameter, σ. When σ equals one it means that the maximum size of shocks is its
standard error. The last figure corresponds to the ratio between the error norm of the first-
and the second-order approximations.

First, we observe that the errors of the first-order approximate solution look like quadratic
while those of the second-order look like cubic. The ratio between the errors appears to be
linear and converge to zero when σ tends to zero. The smaller the shocks the more accurate
the second-order approximate solution. This illustrates corollary 4 and suggests that the
method delivers expected accuracies.

Second, the second-order approximate solution remains more accurate than the first-order
one as long as shocks are smaller than their calibrated standard deviations. On the one hand,
the New Keynesian Phillips Curve generates larger errors for the second-order compared to
the first-order expansions even for relatively small shocks. On the other hand, other equations
errors are two times smaller for the second-order approximate solution compared to the first-
order approximate solution even for relatively large shocks (three standard deviations).

These contrasted results prove that while the second order is always preferable for small
shocks, the choice of the order of the approximation is not unambiguous when shocks are
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larger. That being said, this result is not specific to endogenous regime switching but is likely
to be amplified by it as it brings a second source of non-linearities in the model.
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Figure 1: Model equations errors of first- and second-order approximations

Note: The first three graphs report errors when plugging the first- and second-order approx-
imations in model equations. The black plain line (red line with crosses) reports the errors
induced by first- (second- resp.) order approximation with respect to the scale parameter, σ.
The fourth graph plots the ratio between the first- and second-order approximations’ largest
errors. To improve the speed of errors computation but without loss of generality, we com-
pute expectations and maximum errors by assuming that shocks follow a a uniform law on the
discrete support

√
3/2{−σσε, 0, σσε} where σ is the scale parameter and σε is the standard

deviation of the considered shock given in Table 1.

3.4 Determinacy

Fluctuations of transition probabilities matter for determinacy. If the probability of switch-
ing toward lower inflation target increases with inflation, the economy evolves as if the reaction
to inflation of the central banker were stronger than what it is actually in the high level in-
flation regime. Indeed, the real interest rate increases more with inflation than otherwise
because expected inflation decreases with the level of current inflation. Below, we describe
more formally this mechanism in a flexible price environment.

In a flex-price environment, the model can be rewritten as a Fisherian equation of inflation
determination (the Euler equation in the absence of sticky prices) and a monetary policy
rule. For the sake of the exposition, suppose that the monetary policy rule only responds to
inflation (ρ = γ = 0). At first-order and in the absence of shocks at period t, inflation is thus
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determined by:
αst π̂t = E0

t ˆπt+1 + λst1π̂t[π
?
1 − π?2],

where π̂ denotes the log deviation of inflation from its regime dependent steady-state, π?st . If
we denote by α′st = [αst −λst1[π1−π2]], we then recognize a well known Fisherian equation in
the presence of regime switching. The reaction to inflation is simply modified by an additive
term taking into account the sensitivity of probability multiplied by the gap between the two
inflation targets. This additional term reflects the negative relationship between the level of
inflation at current period and expected inflation due to decreasing probability of switching
toward high-inflation regime. Finally, the existence of a unique equilibrium can be analytically
determined (Davig and Leeper, 2007; Farmer et al., 2009a) by the following condition:

p11(1− |α′2|) + p22(1− |α′1|) + |α′1α′2| > 1.

If this condition is satisfied, the only bounded equilibrium is πt = πst . Figure 2 plots the
determinacy region with respect to the policy parameters α1 and α2 for different sensitivity
parameters λ11. We observe that the indeterminacy region (below the curves) shrinks when
λ11 < 0 suggesting that endogenous probability and the policy response to inflation play
similar role. In our calibrated model, as λ11 = −30, endogenous transition probabilities
reinforce determinacy by allowing the real interest rate to increase more with inflation than
otherwise in regime 1.
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Figure 2: Determinacy and endogenous regime switching

Note: The above figure displays determinacy area with respect to central bank inflation
reactions in each regimes (α1, α2). Above the curves, determinacy is ensured; below, multiple
stable equilibria exist. The red thick line plots the determinacy frontier in the absence of
endogenous regime switching (λ11 = 0). The dotted curve displays the determinacy frontier
when the persistence of regime 1, Pr(st = 1|st−1 = 1), falls with inflation (λ11 = −30).

