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Abstract

We introduce a neighborhood structure in a waiting game, where the payoff of

stopping increases each time a neighbor stops. We show that the dynamic evolution

of the network depends on initial parameters and can take the form of either a

shrinking network, where players at the edges stop first, or a fragmenting network

where interior players stop first. We find that, in addition to the coordination

inefficiency standard in waiting games, the neighborhood structure gives rise to two

other inefficiencies, the first linked to the order of exit and the second to the final

distribution of remaining nodes.

JEL Classification: D85, C73, D83
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1 Introduction

There is growing evidence that the decision to adopt a new technology is affected by

the decisions of neighbors, i.e those close either geographically or in terms of social or

technological distance (Foster and Rosenzweig 1995, Conley and Udry 2010, Bandiera

and Rasul 2006, Atkin et al. 2017). One explanation is that adoption creates spillovers

for neighbors that decrease their own adoption costs. These spillovers can be informa-

tional or technological. For instance, the initial adopter trains employees or suppliers

with this new technology and the mobility of workers or the sharing of suppliers spreads

the expertise to connected firms.

Such environments create incentives for players to wait for their neighbors to adopt.

In this paper we introduce a class of problems, waiting games on networks, that en-

compasses the adoption problem described above. There are other applications besides
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technology adoption for such models, such as industry shakeouts where only one firm can

survive in a neighborhood and firms wait in the hope that neighbors exit first. Such war

of attrition games have been extensively studied, but the neighborhood structure has to

this point been ignored. We show that it leads to two new sources of inefficiencies in

addition to the usual timing inefficiency arising in classical war of attrition games. The

first, linked to the order of stopping of players and the second to the final distribution

of nodes.

To highlight these new sources of inefficiencies, we use the simplest neighborhood

structure which is the line, where each player has either one or two neighbors. We

discuss larger networks in the conclusion. Specifically, players are organized on line

segments of random length and play an infinite horizon timing game. Each player has to

decide when to take an action, we call “stop”. The benefit of the action for an individual

at date t depends on the neighbors’ past actions. Whenever a player stops, she increases

the payoff of stopping of all her neighbors. This creates incentives for all players to wait

in the hope that their neighbor(s) stop before them, i.e gives rise to the structure of a

waiting game.

Each link between two consecutive players is i.i.d drawn at date 0. The probability

distribution of the network structure is common knowledge, but players do not observe

the realization of the network structure but only their direct neighbors (as in Jackson

and Yariv 2005, 2007 or Galeotti et. al. 2010).1 This implies that a player does not know

which of two possible types a given neighbor is: either the neighbor has one neighbor (i.e.

she is at the end of the line), or two neighbors (i.e. she is inside the line). We restrict

ourselves to symmetric strategies and show that at any point in the game, players share

the same belief about the type of an arbitrary neighbor. The endogenous evolution of

these beliefs is the key aspect of our analysis as we explain below.

Generically, in a symmetric equilibrium of our game, at any given date, only one

type of player mixes between stopping and waiting, while players of the other type

strictly prefer to wait. Two very different dynamic evolutions of the network can emerge

based on parameters of the model, and in particular on the payoffs of the different

types. First, what we call shrinking networks, where players of type 1 (extremities of

the line) initially have more incentives to stop and hence the network shrinks over time.

Second, fragmenting networks where players of type 2 (inside the line) initially have more

incentives to stop, which leads to a fragmentation of the network in smaller networks

over time.

1For our applications this assumption captures the idea that players are not aware of the full structure
of the network.
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Consider first shrinking networks. Initially, players of type 1 are mixing. As time

passes and the unique neighbor of a player has not stopped, the belief about the type

of the neighbor evolves. Two countervailing forces affect this belief. First, there is the

classic updating of beliefs: since players of type 1 are more likely to stop, as time passes,

the player becomes more confident that the neighbor is of type 2. However, there is

a second countervailing effect, purely linked to the dynamic evolution of the network

structure. Even if the neighbor started off as a type 2, her other neighbor might have

stopped in the meantime, making it possible that she has turned into a type 1. We show

that these two effects perfectly balance each other in the line network, so that the beliefs

that the player is of type 1 stays constant throughout the game and only players at the

extremity of the line mix and do so at a constant rate, as if they were playing a classic

war of attrition with a single player of a given type.

When players of type 2 initially have more incentives to stop, we have the case of

fragmenting networks, and both effects affecting beliefs mentioned above go in the same

direction. As time passes and a neighbor has not stopped, players become more confident

that she is of type 1. In addition, even if she started as a type 2, her own neighbor might

have stopped, changing her into a type 1. Thus, as time passes, the belief that the

neighbor is of type 2 decreases. Over time the network fragments into smaller networks.

At some date, all players of type 2 will have stopped and only isolated pairs will remain.

These pairs will then play a classical war of attrition.

Waiting games give rise to a timing inefficiency: players inefficiently delay stopping to

potentially benefit from the action of others. A key message of the paper is to show that

the network structure gives rise to additional sources of inefficiency, that we call order

inefficiency and spatial inefficiency. The first is linked to the order in which players

stop. Players, when they decide whether to stop, do not take into account the positive

externality they provide to their neighbors. This implies that, in equilibrium, players

inside the line, i.e with more neighbors, have insufficient incentives to stop. There is thus

a region of parameters where the equilibrium results in a shrinking network whereas the

first best would be a fragmenting network. We also show that even in the case of the

fragmenting network, the order of exit of players inside the line is important for total

welfare. We distinguish regular fragmenting (where every other player inside the line

exits) from random fragmenting where any player inside the line is equally likely to

stop.

Random fragmenting, which is the stopping process in equilibrium for fragmenting

networks, leads to the second additional inefficiency compared to waiting games without

networks, a spatial inefficiency linked to the distribution of nodes at the end of the

3



game. When we compute the total fraction of nodes that remain at the end of the game

we find that it is strictly less that 1/2 (that would occur under regular fragmenting)

and that the probability of having a gap of size 2 between nodes is relatively large. We

argue that this final distribution of nodes can be socially costly. For instance, in the

case of industry shakeouts it can be socially optimal to have equally spaced firms with

minimum gaps between them if for instance customers are uniformly distributed and

pay transport costs.

In the final part of the paper, we consider in more detail the application to adoption of

technologies by firms organized in a network and consider subsidies for adoption, common

in practice, that can mitigate the timing inefficiency inherent in any war of attrition. The

network structure adds to the effectiveness of such policies. Since every adoption decision

entails a positive externality on all subsequent adopters, the positive welfare effect of

the subsidy propagates through the network. We compare different types of subsidy

programs financed by distortionnary taxes. A permanent subsidy program targeted

uniformly to all adopters can, if the social cost of taxes is not too high, increase welfare

by accelerating adoption and thus partially solves the coordination problem. However,

we show that there are more efficient ways to accelerate adoption, by using time varying

policies. We examine two such policies: a randomly expiring subsidy that captures the

fact that any subsidy program is subject to reform (either because of political turnover or

economic shock) and a smoothly declining subsidy. Both dominate permanent subsidy

as they harness the idea that if the subsidy payment is lower tomorrow than it is today,

it provides incentives to immediately adopt. Finally, we consider a “neighbor reward

policy”, where a subsidy is paid to a player at the moment when one of her neighbors

adopts after she has adopted herself. We show that such a policy, if feasible, can target

the subsidies more efficiently and hence increase adoption incentives at a lower social

cost than the uniform subsidy programs.

As Jackson and Zenou (2014) point out, the literature on strategic dynamic games

on networks is still limited, and in particular there are no infinite horizon strategic

timing games on networks. Most interest has in fact focused on repeated games (Raub

and Weesie 1990, Ali and Miller 2013 among others). The core of the mechanism is

that punishment of deviations by one neighbor will also impact the payoff of the other

neighbors and contagion of bad behavior can thus occur.

Leduc et. al. (2017) consider a related problem, but focus on information diffusion

in a two period model. Players need to take an action whose payoff depends on a binary

state. If a player takes the action in period 1, all her neighbors learn the state, and

the player obtains a referral payoff. The authors solve for the mean-field approximation
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of the game, as in much of the literature on network diffusion (such as in Jackson and

Yariv 2007), and show that agents with low degree have incentives to take the action

early while those with higher degrees free ride. We are interested in the fully dynamic

game where payoffs depend on the number of neighbors and we solve directly for the

perfect Bayesian equilibrium. This allows us to introduce learning about the network

structure as the game evolves. We explicitly uncover two new sources of inefficiencies,

due to the final distribution of nodes and to the order of exit.