3.5 Macroeconomic dynamics

In this subsection, we put forward two new effects of endogenous regime switching. The
first effect, that we call a selection effect, is due to the correlation between regimes and
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shocks. The second effect results from the expectations of the selection effect and we call it
the expectations formation effect following Leeper and Zha (2003). In our calibration, the
second effect dominates. Increasing expectation of a lower inflation target if inflation increases
reduces inflation volatility in the high inflation regime as if the reaction to inflation in this
regime were as high as in the low inflation regime.

Impulse Response Functions We define the impulse response functions as the difference
between the expected dynamics of an economy hit by a 1-standard deviation shock at date t
compared to the same economy without such a shock. Formally, the response of the output,
yt+k, to a one standard deviation preference shock (but no other shock) at date t if the
economy is in regime 1 at this date writes:

E[yt+k|εξt = σξ, st = 1]− E[yt+k|εξt = 0, st = 1]. (8)
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Figure 3: Impulse response functions in Regime 1 (’dovish’ regime)

Note: The figures report the impulse response functions as defined in (8) to preference, markup
and monetary policy shocks. Thick black lines display economic responses to shocks when
transition probabilities are endogenous. Dashed thin lines display economic responses when
economic agents take into account endogenous transition probabilities in the formation of their
expectations but regimes are drawn from the steady-state transition probability distribution,
the difference between plain and dashed lines isolates the role of the selection effect. Finally,
the red thick lines with crosses display the responses of economic variables when transition
probabilities are constant. The difference between dashed and thick with crosses lines isolates
the endogenous expectations formation effect.

Figure 3 plots Impulse Response Functions (IRF) to shocks according to three scenarii.8

Thick black lines display economic responses to shocks when transition probabilities are en-

8IRFs are computed assuming that the economy is at the ergodic distribution prior to the shock. We
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dogenous. Red thick lines with crosses display the responses of economic variables when
transition probabilities are constant. Dashed thin lines display economic responses when eco-
nomic agents take into account endogenous transition probabilities in the formation of their
expectations but regimes are drawn from the steady-state transition probability distribution
(when not visible these lines coincide with the plain black lines). The difference between plain
and dashed lines isolates the role of the selection effect, i.e. the effect due to the correlation
between shocks and regimes. The difference between dashed and thick with crosses lines
isolates the endogenous expectations formation effect.

First, the fluctuation of transition probability, p11, reduces the reaction of inflation to
any kind of shocks. When an inflationary shock hits the economy, economic agents expect
lower inflation in the future, therefore the real interest rate is higher even if the nominal
interest rate is not affected. This mechanism is present even if transition probabilities are
constant but economic agents believe they are not (dashed lines) proving that it results from
an expectations formation effect.
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Figure 4: Ergodic distribution

Note: The figures report ergodic distribution functions of the output, inflation and the in-
terest rate unconditionally on regimes (top), in regime 1 (middle) and regime 2 (bottom).
Thick black lines report distributions when transition probabilities are endogenous. Finally,
the red thick lines with crosses display the responses of economic variables when transition
probabilities are constant.

Second, the selection effect dominates the medium run evolution of inflation, as the dashed
and red with crosses lines overlap. The selection effect, indeed, needs time to take place as

assume that t = 100 in equation (8) while the economy is initially (t = 0) at the steady state. We have
checked that this is sufficient to obtain a reasonably good approximation of the ergodic distribution. We then
compute the IRF by simulating 500000 trajectories of regimes and shocks.
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probabilities are only slightly modified altering the ratio of regime 1 over regime 2 only
modestly each period.

Finally, we observe that the output gap is not always stabilized by the fluctuations of
transition probabilities. Indeed, the rise in the real interest rate due to expectations of lower
inflation target, tends to generate larger recession when a cost push shock hits the economy.

Ergodic distribution Figure 4 represents the ergodic distribution of the output, inflation
and the interest rate. The selection effect only plays a little role so we only plot the endogenous
regime switching case λ11 = −30 (in black) and the exogenous one, λ11 = 0 (in red with
crosses). The first row reports the distribution of endogenous variables independently of the
regime and the second (third) row depicts the distribution conditional on being in regime 1
(2, resp.).

First, endogenous fluctuations of transition probabilities do not matter for the low-inflation
regime. In the low-inflation regime, fluctuations of transition probability in the other regime
might influence economic agents decisions as they make the other regime more stable as we
have seen above. This mechanism is however quantitatively irrelevant.

Second, inflation and the nominal interest rate are less volatile in the high inflation regime
when regime switches endogenously, however, the output is not significantly affected. These
findings directly echo results from the Impulse Response Functions.

Third, the magnitude of this effect is comparable to the effect of changing the reaction to
inflation in the Taylor rule of the high-inflation regime, α1 from 1.1 to 2.3, i.e. assuming the
same response in both regimes. We compare these two cases in Figure 5 in Appendix G. Even
if this latter result relies on the exact value of λ11, it suggests that the threat of switching
toward a low-inflation regime if inflationary shocks hit the economy helps stabilizing the
economy as well as the standard reaction to inflation in the Taylor rule. We obviously do not
claim that this invalidates results based on constant transition probabilities between regimes,
but we think that it clearly calls for a better integration of such mechanism in empirical works
to take into account expectations of regime switching in a more rational way.

4 Conclusion

In this paper, we propose a flexible tool to solve rational expectations models, with en-
dogenous regime switching. We illustrate the flexibility and accuracy of the method but also
its limits. We apply our methodology to an endogenous monetary policy regime switching
model and we show that fluctuations in transition probabilities can play a significant role
in the economic dynamics. We especially prove that these fluctuations can produce similar
results as a more standard variation in the reaction to inflation, in terms of determinacy as
well as volatility.

Finally, we hope that this methodology will help researchers to estimate models in which
regime switching is considered as an economic outcome and not as a random shock as it is
the case in most empirical works nowadays.
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Appendices

A Key assumptions underlying Perturbation approach:

four caveats

A.1 Caveat 1: Norms and model definition

In this subsection, we illustrate why we require bounded shocks and smooth models.
Consider the following model:

exp(x3
t ) = exp(σεt),

where xt is an endogenous variable, εt is an exogenous variable and σ is a scale parame-
ter. This model is smooth and if we assume that shocks εt are bounded, we find a unique
bounded equilibrium xt = (σεt)

1/3 whatever the distribution of shocks. Assuming that the
scale parameter is sufficiently small, a perturbation approach will lead to approximations of
this solution.

Now, let us assume that we are looking for a Mean Square Stable equilibrium instead and
that we do not want to assume bounded shocks. We show in this example that the model is
not well defined for mean-square stable functions around the steady state, this prevents the
economist from using a perturbation approach, whereas there exists a unique mean square
stable solution.

The steady state of the previous model is xt = 0. Applying a perturbation approach
around this reference point requires that the model is defined for variables close to this steady
state. Let us consider x̃t = γε where ε is a zero mean Gaussian shock and γ a scalar. For γ
small enough, the spread between x̃ and the steady-state is mean square stable. In addition,
this variable is in the L − 2 neighborhood of x but the model is not defined at xt = x̃ as the
exponential of a cubic Gaussian shock is not mean square stable.

This very naive example proves that a perturbation approach requires to consider simul-
taneously the same concept of stability for the model and for the variables.

A.2 Caveat 2: Norms and differentiation

In this subsection, we illustrate why standard differentiation (perturbation approach) is
consistent with boundedness concept but not necessarily with other stability concept (here
mean square stability as in Caveat 1).

Let us consider the following model:

αEt(ln(1 + xt+1)) = ln(xt + 1)− σ3ε3t

where α is a scalar strictly smaller than one, xt is an endogenous variable strictly greater than
−1, εt is a shock and σ is the scale parameter.

Remarking that zero is a steady state of this model, standard linearisation leads to:

αEtxt+1 = xt.

The only bounded solution is x0
t = 0. The exact solution of the model is xt = exp(σ3ε3

t )− 1
as long as the shock is symmetric and zero mean. Implicit function theorem tells us that if
the shock is bounded then the solution is also close to the true solution.
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Considering (unbounded) Gaussian shock and mean square stability concept is however
once again misleading. Indeed, if the economist linearises the model as above, he can be
tempted to conclude that the mean square stable solution, x0

t = 0, is a good approximation of
the true solution. However, in this case there is no mean square stable solution of the original
problem.9

This example reminds us that usual linearisation uses derivatives with respect to C∞ norm
and is consistent if shocks are bounded and model is smooth but can lead to misleading results
if shocks are not bounded and the economist uses another stability concept. The technical
reason in this example is that derivatives of the model cannot be properly defined in L2.