The literature on war of attrition games has been applied to many cases, including the

original work on biological competition (Maynard Smith 1974), labor strikes (Kennan

and Wilson 1989), industrial organization (Fudenberg and Tirole 1986). Bulow and

Klemperer (1999) consider a generalization of the classic model to the case of n+k players

competing for n prizes. None of the papers consider the influence of the neighborhood

structure, which is the focus of the current study.

2 Model

There is a countable set of players labeled by i ∈ Z = {...,−1, 0, 1, ...}. Each pair of

consecutive players i and i + 1 are initially connected to each other with probability

χ ∈ (0, 1), independently of all other consecutive pairs. Hence, the players are organized

in a countable set of finite segments, where the length of each segment follows a geometric

distribution. We say that two players are neighbors if they are linked to each other. Each

player can be of type k ∈ {0, 1, 2}, where k denotes the number of her neighbors. We

can express the fraction of the players that are initially of type k in terms of χ as:

q0 = (1− χ)2 ,

q1 = 2χ (1− χ) ,

q2 = χ2. (1)

Players only have to decide when to take an action that we call “stop”. Time is

continuous and the benefit for an individual stopping at date t depends on how many

neighbors she has at that date. If a player stops at time t, and has k neighbors at that

date, her realized payoff is

Π (k, t) = e−rtBk,

where r is the rate of discounting and Bk is the time invariant benefit of stopping for a

player with k neighbors. We are interested in a class of games where Bk is a decreasing
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sequence (B2 < B1 < B0). We present foundations for this payoff structure in Section

5.

The structure of the neighborhood evolves dynamically. As soon as a player stops,

she exits the game. We represent this as a deletion of all her links. Consider a player

with initially k neighbors, so that initially her payoff if she decided to stop would be Bk.

If one of her neighbor stops, she is left with k − 1 neighbors, and her payoff of stopping

increases to Bk−1. This creates incentives for all players to wait for others to stop.

2.1 Strategies and information

Each player observes her own neighbors, shares a common prior on the network structure

but has incomplete information about the realized structure (as in Galeotti et. al. 2010).

Since the players only observe the behavior of their neighbors, a private history at t for

a player consists of stopping dates of her neighbors up to time t.

It is immediately clear that for a player of type k = 0 who has no neighbors, it is

strictly dominant to stop immediately. For notational simplicity we ignore type k = 0

in the definition of strategies.

Consider the strategy for player i of type k = 1 who initially has one neighbor. A

pure strategy for such a player is simply a stopping time i.e. T i1 ∈ [0,∞). This stopping

time is conditional on her neighbor still remaining in the game: if the only neighbor stops

at time t < T i1, i becomes type k = 0 and stops also at time t.

A player of type k = 2 who initially has two neighbors has two components in her

strategy. First, she must choose when to stop conditional on none of her two neighbors

having stopped, i.e. choose T i2 ∈ [0,∞). If one of the two neighbors stops before T i2, she

becomes type k = 1 and must choose when to stop conditioning on the time at which

she became type k = 1. Therefore, the other component of a pure strategy is a mapping

T i21 (τ) : [0,∞) → [0,∞) that defines the time to stop when one of the two neighbors

stops at time τ . This mapping must satisfy T i21 (τ) ≥ τ for all τ ≥ 0. The entire pure

strategy for player i can hence be written as

T i =
(
T i1,
(
T i2, T

ii

21 (·)
))

,

and a corresponding behavioral strategy is

σi =
(
σi1,
(
σi2,
{
σi21 (τ)

}
τ≥0

))
,

where σi1 and σi2 are probability distributions over [0,∞) and σi21 (τ) is a probability
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distribution over [τ,∞).

Given a profile σ of behavioral strategies, the outcome of the game consists of realized

payoffs and stopping dates and is defined by the following algorithm. Take any finite

segment of players, and proceed through the following steps:

Step 1: For each player i in the line segment, draw the planned stopping date ti from

the appropriate component of the behavioral strategy (from component σi1 if i has one

neighbor, or from component σi2 if i has two neighbors). Denote the minimum of these

stopping times across the players by t, and let each player who chose that time stop at t

and get payoff e−rtBk. If, as a result, some of the remaining players becomes type k = 0,

let those players also stop at t and get payoff e−rtB0. Proceed to step 2.

Step n ≥ 2: Amongst those players that remain after step n−1, take all such players

i that were originally type k = 2 but became type k = 1 and draw for them a new

planned stopping time ti from σi21 (t). For all the other remaining players keep their

planned stopping time unchanged. Then, repeat the same procedure as in step 1, i.e.

take again the minimum of the planned stopping times amongst the remaining players,

remove those players who chose that stopping time and give them appropriate payoffs,

remove all players that became type k = 0. If there are players left, go to step n+ 1.

Since the number of players is finite, all the players will have stopped after a finite

number of steps at well defined dates and obtained their payoffs.

2.2 Beliefs

The probability distribution of the network structure is common knowledge to the play-

ers, but each player only observes her own neighbors. Each player therefore forms an

initial belief on the type of her neighbor(s), either k = 1 or k = 2. Since a link exists

between any two consecutive players independently with probability χ, the initial belief

of an arbitrary player about the type of an arbitrary neighbor is:

p1 = 1− χ,

p2 = 1− p1 = χ.

Since there is one-to-one correspondence between parameter χ and initial beliefs p1

and p2, we eliminate χ from the rest of the analysis and track only the players’ beliefs

about their neighbors’ types. Using (1), we can also express the initial beliefs as functions
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of the initial fraction of different types of players as:

p1 =
q1

q1 + 2q2
,

p2 =
2q2

q1 + 2q2
.

There are two key properties of this initial belief structure, P1 and P2, that are

important for our analysis.

Property P1 (Anonymity): A player i ∈ Z has the same belief on the type of each

of her neighbors (if she has any), and this belief is the same for all i, regardless of her

own type.

Property P2 (Independence): If a player has two neighbors, she believes that

their types are independently distributed.

As time passes, the players update their beliefs on their neighbors’ types based on the

equilibrium strategies. We establish in the following Lemma that the two properties P1

and P2 continue to hold for any date t > 0 as long as players use symmetric strategies.

Lemma 1 With symmetric strategy profiles, P1 and P2 remain satisfied at all dates

t ≥ 0.

This result allows us to summarize the belief structure at time t by a vector p (t) =

(p1 (t) , p2 (t)), where p2 (t) = 1− p1 (t).2

2.3 Equilibrium

Our solution concept is perfect Bayesian equilibrium. Throughout the paper we treat

the players anonymously, and therefore concentrate on symmetric strategy profiles. A

strategy profile σ is a symmetric perfect Bayesian equilibrium if it is symmetric and (i)

the belief p (t) about a neighbor’s type is derived from σ via Bayes’ rule for all private

histories and (ii) the strategy σ is optimal for any private history given the belief p (t)

and given that all the other players use the strategy σ.

Although an arbitrary strategy profile is a complex object, a symmetric equilibrium

profile can be summarized by the distribution of stopping dates that it induces for any

given neighbor of i conditional on i never stopping. By symmetry and Lemma 1, this

2Note that even if the belief structure can be expressed as this simple object, it implies a belief on the
shape of the entire network. In particular, each player believes that the length of the half-line starting
from a neighbor is geometrically distributed with parameter p2 (t).
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distribution is the same for all neighbors of i and for all i. Let this distribution be

denoted by F . In the following Lemma we summarize a key property of F that holds in

any symmetric equilibrium:

Lemma 2 In a symmetric equilibrium, the stopping date of an arbitrary neighbor has

an atomless probability distribution F with full support on [0,∞).

Lemma 2 allows us to define for all t ≥ 0 the hazard rate of stopping of an arbitrary

neighbor as

γ (t) =
F ′ (t)

1− F (t)
.

In general, the same hazard rate γ can sometimes admit multiple type breakdowns. In

order to reduce this multiplicity, we restrict attention to Markovian equilibria such that

players who are type 1 at date t and who started off as types 2 play the same continuation

strategy from date t regardless of the date at which their neighbor stopped, and also the

same continuation strategy from date t as a player who started off as a type 1 from date

0.

In a Markovian equilibrium, the hazard rate γ can be uniquely broken down by type.

For each k ∈ {1, 2} such that pk (t) > 0, there exists a function λk (t) that gives the

hazard rate of stopping of a player of type k at date t.3 Moreover,

γ (t) = p1 (t)λ1 (t) + p2 (t)λ2 (t) .

In what follows, we will characterize Markovian symmetric equilibria of the model by

directly analyzing the properties of the stopping hazard rates λk for each type k = 1, 2.

We show in Appendix C that our main results extend to non Markovian strategies.

3 Waiting for my neighbors: equilibrium characterization

In our model, the heterogeneity between players is due to their position in the line,

specifically the number of neighbors that they have. To understand the specific role

of the neighborhood structure, we first study a waiting game with heterogenous types,

where the source of heterogeneity is not linked to a particular neighborhood structure.

3For types k such that pk (t) = 0, the function λk (t) is indeterminate.
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3.1 Benchmark with no neighborhood structure

We consider a game between two players who can have one of two possible types: type

1 gets benefit B1 if she stops first and B0 if she stops after the other player and type 2

gets benefit B2 if first and B1 if second (B0 > B1 > B2). Both players know their type

and share a common prior that the other player is of type j ∈ {1, 2} with probability

pj . Consistent with our model with neighbors, the belief about the other player’s type

is independent of one’s own type. We derive the symmetric equilibrium of this game.

The shape of the equilibrium depends on the comparison between µ1 and µ2 where

µj =
rBj

Bj−1−Bj .

Proposition 1 If µj > µk (either j = 1 and k = 2 or the reverse), there exits a date tbj
such that in all symmetric equilibria:

• For t < tbj only players of type j mix between the actions stop and wait. Both

players expect the other to stop at a rate µj.

• The posterior belief that the other player is of type j, pj(t), is decreasing and such

that pj(t
b
j) = 0.

• For t ≥ tbj players of type k mix at constant rate µk.

As shown in Proposition 1, in a symmetric equilibrium, only one single type mixes at

any point in time. Indeed, when a player of a given type l ∈ {1, 2} is mixing, she needs

to be indifferent between the cost of waiting, equal to rBl and the expected gain if the

other player stops, equal to (Bl−1 −Bl) that accrues with probability µ, where µ is the

rate of stopping of the other player. Since types are not correlated, µ is independent of

the own type and generically only one type can satisfy the indifference condition

µ (Bl −Bl−1) = rBl. (2)

Proposition 1 then characterizes the timing of actions. Consider the case where

µ1 ≡ rB1
B0−B1

> µ2 ≡ rB2
B1−B2

. Players of type 1 have more incentives to stop and initially

are the only types to mix. The equilibrium mixing rate, as can be seen in equation (2),

has to be such that all players share the belief that the other player will stop at rate

µ = µ1. Note that µ1 is both a function of the belief that the other player is of type 1

and of the mixing rate λ1 of players of type 1. We have specifically µ1 = p1(t)λ1(t). As

time passes and the other player has not stopped, the posterior p1(t) that she is of type

1 decreases. At some date tb1 all types 1 will have stopped. If the two players are still
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active, they are then certain that the other is of type 2. Players of type 2 then start

mixing at a constant rate µ2 as in a classical war of attrition.

3.2 Waiting for my neighbors

We now explicitly introduce the neighborhood structure and the heterogeneity between

players is then due to the position in the line. Types differ in the number of neighbors

they have and thus in terms of payoffs when stopping. The payoffs when stopping are

the same as for the benchmark studied above: type 1 who makes benefit B1 if she stops

first and B0 if she stops after the other player and type 2 who gets benefit B2 if first

and B1 if second.

There are two key differences with the benchmark model. First, for types 2, the fact

of having two neighbors doubles the chances of at least one of them stopping and thus

affects the strategic choices. Second, and more important, the types evolve dynamically:

if the neighbor of a given player is initially a type 2 but her other neighbor stops, she

becomes a type 1. This change in the type of the neighbor is not observed by the player,

but the possibility of such a dynamic evolution affects the beliefs about the neighbor’s

type.

It is important to distinguish two cases depending on the respective values of

γ1 :=
rB1

B0 −B1
and γ2 :=

rB2

2 (B1 −B2)
.

We show that the case γ1 > γ2 is one where the players of type 1 mix first. This gives

rise to what we call “shrinking networks” since only the players at the extremities of

a line mix and over time the line gets shorter. On the contrary, in the case γ2 > γ1,

players of type 2 have initially more incentives to mix. This gives rise to what we call

“fragmenting networks”. The initial line is cut at some date into two smaller segments

and this process repeats itself over time.

Recall that in the benchmark model of section 3.1, two cases were distinguished

based on the respective value of µ1 and µ2, which determined which type was mixing

first (here we have γ1 = µ1 but γ2 is different from µ2 since it integrates the fact that

a type 2 has two neighbors in our current setup). However, both cases are qualitatively

equivalent in the benchmark while in the case with a network structure, the two cases

are radically different, due to the dynamic evolution of the network structure.
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3.3 Shrinking networks

We start by considering the case γ1 > γ2. As in the benchmark model, only one type

of player can be mixing at any point in time. In this case, players of type 1 have more

incentives to mix and hence stop first.

However, the key difference with the benchmark case is that, as players of type 1 are

mixing, two forces affect beliefs, as reflected in the following dynamic equation:

·
p1 (t) = −λ1 (t) p1 (t) (1− p1 (t))︸ ︷︷ ︸

updating beliefs about initial type

+ γ (t) p2 (t)︸ ︷︷ ︸
probability that type 2 becomes 1

(3)

where, as defined in Section 2, λ1 (t) is the hazard rate of stopping of a neighbor of type

1 and γ (t) is the expected hazard rate of stopping of an arbitrary neighbor (so that

γ (t) = p1 (t)λ1 (t)).

The evolution of beliefs described in (3) reflects the balance between two effects.

First, players update their beliefs about their neighbor’s types based on the fact they

do not see her stopping. Second, the types of neighbors may evolve dynamically since

even if the neighbor initially had two neighbors (probability p2 (t)), her other neighbor

might have stopped in the time interval (probability γ(t)), thus changing her type into

a type 1. The two effects on beliefs go in opposite direction. The first effect makes the

player less confident that the neighbor started off as a type 1 but the second makes it

more likely that she became one over time. The following result examines the balance

between these effects in equilibrium:

Proposition 2 If γ1 > γ2, a Markovian symmetric equilibrium has the following prop-

erties:

1. The belief that a random neighbor is of type 1 remains constant, equal to p1(0)

throughout the game and type 1 players mix at constant rate λ1 = γ1
p1(0)

.

2. The expected time before an average member of the network stops is given by

E [T ] = (q1 + q2)
1

2γ1
and is increasing in B0, decreasing in B1 and independent of

B2.

Proposition 2 shows that in the Markovian symmetric equilibrium4 the two effects

on beliefs perfectly balance each other in the case of the line.5 As a consequence, the

4These properties are also satisfied in non Markovian symmetric equilibria, one example of which we
provide in the Appendix.

5The fact that the two effects perfectly balance each other is specific to the line and is no longer true
for networks where agents may have more than two neighbors.
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belief that the neighbor is a type 1 stays constant throughout the game and players play

an infinite war of attrition as if they were facing a single player mixing at rate γ1. Only

the players of type 1, by definition positioned at the extremities of the line, mix at any

point in time. Overall, the line shrinks in size over time, hence the terminology. Fur-

thermore, as reflected in result 2, since only type 1 players stop during the entire game,

decreasing their incentives to stop by increasing B0 or decreasing B1 delays stopping.

Similarly, since type 1 incentives are independent of B2, the equilibrium stopping rate

is independent of B2.
6

3.4 Fragmenting networks

We now consider the case γ2 > γ1. We show that in this case, types 2 initially have

the highest incentives to stop. As in the previous case the evolution of beliefs about the

neighbor’s type is the result of two effects: updating based on the fact that the neighbor

did not stop and dynamic evolution of beliefs. However in this case both effects go in

the same direction and as time passes it becomes increasingly likely that the neighbor is

of type 1. Formally, the evolution of the beliefs is given by:

·
p2 (t) = −λ2 (t) p2 (t) (1− p2 (t))︸ ︷︷ ︸

updating beliefs about initial type

− γ (t) p2 (t)︸ ︷︷ ︸
probability that type 2 becomes 1

(4)

where λ2 (t) is the hazard rate of stopping of a neighbor of type 2 and γ (t) is the expected

hazard rate of stopping of an arbitrary neighbor (so that γ (t) = p2 (t)λ2 (t)).

As in the benchmark case of section 3.1, p2 (t) is decreasing and at some date t2

players are sure that their neighbor is not of type 2, i.e p2 (t2) = 0. At that date, types

1 mix exactly as in the benchmark case.