A.3 Caveat 3: Contemporaneous probabilities

Let us consider the model
xt = 0 if st = 1,

xt = 1 if st = 2,

with transition probabilities:

Pr(st = 1|st−1 = 1, 2) = xt.

This model does not have any solution. The model (including probabilities) is fully linear but
transition probability depends on contemporaneous endogenous variables raising an inextri-
cable simultaneity issue.

A.4 Caveat 4: Continuous probabilities

We consider
αstEtxt+1 = xt

where α1 = 1/2, and α2 = 2, with transition probabilities:

p(st = 1|st−1 = 1, 2) = 1 if σεt = 0, p(st = 2|st−1 = 1, 2) = 0 if σεt 6= 0

There is a unique solution for σ = 0, but it is no more the case for any σ > 0. Indeed,
the non-continuity of transition probabilities prevent from using a perturbation approach to
determine the existence of a unique bounded solution locally.

B Definitions and Notations

B.1 Formalism

We consider the model
Et[fst(zt+1, zt, zt−1, σvt)] = 0,

where the transition probability from regime i to regime j satisfies Assumption 1. ut represents
the concatenation of regimes and shocks (st, vt). The set U∞ represents the set of infinite
sequences ut = (ut, ut−1, · · · ).10 We describe a solution of the model as a continuous function
φ of all the past shocks and regimes, satisfying:

9We can completely solve this model as it is linear in log.
10For more details about this formalism, see Woodford (1986).
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N (φ, σ)(st, vt) =
∑
j

∫
pstj(φ(ut), σv)fj(φ(jst, vvt), φ(st, vt), φ(st−1, vt−1), σvt)f(v)dv

The conditional probability distribution of the stochastic process ut is then described, for
any (s, v) :

µ(s, v, φ, ut−1, σ) = pst−1s(φ(ut−1), σv)f(v)dv, (9)

The key complexity here is that this conditional probability distribution depends on the
equilibrium itself, defined through function φ.

B.2 Definition of a stationary rational equilibrium

As in the case without Markov Switching, the idea is to start with a solution to the model
when σ = 0 and to apply a perturbation approach for small positive σ value. The following
definition depicts precisely the solution space we consider:

A stationary rational expectations equilibrium (s.r.e.e.) of model (1) is a continuous
function φ : U∞ → F such that:

1. ||φ||∞ = sup
U∞
‖φ(ut)‖ <∞.

2. If u is a U valued stochastic process whose conditional probability distribution is µ (see
Equation 9), then zt = φ(ut) is a solution of Equation (1).

We restrict our analysis to continuous and bounded functions, and we denote by B, the
set of such functions. Precisely, B is the set of functions φ on U∞ such that, for all s, the
map v 7→ φ(s, v) is continuous and such that (s, v) 7→ φ(s, v) is bounded. If the model N
cannot be defined on the whole set B (for instance because a variable has to be positive), we
can always restrict B to a neighborhood of the steady state to avoid caveats 1 and 2. In this
case, all the proofs are done on the restriction of B instead of B itself.

B.3 Implicit Function Theorem

We will prove the existence and uniqueness of a s.r.e.e. when the continuous shocks are
small enough (small σ) by applying the Implicit Function Theorem to an operator acting on
the Banach space of bounded and continuous functions, B, see Abraham et al. (1988). We
start with recalling this result.

Theorem 6. [Abraham et al. (1988)] Let E,F,G be 3 Banach spaces, let U ⊂ E, V ⊂ F
be open and f : U × V → G be Cr, r ≥ 1. For some x0 ∈ U , y0 ∈ V assume Dyf(x0, y0) :
F → G is an isomorphism. Then there are neighborhoods U0 of x0 and W0 of f(x0, y0) and a
unique Cr map g : U0 ×W0 → V such that, for all (x,w) ∈ U0 ×W0

f(x, g(x,w)) = w.
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C Proof of Proposition 1

In our framework, the problem can be rewritten as finding the zeros of an operator N
acting on a bounded function φ in B, the scale parameter σ with values in B, such that, for
any ut:

N (φ, σ)(ut) =

∫
V

∑
j

pstj(φ(ut), σvt+1)fst(φ(uut), φ(ut), φ(ut−1), σvt)dvt+1. (10)

As we see in Appendix B, to apply the Implicit Function Theorem we have to check that:

1. B with the norm ‖‖∞ is a Banach space.

2. N is C1 on B.

3. The function φ0 such that φ0(st, vt) = zst satisfies N (φ0, 0) = 0.

4. DφN (φ0, 0) is invertible.

The first point is immediate, B with the norm ‖‖∞ is a Banach space as a product of Banach
spaces. Point 2. results from the regularity of f , pij, and Lebesgue’s dominated convergence
Theorem. When σ = 0, we have that

N (φ, 0)(ut) =
∑
j

pstj(φ(ut), 0)

∫
V

fst(φ(uut), φ(ut), φ(ut−1), 0)dvt+1

Thus point 3. results from Assumption 2. Concerning point 4., the differential of N in (φ0, 0)
is described by the following Lemma:

Lemma 7. Under assumptions 2 and 3, the differential DφN (φ0, 0) satisfies: For any H in
B,

DφN (φ0, 0)H =∑
j

pstj(zst , 0)∂1fst(zj, zst , zst−1 , 0)

∫
V

H(jst, vvt)dv

+

(∑
j

fst(zj, zst , zst−1 , 0)∂1pstj(zst , 0) +
∑
j

pstj(zst , 0)∂1fst(zj, zst , zst−1 , 0)

)
H(st, vt)

+
∑
j

pstj(zst , 0)∂3fst(zj, zst , zst−1 , 0)H(st−1, vt−1)

This Lemma shows that the differential is exactly equivalent to the linearised model given
in Proposition 1, this ends the proof of Proposition 1.

D Proof of Proposition 2

We first recall the construction of Rk by forward iteration, then we prove the proposition.
Suppose that the process zt is a s.r.e.e. of (5), then, for any k > 0, the process zt should

also solve:

E0
t [Rk(st, · · · , st+k)zt+k] +Rk(st)zt + cstzt−1 = E0

t

k∑
p=0

Λp
k(s

t+p)Ψt+p (11)
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where Mk, Rk and Λp
k are defined recursively by

M1(st, st+1) = ast,st+1 , Mk+1(st, · · · , st+k+1) = −ast,st+1Rk(st+1)−1Mk(st+1, · · · , st+k+1)

R1(st) = bst , Rk+1(st) = bst − Et[ast,st+1Rk(st+1)−1cst+1 ],

and

Λ0
k = 1, Λp+1

k+1(st+p+1) = −ast,st+1Rk(st+1)−1Λp
k(s

t+p+1), for p ≥ 0 and k ≥ 0.

We now prove Proposition 2 assuming that assumption 4 is satisfied.
If assumptions 5 and 6 are satisfied, thanks to assumption 5, wt is bounded, and thanks to

assumption 6, z is bounded. It remains to check that z is the unique solution. By definition,
R∞ is solution of

R∞(st) = bst − E0
t [ast,st+1R∞(st+1)−1cst+1 ]

Thus, defining wt = zt +R−1
∞ (st)Cstzt−1, wt is solution of

E0
t [ast,st+1wt+1] +R∞(st)wt = Ψt (12)

According to Barthélemy and Marx (2012), we know that there exists a unique solution if
assumption 5 is satisfied, and that in this case,

wt = −R−1
∞ (st)ht − E0

t

[
∞∑
k=1

k−1∏
j=0

ast+j ,st+j+1
R∞(st+j+1)−1ht+k

]

Assuming that 1. is satisfied, we notice that assumptions 5 and 6 are necessary conditions
for determinacy.

If assumption 6 is satisfied, and 5 is not, then, for any bounded solution zt, wt = zt +
R−1
∞ (st)Cstzt−1 is bounded and solution of (12). Thus, according to Barthélemy and Marx

(2012), we know that if assumption 6 fails, there exist several bounded solutions for (12),
therefore the model is indeterminate.