The rate of stopping by types 2 does not however follow the same dynamics as in the

benchmark case. If a type 2 player decides to stop, she gets B2 as in the benchmark case.

When she waits, it is in the hope that one of her two neighbors stops in the meantime,

at which point she will become a type 1 with value V1(t) that varies over time (while it

was constant in the benchmark). Thus the stopping rate of a random neighbor is given

by:

γ (t) =
rB2

2 (V1 (t)−B2)
,

6In the extreme case where B0 = B1 > B2, players stop one by one at date 0, and there is no delay.
Indeed, a type 1 player has nothing to wait for in that case, and it is a dominant strategy for her to stop
at date 0, as soon as she turns into a type 1.
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where the value V1 (t) is defined by the following Bellman equation:

V1 (t) = γ (t)B0dt+ (1− γ (t) dt) (1− rdt)
(
V1 (t) +

·
V 1 (t) dt

)
Indeed, the payoff of a player of type k = 1 at a date t where only types k = 2 are mixing

is composed of the expected payoff in the period dt, which is B0 if the neighbor stops

(probability γ(t)), plus the continuation value. As long as players types k = 1 strictly

prefer to wait, we have V1 (t) > B1, but V1 (t) is strictly decreasing in time.

Proposition 3 If γ2 > γ1, there exits a date t2 such that a (Markovian) symmetric

equilibrium satisfies:

• For t < t2 only types 2 are mixing and the expected rate of stopping of a random

neighbor is γ (t) = rB2
2(V1(t)−B2)

, where V1 (t) is the value function of type 1. We

have B0 > V1 (t) > B1 and
·
V 1 (t) = − rB2(B0−V1(t))

2(V1(t)−B2)
+ rV1 (t) < 0.

• At time t = t2, V1 (t2) = B1 and p2(t2) = 0.

• For t > t2 players of type k = 1 mix at a constant hazard rate γ1.

Furthermore, if p2(0) < 1
2 , types 2 are active for a longer period of time than in the

benchmark case (t2 > tb2).

Compared to the benchmark model, there are two main forces that affect the time

t where the players are sure the other player is not of type 2 (i.e t2 in the case under

consideration and tb2 in the benchmark model). First, types 2 mix at a lower rate for

two reasons: they have two neighbors, so the chance of at least one stopping is higher

than in the benchmark model. Furthermore, the value obtained if one neighbor stops,

V1, is higher than in the benchmark, B1. Both these effects imply that there are more

incentives to wait and the stopping rate will be lower. At the same time, as time passes,

some neighbors of type 2 become type 1 thus decreasing the incentives to wait. If the

proportion of types 2 is initially small as indicated in the last result of Proposition 3,

the first effect dominates.

The dynamic evolution is very different than in the case of the shrinking network.

Only types 2, situated at the heart of the network as opposed to its extremities, initially

mix. At some point one of them randomly stops. The initial network is then fragmented

in two smaller networks and the same process repeats itself. We explore in section 4.2
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the consequences of this fragmentation process in terms of spatial distribution of players

at the end of the game.7

4 Inefficiencies in waiting games on networks

Standard waiting games lead to inefficient delays due to coordination failures. We ex-

plore this inefficiency in the case of technology adoption among neighbors and possible

solutions using subsidies in section 5. However, the network structure gives rise to two

additional inefficiencies. An order inefficiency, studied in section 4.1, that relates to the

order in which players stop and a spatial inefficiency, studied in section 4.2, linked to

the final spatial distribution of nodes.

4.1 Order inefficiency

The previous sections established that, in equilibrium, the network behaves as a shrinking

network rather than a fragmenting network if and only if

γ1 ≥ γ2 ⇔ B1

B0 −B1
≥ B2

2 (B1 −B2)

⇔ 2B1 ≥ B2 +
B2

B1
B0 . (5)

We show in this section that this order of stopping can be socially inefficient. When

a player decides to stop, she provides a positive externality to her neighbors as their

own payoffs from stopping increase. Because players do not internalize this externality,

players with more neighbors might have insufficient incentives to stop. This implies that

the players might in equilibrium behave as in a shrinking network while the first best

would be a fragmenting network, where the players with more neighbors stop first.8

Moreover, the order of exit in the fragmenting case also has an impact on welfare.

There are different possible stopping orders that would result in different degrees of

fragmentation of the network. Consider two different modes of stopping, which we call

regular fragmenting where exactly every second player exits before their neighbors (for

instance even numbered players stop first) and random fragmenting, where any interior

player of type 2 can be the first to stop. Regular fragmenting is the stopping order that

7It is worth noting also that unlike the extreme case we considered for shrinking networks, in the
extreme case B2 = B1 < B0, type 2 players do not exit at date 0 in equilibrium. The equilibrium remains
qualitatively similar to the generic case studied in Proposition 3. Players 2 remain active until a date
t2 > 0. They wait for both of their neighbors to exit.

8Note that the timing inefficiency is also the result of ignored externalities.
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maximizes the number of players that get payoff B2 and minimizes the average distance

between players. Obtaining regular fragmenting requires information on the exact net-

work details available to the planner but not to the players. Random fragmenting is the

equilibrium stopping order in the case of fragmenting networks. We will analyze in more

detail the statistical properties of the final distribution of nodes in the case of random

fragmenting in Section 4.2.

We contrast in Proposition 4 the socially optimal stopping order to the equilibrium

order, where by socially optimal we mean the order that maximizes the sum of the

players’ payoffs ignoring any costs of delay. We show that whenever 2B1 ≥ B2 + B0,

the social planner wants to minimize the degree of fragmentation, i.e. minimize the

number of players that get payoff B2. Then the shrinking network is the best while a

regular fragmenting network is the worst. Conversely, when the condition is violated, the

planner wants to maximize the degree of fragmentation. Then the regular fragmenting

network gives the highest welfare while the shrinking network is the worst. In both

cases the random fragmenting network gives an intermediate level of total welfare. We

summarize this discussion in the proposition below.

Proposition 4 Depending on the payoff parameters B0, B1, B2:

• If 2B1 ≥ B2 + B0, in equilibrium, the network behaves as a shrinking network,

which generates the socially optimal order of stopping.

• If 2B1 ∈ (B2 + B2
B1
B0, B2 +B0), in equilibrium, the network behaves as a shrinking

network while the socially optimal order of stopping is regular fragmenting.

• If 2B1 < B2 + B2
B1
B0, in equilibrium the network is characterized by random frag-

menting while the socially optimal order of stopping is regular fragmenting.

To illustrate the results, consider the case where the initial network is randomly

drawn to be a line of size 5. If players behave as in the shrinking network case, the

resulting aggregate payoff is 4B1 + B0. If players behave as in the regular fragmenting

networks, where the initial player to stop is constrained to be either player 2 or player

4, the resulting aggregate payoff is 2B2 + 3B0. Player 2 by stopping first, increases the

payoff of player 1 from B1 to B0, at a cost of B2−B1. Under the condition 2B1 < B2+B0,

this increases welfare but requires player 2 to internalize this externality. In the case

of the random fragmenting network, with 1 chance out of 3, player 3 exits first, leaving

players 1 and 2 and players 4 and 5 in a shrinking network. In that sense, the random
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fragmenting network decreases the degree of fragmentation. If 2B1 < B2 + B0, this

decreases welfare as shown in Proposition 4.9

4.2 Spatial inefficiency and market shakeout

We consider in this section the second new source of inefficiency in waiting games due

to the neighborhood structure. We describe it for the application to the exit decision

by firms, or industry shakeouts, one of the standard examples of war of attrition games,

and derive further implications of our model. The network can be seen in this case as

representing a particular spatial distribution of firms. In this application, the assumption

that players do not observe the number of neighbors of their own neighbor could appear

extreme. However, it is only meant to capture the idea that players are not aware of the

full structure of the network.

Assume firms are currently making zero profits. If they exit the market while they

still have a neighbor, they get a payoff Bi (they can sell the machinery for instance) and

if they are the last firm standing amongst the set of initial neighbors, they make a benefit

B0 > Bi ∀i > 0, corresponding to the discounted flow of local monopoly profits. This

fits exactly the framework considered in the previous sections. Furthermore, according

to the results of section 3 since γ2 > γ1 = 0, in equilibrium, the network should behave

as a fragmenting network.10

In this application, it is natural to think that the shape of the final distribution of

firms can be of great significance. For instance, suppose that customers at a distance

of more than one link from a firm cannot be profitably served by that firm given their

transport cost. In that case, the socially optimal distribution of firms would be equally

spaced firms separated by a gap of size 1, what is achieved by regular fragmenting. How-

ever, as described in Section 4.1, the equilibrium is characterized by random fragmenting

and there is thus no reason for the final spatial distribution to be equally spaced. In this

section we characterize how far the equilibrium is from the equally spaced distribution.

We start with the limit case such that initially the line is fully connected so that

p2 (0) = 1.11 As described in Proposition 3, the equilibrium is such that initially only

9Two extreme cases are of interest. In the case where B0 = B1 > B2, the first case of Proposition 4
holds. In the case where B2 = B1 < B0, the third case of Proposition 4 holds.

10In Appendix B2, we consider an alternative model, closer to the classic war of attrition, where only
the last firm gets benefit B0 and all firms have to pay a flow cost c while staying in. We show that this
gives qualitatively equivalent results: initially types 2 mix, until a date where all of them have entered.
The only difference is that the Bellman equation includes the cost of staying in and the date where types
1 start mixing is thus affected.

11We defined the model originally so that p2 (0) < 1, or equivalently p1 (0) > 0. This is relevant for
the case of shrinking networks, because there a positive initial fraction of types k = 1 is needed for the
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types 2 mix until a date t2 is reached where only isolated pairs of firms are left. After

t2, the firms in each such pair play a classical war of attrition until one firm from each

such pair exits. The last surviving firm from each pair gets payoff B0.

To characterize the spatial inefficiency, we are interested in two elements. First, we

determine the proportion of firms getting payoff B0, fraction we denote by pe. It is

easy to find natural upper and lower bounds for pe by considering two unlikely extreme

outcomes of the game. Suppose that in the first phase of the game every second firm

exits, i.e the order of exits is regular fragmenting. In this case no firm exits in the second

phase (there are no pairs of firms left) and hence we get pe = 1/2. Consider the other

extreme where in the first phase only every third firm exits. In this case there are only

pairs of players left in the second phase and of those every second firm is yet to exit. In

the end, the overall fraction of firms that survive is pe = 1/3 in such a case. Naturally,

the true value of pe lies somewhere between these cases.

Second, we characterize the random variable measuring the gap between two con-

secutive firms at the end of the game, a random variable that we denote lg that takes

values in {1, 2, 3}.12 If firms were equally spaced, lg would be degenerate at value 1 in

the case where pe = 1/2. We describe in the following result the actual distribution of

lg:

Proposition 5 At the end of the game, the spatial distribution of firms is such that:

1. The proportion of remaining firms is pe = 1
2

(
1− e−2

)
w 0.43.

2. The probability distribution13 of lg, the gap between two consecutive firms, is:

P [lg = 3] = p2
1

4
w 0.01

P [lg = 2] = p2
1

2
+ 2p(1− p)1

2
w 0.21

P [lg = 1] = p2
1

4
+ 2p(1− p)1

2
+ (1− p)2 w 0.78,

where p = 2 1
1+e2

.

equilibrium to exist. For the case of fragmenting networks, there is no problem in having p2 (0) = 1.
Alternatively, one can view this as characterizing the limit of the equilibrium as p2 is arbitrarily close to
one.

12To see that maximum gap size is 3, note that after the first phase of the game there are only gaps
of size 1. The maximal growth of an individual gap during the second phase occurs if there is a pair of
players on both sides of the gap, and the player closer to the gap in each such pair exits in the second
phase, resulting in a gap of size 3.

13This result relies on the Markovian assumption.
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To get an intuition of what drives the spatial inefficiency, it is helpful to think about

the problem of deriving pe recursively.14 Suppose that at some date t during the first

phase of the game, there is some line segment of n consecutive firms that have not exited

yet (i.e. the left-hand side neighbor of the 1st firm and the right-hand side neighbor of

the nth firm in this segment have exited, but none of those n firms have). Let us denote

by ξ (n) the expected number of firms within this segment that will survive until the

end of the game. We can derive a recursive formula for ξ (n) by noting that the interior

players 2, ..., n−1 of this segment all exit with the same hazard rate, while the boundary

firms 1 and n do not randomize. It follows that the identity of the next firm to exit,

denote this firm k, is uniformly distributed across the interior firms. Once the next exit

takes place, the segment splits into two shorter segments of lengths k− 1 and n−k, and

the expected number of surviving firms within those shorter segments are ξ (k − 1) and

ξ (n− k), respectively. Hence, we can write ξ (n) recursively as

ξ (n) =

n−1∑
k=2

Pr (firm k is the next to exit) · [ξ (k − 1) + ξ (n− k)]

=
1

n− 2

n−1∑
k=2

[ξ (k − 1) + ξ (n− k)] .

This recursive relationship can be expressed as a difference equation for ξ (n) by com-

puting

(n− 2) ξ (n)− (n− 3) ξ (n− 1)

=
n− 2

n− 2

n−1∑
k=2

[ξ (k − 1) + ξ (n− k)]− n− 3

n− 3

n−2∑
k=2

[ξ (k − 1) + ξ (n− k − 1)]

= 2ξ (n− 2) ,

which gives

ξ (n) =
n− 3

n− 2
ξ (n− 1) +

2

n− 2
ξ (n− 2) . (6)

Noting that in line segments of length 1 and 2, exactly one player will stay forever, we

get the initial condition ξ (1) = ξ (2) = 1.

With this initial condition the difference equation (6) pins down a unique sequence,

14We thank Juuso Välimäki for suggesting this line of thinking. We give an alternative method of
proof in the appendix.
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where an arbitrary element can be expressed in closed form as:

ξ (n) =
1

2

1 + n−
(−2)n + (n+ 1)!

n+1∑
k=0

(−2)k
k!

n!

 .

Taking the limit, we obtain the expression:

pe = lim
n→∞

ξ (n)

n
=

1

2

(
1− e−2

)
w 0.43.

Proposition 5 describes precisely how the final distribution of firms differs from an

equally spaced distribution. Overall, approximatively 43 percent of firms remain at the

end of the game. This implies that at least some firms are separated by a gap of more

than 2. In fact we find that 28 percent of firms are in this situation, while gaps of 3 are

rather rare.

5 Timing inefficiency and technology adoption in net-

works

The timing inefficiency, standard in waiting games, is also present when we introduce

the neighborhood structure. We describe it here in the context of the adoption of new

technologies by firms organized in a line. The action “stop” represents here adopt the

technology. When a firm adopts, it decreases its neighbors’ cost of adoption through

either technological spillovers or informational spillovers. In this context, we study the

effect of subsidy programs aimed at speeding up adoption. Many countries have in place

large scale subsidy programs to support adoption of technologies. This includes subsidies

for agricultural techniques (such as fertilizers) in developing countries, health saving

technologies, or environmentally friendly technologies in developed countries. While a

variety of reasons can justify such subsidy programs, we highlight in this paper the role

of subsidies to correct the inefficiencies linked to coordination failures.15

15Of course, different motivations drive public intervention in these different areas. The main justifica-
tion for subsidies in the case of environmentally friendly technologies, and to some extent health related
products, is the internalization of an externality. For agricultural techniques, as reported in Dufflo et al.
(2011), there is much less consensus on the source of market failure justifying state intervention. Some
cite informational problems while others invoke behavioral biases.
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5.1 Application of the model to adoption of technologies

We first examine how our model applies to adoption of technologies and argue that

shrinking networks are more relevant in this case.

Consider a situation where spillovers between neighbors are technological, so that a

link represents technological proximity between two members of the network.16 Upon

adoption, the adopting firm trains employees and potentially trains suppliers if the new

technology affects the interactions with suppliers. We know that there is large mobility

of skilled labor across firms in the same technological areas and that firms situated close

to each other often share suppliers. Both effects imply that adoption by one firm may

reduce the adoption costs of its neighbors (Jaffe et. al. 1993, Almeida and Kogut 1999).

In this application, a player is characterized by two state variables: a, the number of

active neighbors (those who have not yet adopted) and i, the number of inactive neigh-

bors (those who adopted in the past and provided spillovers). The number of inactive

neighbors determines the payoff when stopping while the number of active neighbors

impacts the incentives to wait. However, in our model, we allow for a single state vari-

able k, the number of neighbors. The results we obtained directly apply to the context

of technology adoption as described above if we assume that all players start out with

the same number of neighbors, i.e a+ i = N . In this case, keeping track of the number

of active neighbors is sufficient, since i = N − a. We show in Appendix B3 that the

equilibrium structure that we identify in Section 3 is preserved if we do not impose the

restriction a+ i = N and consider the general case with two state variables. The main

difference lies in the transitions from one state to another when a neighbor adopts, i.e.

moves from being active to inactive.