If assumption 5 is satisfied, and assumption 6 is not, then convergence of Rk(st) and
assumption 5 imply that, for any ε > 0, there exist a constant C and an integer k0 such that,
for k ≥ k0: ∑

i1,··· ,ik

p̄i1i2 · · · p̄ik−1ik‖|Ai1,i2R−1
k−1(i2) · · ·Aik−1,ikR

−1
1 (ik)‖| ≤ C(ρ+ + ε)k (13)

This implies that, if zt is a bounded solution, then, according to (13), the sequence de-
fined by Et[Mk(st, · · · , st+k)zt+k] tends to zero, and the sequence Et

∑k
p=0 Λp

k(s
t+p)Ψt+p is

convergent, for any Ψ. In particular, if zt is a bounded solution of (5), with Ψt = 0, then
zt = −R−1

∞ (st)Cstzt−1, which is not bounded since assumption 6 is not satisfied.

E Proof of Proposition 3

E.1 First-order

By application of the implicit function Theorem around (φ0, 0), we know that the solution
satisfies

φ(σ) = φ0 + σz1 + o(σ)
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where z1
t is solution of

DφN (φ0, 0)z1 = −DσN (φ0, 0)

Elementary computations lead to:

DσN (φ0, 0) =
N∑
j=1

pstj(zst , 0)∂4fst(zj, zst , zst−1 , 0)εt

DφN (φ0, 0)h = E0
t [a(st, st+1)ht+1] + b(st)ht + c(st)ht−1

Thus,

z1(st) = R−1
∞ (st)cstz

1(st−1)−R−1
∞ (st)

N∑
j=1

pstj(zst , 0)∂4fst(zj, zst , zst−1 , 0)εt

E.2 Second-order

To obtain the second-order approximation, we derive twice the implicit equation defining
the solution φ(σ) :

N (φ(σ), σ) = 0 (14)

For a multivariate model, N =


N1

N2
...
Np

, we denote by

Dφ,φN =


Vect(Dφ,φN1)′

Vect(Dφ,φN2)′

...
Vect(Dφ,φNp)′


Thus, the second derivative of equation (14) is

Dφ,φN (φ0, 0)z1 ⊗ z1 + 2Dφ,σ(φ0, 0)z1 +Dσ,σN (φ0, 0) +DφN (φ0, 0)z2 = 0

This implies that z2
t is solution of:

Et[ast,st+1z
2
t+1] + bstz

2
t + cstz

2
t−1 = ht

where
h = −Dφ,φN (φ0, 0)z1 ⊗ z1 − 2Dφ,σ(φ0, 0)z1 −Dσ,σN (φ0, 0)

As a first step, we rewrite
z1
t = Ω(st)z

1
t−1 + ∆(st)εt

and compute

ht = γ1(st)z
1
t ⊗ z1

t + γ2(st)z
1
t ⊗ z1

t−1 + γ3(st)z
1
t−1 ⊗ z1

t−1 + γ4(st)z
1
t ⊗ εt

+γ5(st)z
1
t−1 ⊗ εt + γ6(st)εt ⊗ εt + γ7(st)Vect(Σ)
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where

γ1(st) = −
∑
j

[
fst(zj, zst , zst−1 , 0)∂11pstj(zst , 0) + pstj(zst , 0)∂11fst(zj, zst , zst−1 , 0)Ω(j)⊗ Ω(j)

+ pstj(zst , 0)∂22fst(zj, zst , zst−1 , 0)
]

−2
∑
j

[
∂1fst(zj, zst , zst−1 , 0)⊗ ∂1pstj(zst , 0)Ω(j)⊗ 1n + ∂2fst(zj, zst , zst−1 , 0)⊗ ∂1pstj(zst , 0)+

pstj(zst , 0)∂12fst(zj, zst , zst−1 , 0)Ω(j)⊗ 1n
]

γ2(st) = −2
∑
j

[
∂1pstj(zst , 0)⊗ ∂3fst(zj, zst , zst−1 , 0) + pstj(zst , 0)∂23fst(zj, zst , zst−1 , 0)Ω(j)⊗ 1n

+ pstj(zst , 0)∂13fst(zj, zst , zst−1 , 0)
]

γ3(st) = −
∑
j

pstj(zst , 0)∂33fst(zj, zst , zst−1 , 0)

γ4(st) = −2
∑
j

[
∂1pstj(zst , 0)⊗ ∂4fst(zj, zst , zst−1 , 0) + pstj(zst , 0)∂14fst(zj, zst , zst−1 , 0)Ω(j)⊗ 1p

pstj(zst , 0)∂24fst(zj, zst , zst−1 , 0)
]