Consider as an illustration the following specification of payoffs. Suppose the time

invariant benefit of adopting the technology is given by B and denote ca the cost of

adoption for a player who does not benefit from spillovers. The adoption by one neighbor

reduces the cost by a factor σ1, and the next adoption reduces the cost further by another

factor σ2. The benefit of adoption for a player with i inactive neighbors (who have already

exited) is thus given by B−
(∏i

l=1 σl

)
ca. Calling k the number of active neighbors, and

imposing the restriction i + k = 2, payoffs can be parameterized by k in the following

way: B2 = B−ca, B1 = B−σ1ca and B0 = B−σ1σ2ca, since having no active neighbors

directly implies that there are 2 inactive neighbors who already provided spillovers.

Section 3 established that in equilibrium, the network behaves as a shrinking network

16Informational spillovers, due for instance to the fact that firms can observe the adoption techniques
used by their neighbors, are formalized in Appendix B1.
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if and only if γ1 > γ2. Using the parametrization of profits introduced above, we

conclude that the condition is satisfied under fairly general conditions on σl. This is the

case for instance if σl is constant, since then γ1 = B−σca
σ(1−σ)ca > γ2 = B−ca

2(1−σ)ca . To be in

the case of the fragmenting network requires σ1 to be very small relative to σ2, which

appears unlikely.17 The shrinking network case also seems to be the most relevant case

empirically: speed of technology diffusion is often described using measures of distance

covered by year (see the survey by Geroski 2000). We thus restrict attention in this

section to shrinking network and we study the effect of subsidy programs aimed at

speeding up adoption.

5.2 Permanent subsidy

We start with the case where a fixed subsidy s > 0 is given to any player at the time

of adoption. Typically there is a deadweight loss of funds raised to finance such subsidy

programs. To calculate overall welfare we thus assume throughout the analysis of the

different subsidy programs that, for a given subsidy s awarded, the social cost is given

by (1 + α)s, where parameter α > 0 measures the welfare loss associated with raising

and transferring funds. We also denote by Gpe (s) the expected payoff of an arbitrary

player given subsidy s and by Cpe (s) the expected discounted subsidy payment to an

arbitrary player. The total welfare with permanent subsidy s, denoted W pe (s), is then

W pe (s) = Gpe (s)− (1 + α)Cpe (s) . (7)

From the players’ perspective a permanent subsidy just amounts to replacing payoff

terms Bk with Bk + s, k = 0, 1, 2. We showed in section 3.3 that for shrinking networks,

the belief that the neighbor is of type 1, the mixing rate of a type 1 player and the

expected entry rate of a random neighbor remain constant throughout the game. In

particular the hazard rate of adoption by an arbitrary neighbor is given by:

γpe (s) = p1 (t)λpe1 (s) =
r (B1 + s)

B0 −B1
. (8)

This is linearly increasing in s so we see that the subsidy speeds up adoption.

We first compute the welfare gain from the policy Gpe (s). Type k = 0 players

adopt immediately and get B0 + s. Type k = 1 players are indifferent between adopting

immediately and waiting, and hence their payoff is B1 + s. Types k = 2 strictly prefer

17Could be the case if spillovers come from suppliers and a sufficient mass of firms needs to adopt to
give incentives for the supplier to also invest in the new technology.
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to wait until one of their neighbors adopts, at which point their payoff becomes B1 + s.

Since each of her two neighbors adopt with rate γpe (s), we can compute the payoff of

type k = 2 as

V pe
2 (s) =

∫ ∞
0

2γpe (s) e−2γ
pe(s)te−rt (B1 + s) dt =

2γpe (s)

2γpe (s) + r
(B1 + s)

=
2 (B1 + s)2

B0 +B1 + 2s
.

The expected payoff of an arbitrary players is then:

Gpe (s) = q0 (B0 + s) + q1 (B1 + s) + q2
2 (B1 + s)2

B0 +B1 + 2s
. (9)

We derive in the Appendix the expected subsidy payment Cpe (s) in a similar way,

and obtain the following result:

Proposition 6 A permanent subsidy s induces types 1 to adopt with constant hazard

rate

λ1 (s) =
1

p1(0)

r (B1 + s)

B0 −B1
.

Furthermore, there exists α∗ > 0 such that if α < α∗, a permanent subsidy set at some

positive level s > 0 strictly increases total welfare. If α ≥ α∗, no permanent subsidy

increases total welfare.

The proposition shows that if the social cost of subsidies is not too high (i.e. α is not

too large), then a permanent subsidy increases total welfare. The intuition is that by

increasing incentives to adopt, the subsidy speeds up adoption. Every adoption decision

entails a positive externality on all later adopters and thereby the positive welfare effect

of the subsidy propagates through the network. Overall, socially wasteful delays are

diminished.

However, there are more powerful ways to accelerate adoption. Intuitively, if the

expected subsidy payment tomorrow is lower than today, then there is an additional

incentive to adopt today rather than tomorrow. We next turn to time varying policies

that exploit this logic.

5.3 Expiring subsidy

Suppose that a subsidy is set at level s > 0, but expires at some random time that is

exponentially distributed with parameter κ. This could capture the idea that political
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turnover or even economic shocks, can lead at any time to the interruption of subsidy

programs. Any player that adopts before expiration gets payoff Bk + s (where k is her

type), while a player that adopts after expiration gets Bk.

We derive an equilibrium, where type k = 1 stops at a constant rate λra1 (s, κ)

until expiration (after expiration, the game continues as the original game without any

subsidies). This adoption rate induces an arbitrary neighbor to adopt at rate:

γra (s, κ) = p1 (0)λra1 (s, κ) .

To derive the equilibrium value of γra (s, κ), note that type k = 1 must be indifferent

between stopping at t and t+ dt:

B1 + s = γra (s, κ) dt (1− rdt) (B0 + s) + κdt (1− rdt)B1

+ (1− γra (s, κ) dt) (1− κdt) (1− rdt) (B1 + s) .

The equilibrium exit rate of an arbitrary neighbor is thus given by:

γra (s, κ) =
r (B1 + s) + κs

B0 −B1
.

We see from this equation that increasing κ induces a higher rate of adoption.

We compute in the Appendix the total welfare of this policy and show that it is

strictly increasing in κ. This implies in particular that the highest welfare is obtained

in the limit κ → ∞ and the lowest level is obtained when κ → 0, where the welfare

converges to the level obtained with the permanent subsidy.

Proposition 7 A subsidy set at level s > 0 that expires at rate κ > 0 induces a higher

total welfare than a permanent subsidy at level s. Moreover, the total welfare is strictly

increasing in κ.

5.4 Smoothly declining subsidy

The planner can further induce early adoption by letting the subsidy level s (t) decrease

over time. Such a policy induces type k = 1 to adopt with some time varying hazard

rate. We look for an equilibrium, where type k = 1 is indifferent at all times between

adopting and waiting, and adopts with a time varying hazard rate λsm1 (t). As before,

p1 and p2 remain constant at their initial values p1 (0) and p2 (0) throughout, and the
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resulting hazard rate of adoption by an arbitrary neighbor can be written as

γsm (t) = p1 (0)λsm1 (t) .

The indifference condition for type 1 between adopting at t and t+ dt is:

B1 + s (t) = γsm (t) dt (B0 + s (t)) + (1− γsm (t) dt) (1− rdt)
(
B1 + s (t) +

·
s (t) dt

)
.

This gives:

γsm (t) =
r (B1 + s (t))− ·s (t)

B0 −B1
.

We see from this equation that the decline in the subsidy path (
·
s (t) < 0) increases the

rate of adoption as expected.

We show in Proposition 8 that there exists a declining subsidy that achieves a strictly

higher total welfare than any permanent or randomly expiring policy. Intuitively, a

decline in the subsidy boosts adoption similarly to the threat of expiration. Unlike

randomly expiring policy, though, it has the additional benefit that the realized subsidy

payments keep getting smaller as time goes by, thus diminishing the realized welfare cost

of subsidies.18

Proposition 8 There exists a smoothly declining subsidy that gives a strictly higher

total welfare than any permanent or any randomly expiring subsidy.19

Figure 1 compares the total welfare of the three different policies as a function of

initial subsidy level s, where the randomly expiring policy is in the limit κ → ∞, and

the smoothly declining policy is in the limit, where the decline is infinitely fast. Note

that the optimal level of s is different in each policy.20

5.5 Reward when a neighbor adopts

So far we have considered uniform subsidy policies, where a given subsidy is paid to

any player that adopts at a given time. The reason for focusing on such policies is the

18The proof of the following result is in the Appendix. We analyze there a subsidy that declines linearly
from initial level s to zero, and take the limit where the decline path is infinitely steep. It turns out that
for any given initial level s this policy is strictly better than the other policies we have considered for
that same level s. The result then follows from a simple continuity argument.

19Unless α is very large, in which case no subsidy policy can increase total welfare.
20We do not have a formal result characterizing the optimal subsidy policy amongst all possible time

varying policies. However, we conjecture that the best policy is indeed the one where the decline path
is made as steep as possible.
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Figure 1: Comparing subsidy programs. Parameter values are: B0 = 2 , B1 = 1, α = 0.1,
q0 = 0.04, q1 = 0.32, q2 = 0.64

implicit assumption that the regulator does not have access to detailed neighborhood

information. In some situations it may however be possible, for example by relying on the

agents’ self reporting, to base subsidy payments on the neighbors’ adoption decisions. To

demonstrate the potential of such policies, we consider a neighbor reward policy, where

a fixed reward m > 0 is given to any player at the time the first of her neighbors adopts

after she has adopted herself. Denoting by Gna (m) the expected payoff of an arbitrary

player given reward m and by Cna (m) the expected discounted subsidy payment to an

arbitrary player, the total welfare with reward m is

Wna (m) = Gna (m)− (1 + α)Cna (m) (10)

When B0−B1 ≤ m ≤ B0−B2, there is an equilibrium where agents of type 1 adopt

immediately, triggering an instantaneous cascade of adoptions. All levels of reward

within this range are dominated by m = B0 − B1, which achieves the same adoption

pattern than the higher levels at a lower cost. This level of reward achieves the total

welfare

Wna (m) = B0 − (1 + α)
(
q2 +

q1
2

)
(B0 −B1) .

For a reward m ≤ m, we look for an equilibrium as in the shrinking networks game,
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where the belief p1 that the neighbor is of type 1, the mixing rate λna1 (m) of a type

1 player and the expected entry rate of a random neighbor γna (m) = p1 (0)λna1 (m)

remain constant throughout the game. In that case, the policy is equivalent, from the

point of view of the agents, to replacing payoff terms B1 with B1 +
λna1 m
λna1 +r , k = 0, 1, 2. In

particular the hazard rate of adoption by an arbitrary neighbor must then satisfy

γna =
r
(
B1 +

λna1 m
λna1 +r

)
B0 −

(
B1 +

λna1 m
λna1 +r

) =
r
(
B1 + γnam

γna+rp1(0)

)
B0 −

(
B1 + γnam

γna+rp1(0)

) .
Rearranging this expression, we see that for any m ∈ [0,m) , the equilibrium adoption

rate of a neighbor γna is the unique positive solution of the equation

γna ((B0 −B1) (γna + rp1)− γnam)− r (B1 (γna + rp1) + γnam) = 0.

The left-hand side is increasing in γna for γna > 0 and decreasing in m, so it follows

that the function γna (m) is increasing in m. For m = 0, γna (m) = rB1
B0−B1

and as m

approaches m, γna (m) goes to infinity. From the point of view of both the agents and

the planner, the policy m is equivalent in terms of payoff to a discriminating permanent

subsidy s∗ = γnam
γna+rp1(0)

that is given on the date of adoption exclusively to adopting

type 1 agents, not to type 0 agents. As we show formally in the proof of the following

result, such a discriminating subsidy policy can provide adoption incentives to type 1

agents at a lower cost than a non-discriminating subsidy policy. We thus have:

Proposition 9 For any permanent subsidy s > 0, there exists a neighbor reward m ∈
[0,min {B0 −B1, s}] that yields a greater social welfare than the permanent subsidy s. As

a consequence the optimal neighbor reward program is superior to the optimal permanent

subsidy policy.

6 Conclusion

In this paper we have studied a waiting game with a network structure, highlighting the

application to the adoption decisions of firms that can benefit from positive spillovers

due to adoption of neighbors. The neighbourhood structure gives rise to two additional

inefficiencies on top of the timing inefficiency standard in waiting games: an inefficiency

in the order of exit and an inefficiency due to the final distribution of nodes at the

end of the game. Both are due to the fact that players do not internalize the positive

externalities they can impose on their neighbors by adopting first.
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In order to highlight the special dynamics of stopping and the new sources of in-

efficiencies due to the neighborhood structure, we focus in this paper our attention to

the simplest possible network structure, the line. The extension to larger networks will

be the object of future work. Preliminary results suggest that, in larger networks with

no cycles, the dynamics of stopping are qualitatively similar in the case of fragmenting

networks, where the large network fragments into smaller ones over time. The analysis

of shrinking networks turns out to involve additional modeling challenges.

First, larger networks could have cascades. Consider such a large network and sup-

pose that the equilibrium corresponds to our shrinking network, where type k randomizes

while types above k wait. Whenever a player becomes type k − 1 as a result of one of

her neighbors stopping, her incentive to stop instantly increases, and she wants to stop

immediately. Every stopping decision starts a chain-reaction: some neighbors of the

stopping player may become type k− 1, immediately stop, and thus spread the cascade

further. If the number of connections in the network is high, those cascades may even-

tually become very long and this will bring into question the existence of an equilibrium

similar to the one that we analyze.

Second, real networks often have cycles and hubs. Adding such features in the model

will be challenging, since it requires modifying our modeling approach, where every

player believes the type of each of her neighbors to be identically and independently

distributed. Addressing such issues is left for future work.
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7 Appendix A

Proof of Lemma 1

As explained in the main text, P1 and P2 hold at t = 0.

We first prove that P2 is satisfied at all histories on path. Consider player i and a

history at date t, on path for this player, at which i has not stopped. The type at date t

of each neighbor j of i is affected only by the actions of the set N i.j
s of agents (excluding

i, but including j) that are indirectly connected to i through j at dates s ∈ [0, t] , (and of

course by the strategy of player i). For any two distinct neighbors j and j′ of i, and for

all s, we have N i,j
s ∩N i,j

s = ∅. Thus the strategies of agents in N i.j
t are independent across

all neighbors j, conditionally on i having not stopped until date s, because the strategies

of the players are not correlated. Since player i updates his beliefs according to Bayes’

rule, and since player i believes at date 0 that his neighbors’ types are independently

distributed, it follows that at date t, player i still believes that the types of her neighbors

are independently distributed. This proves that P2 is satisfied at any history on path

for player i.

We now prove that P1 is satisfied at all histories on path. Let i and i′ be two

distinct agents, with neighbors j and j′. For all s ∈ [0, t] , let Gi,js the set of links of

the line that links the agents in N i,j
s and let Gi

′,j′
s be the analogous object for agents

in N i′,j′
s . Because conditions P1 and P2 hold at date 0, and because the beliefs of the

agents at that date are identical, it follows that the belief of player i about the structure

of Gi,j0 is identical to the belief of player i′ about the structure of Gi
′,j′

0 . That is, these

two agents have identical beliefs about the sequence of links, ignoring the labels of the

agents in those structures. Then, because Gi,jt (respectively Gi
′,j′
s ) is only affected by the

actions of the players in the line
(
N i,j
s , Gi,js

)
(respectively in the line

(
N i′,j′
s , Gi

′,j′
s

)
) and

that these lines are identically distributed at all date s < t and all player’s strategies are

independent, it follows that
(
N i,j
t , Gi,jt

)
and

(
N i′,j′

t , Gi
′,j′

t

)
are identically distributed as

well.

Proof of Lemma 2

Consider an arbitrary symmetric equilibrium σ and let F be the distribution of

stopping dates of an arbitrary neighbor of an arbitrary player i conditional on i never

stopping. Let T ∈ R∪{+∞} be the least upper bound of the support of F . We prove

the lemma through the following steps:

1. The cdf F has no atoms. By contradiction, suppose that F has an atom at date t.

Then consider a realization of the equilibrium outcome, where player i of type k ≥ 1
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stops exactly at date t. Since F has an atom at t, i expects each of his neighbors

to stop at date t with positive probability. It is then a profitable deviation for her

not to stop at date t, but rather at date t + dt, as the waiting cost of doing so is

proportional to dt whereas the expected gain of delaying is bounded from below

by (F (t+)− F (t−)) (Bk−1 −Bk) > 0. A contradiction.