γ5(st) = −2
∑
j

pstj(zst , 0)∂34fst(zj, zst , zst−1 , 0)

γ6(st) = −
∑
j

pstj(zst , 0)∂44fst(zj, zst , zst−1 , 0)

γ7(st) = −
∑
j

f ′st(zj, zst , zst−1 , 0)⊗ ∂22pstj(zst , 0)

We define the np× np permutation matrix Tzε by

Tzε(i, p ∗ ((i− 1)[n]) + 1 + E((i− 1)/n)) = 1, ∀i ∈ {1, · · · , np}

Tzε is such that:
εt ⊗ z1

t−1 = Tzεz
1
t−1 ⊗ εt

This leads to:

ht = −[α1(st)z
1
t−1 ⊗ z1

t−1 + α2(st)z
1
t−1 ⊗ εt + α3(st)εt ⊗ εt + α4(st)Vect(Σ)]

where
α1 = γ1Ω(st)⊗ Ω(st) + γ2Ω(st)⊗ 1+ γ3

α2 = γ1Ω(st)⊗∆(st) + γ4Ω(st)⊗ 1+ γ5 + [γ1∆(st)⊗ Ω(st) + γ2∆(st)⊗ 1]Tzε

α3 = γ6 + γ1∆(st)⊗∆(st) + γ4∆(st)⊗ 1
α4 = γ7

We introduce w2 such that
z2
t = Ω(st)z

2
t−1 + w2

t

The process w2 is solution of the equation:

R∞(st)
−1E0

t [Ast,st+1w
2
t+1] + w2

t = −R∞(st)
−1ht
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We look for w2
t under the form

w2
t = α(st)z

1
t−1 ⊗ z1

t−1 + β(st)z
1
t−1 ⊗ εt + γ(st)εt ⊗ εt + δ(st)Vect(Σ) (15)

Then, α, β, γ and δ satisfy:∑
j

R∞(st)
−1Ast,jα(j)[Ω∗(st)⊗ Ω∗(st)] + α(st) = −R∞(st)

−1α1(st)

∑
j

R∞(st)
−1Ast,jα(j)[Ω∗(st)⊗∆∗(st) + ∆∗(st)⊗ Ω∗(st)Tzε] + β(st) = −R∞(st)

−1α2(st)

∑
j

R∞(st)
−1Ast,jα(j)[∆∗(st)⊗∆∗(st)] + γ(st) = −R∞(st)

−1α3(st)

∑
j

R∞(st)
−1Ast,j(γ(j) + δ(j)) + δ(st) = −R∞(st)

−1α4(st)

Introducing

Υj =


Vect[−R∞(1)−1αj(1)]
Vect[−R∞(2)−1αj(2)]

...
Vect[R∞(N)−1αj(N)]


The vector Vec α =

 Vect(α(1))
· · ·

Vect(α(N))

 is solution of

Vec α = (1+MΩ)−1U1

where
MΩ = [pij(Ω

∗)′(i)⊗ (Ω∗)′(i)⊗R∞(i)−1Ai,j]

β and γ are explicitly given by α, and Vec δ is solution of

Vec δ = (1+MIp)−1 ∗ (U4 −MIpVec γ)

where
MIp = [pij1⊗ 1⊗R∞(i)−1Ai,j]

F Proof of Corollary 5

Proof. The case q = 1 follows directly from Taylor expansion (7) and boundedness of shocks.
Without loss of generality, we consider q = 2.
Fix M any subset of {(zt, εt)}, then

f2(M) =

∫
zt∈M

∫
ε1,ε2

f1(f1(zt, ε1), ε2)dε1dε2dzt

Moreover, we have that

f̂p2 (M) =

∫
zt∈M

∫
ε1,ε2

f̂p1 (f̂p1 (zt, ε1), ε2)dε1dε2dzt
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Thus
‖f2(M)− f̂p2 (M)‖ ≤ Cσp+2

which leads to the fact that
π(f̂p2 , f2) = o(σp+1).

For higher forecasting horizons, the same reasoning applies, this ends the proof of Corollary
5.
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Figure 5: Comparison of distribution of inflation in each regime

Note: The figure reports demeaned ergodic distribution of the inflation in regime 1 (thick
black line) and regime 2 (dotted line).
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