2. There is no interval of positive length included in [0, T ] over which F is constant.

By contradiction, suppose that t and t are such that 0 ≤ t < t < +∞, and F is

constant on
[
t, t
]
, but not on a right-neighborhood of t. This implies that there is

at least one type k such that λk (t) > 0 in a right neighborhood of t. Consider a

realization of the equilibrium outcome, and suppose that player i of type k with at

least one neighbor stops at date t+ ε, where ε is arbitrarily small. Then stopping

instead at date t (at which the type of i was the same) would have been a profitable

deviation for player i. Evaluated at date 0, the cost of doing such a change is

approximately equal to γ (t) (Bk+1 −Bk) e−r(t+ε)ε, which is small as ε goes to 0.

Meanwhile, the benefit of doing so is bounded below by Bk+1e
−r(ε+t−t) > 0,which

exceeds the cost. A contradiction.

3. It must be that T = +∞. To se this, suppose by contradiction that T < +∞. In a

realization of the outcome, suppose that an player i stops at date T − ε. Since she

knows that all remaining neighbors will exist between T − ε and T, it is well worth

delaying stopping after date T. By doing so, player i strictly gains by stopping ε

periods later, the cost of which is bounded above by e−rtBkε and the benefit of

which is bounded below by e−rT (Bk−1 −Bk) > 0. Thus it must be that T = +∞.

Proof of Proposition 1

We prove the result in the case µ1 > µ2. The other case is perfectly symmetric.

In a symmetric equilibrium, each player faces the same probability distribution for

the other player’s stopping time, which we denote by F (t), as in the main model. By

the same arguments as in Lemma 2, the distribution has no atoms, and its support is

[0,∞). We may hence describe the equilibrium by hazard rates of the two types, λ1 (t)

and λ2 (t), where at least one of them is non-zero for each t ≥ 0. Letting p1 (t) denote

the posterior probability at t that the other player is of type 1, we have

f(τ)

(1− F (τ))
= p1 (t)λ1 (t) + (1− p1 (t))λ2 (t) .
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The expected payoff for type j of the strategy “stop at time τ if the other player has

not yet stopped” is given by:

Wj(τ) =

[∫ τ

0
e−rt (Bj−1) f(t)dt+ (1− F (τ))e−rτ (Bj)

]
.

Differentiating this, we have

dWj (τ)

dτ
= e−rτBj−1f(τ)− f(τ)e−rτBj − r(1− F (τ))e−rτBj ,

and it follows that

dWj (τ)

dτ
> (=) (<) 0⇐⇒ f(τ)

(1− F (τ))
> (=) (<) r

Bj
Bj−1 −Bj

≡ µj .

For a player of type j to mix in an interval [t, t′], he must be indifferent between stopping

at any date τ ∈ [t, t′], and we must have:

dWj (τ)

dτ
= 0⇐⇒ f(τ)

(1− F (τ))
= µj .

Since µ1 6= µ2, only one type can be mixing in an interval. Suppose that type j mixes

in some interval [0, t′] and the other type k 6= j is willing to delay. Then we must have

dWk (τ)

dτ
≥ 0⇐⇒ f(τ)

(1− F (τ))
≥ µk

for τ ∈ [0, t′]. Since µ1 > µ2, it must be that the type mixing initially is type j = 1 and

the type that is waiting is k = 2, and so

f(τ)

(1− F (τ))
= p1(t)λ1(t) = µ1.

The updated belief that the other player is of type 1 is then given by Baye’s rule:

p1(t+ dt) =
p1(t)(1− λ1(t)dt)

p1(t)(1− λdt) + (1− p1(t))

So that

p1(t+ dt)− p1(t)
dt

=
1

dt

p1(t)(1− λ1(t)dt)− p1(t)(p1(t)(1− λ1(t)dt) + (1− p1(t)))
p1(t)(1− λ1(t)dt) + (1− p1(t))
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Taking limits we have:
·
p1 (t) = −λ1(t)p1 (t) (1− p1 (t)) .

Since µ1 = p1(t)λ1(t), we can reexpress as:

·
p1 (t) = −µ1 (1− p1 (t)) .

The solution of this differential equation is:

1− p1 (t) = (1− p1 (0))e−µ1t,

and so p1 (t) is strictly decreasing over time. Thus there exists a time tb1 such that

p1(t
b
1) = 0, which we can solve as tb1 = − ln(1−p1(0))

µ1
. After that date only players of

type 2 are left, and the continuation game is a standard complete information waiting

game with the unique symmetric equilibrium where the players mix at constant rate

λ2 (t) = µ2.

Proof of Proposition 2

By the same argument as in the proof of Proposition 1, there must be some initial

phase [0, t′] during which type 1 randomizes and type 2 waits, and where

γ (t) = λ1 (t) p1 (t) = γ1.

We next establish the result that as long as type 1 randomizes and type 2 waits,

p1(t) remains constant, and so the initial phase never ends. Suppose that type 1 stops

at rate λ1 (t) and type 2 waits so that λ2 (t) = 0. We define two events:

• NE (no entry) the event that no entry takes place in the interval [t, t+ ε].

• CS (change state) the event that the neighbor changes state during the interval

[t, t+ ε], which can only mean that his other neighbor stopped, i.e he moved from

being a type 2 to a type 1.

Using these notations, we have:

p1(t+ ε) =
P [k = 2 ∩NE ∩ CS]

P [NE]
+
P [k = 1 ∩NE ∩ CSC ]

P [NE]

=
p2(t)(1− λ1(t)ε)γ1 (t) ε

P [NE]
+
P [NE|k = 1 ∩ SCC ]P [k = 1 ∩ SCC ]

P [NE|k = 1]p1(t) + (1− p1(t))
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We now examine:

p1(t+ ε)− p1(ε)
ε

=
p2(t)(1− λ1(t)ε)γ1 (t)

P [NE]
+

1

ε

p1(t)(1− λ1(t)ε)− p1(t)(p1(t)(1− λ1(t)ε) + (1− p1(t)))
P [NE]

=
p2(t)(1− λ (t) ε)γ1 (t)

P [NE]
+

1

ε

p1(t)(1− p1(t))λ (t) ε

P [NE]

=
p2(t)(1− λ1(t)ε)γ1 (t)

P [NE]
+
p1(t)(1− p1(t))λ1(t)

P [NE]
.

Taking the limit when ε goes to zero, P [NE] converges to one and so

·
p1(t) = γ1 (t) (1− p1(t))− λ (t) p1(t)(1− p1(t)).

Finally, by definition, γ1 (t) = λ1 (t) p1 (t), so that

·
p1 (t) = 0.

Given that p1(t) and γ1 (t) = γ1 do not depend on time, the rate of mixing of types 1,

λ1(t), also remains constant and is equal to λ1 = γ1
p1(0)

. This establishes the first part

of the proposition.

We next derive the average time before stopping of a random member of the network.

If the player is of type 0 (probability q0), she enters immediately. If she is of type

1 (probability q1), her stopping rate is λ1 + γ1, since she stops either because of her

own mixing or because a neighbor stops. Finally, if she is of type 2, she first needs to

transition to being a type 1, which occurs at a rate 2γ1, then follows the same dynamic

as a type 1. Overall the expected waiting time is given by:

E [T ] = q00 + q1
1

λ1 + γ1
+ q2

[
1

2γ1
+

1

λ1 + γ1

]
= q2

1

2γ1
+ (q1 + q2)

1

λ1 + γ1
.

We showed above that λ1 = γ1
p1(0)

. Furthermore, we showed in Section 2.2 that

p1 (0) =
q1

q1 + 2q2
.

Replacing these in the expression for E [T ], we get:

E [T ] = (q1 + q2)
1

2γ1
.
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Being inversely proportional to γ1, E [T ] is increasing in B0, decreasing in B1 and in-

dependent of B2. Furthermore, since γ1 is independent of q1 and q2, E [T ] is overall

increasing in q1 + q2.

Proof Proposition 3

Following the same arguments as in Proposition 2, we can establish that while players

of type 2 are mixing, the beliefs evolve according to:

·
p2(t) = −γ(t)p2(t)− λ2(t)p2(t)(1− p2(t)).

Given that γ(t) = λ2(t)p2(t), we obtain that

·
p2(t) = −γ(t),

i.e

p2 (t) = p2 (0)−
∫ t

0
γ (s) ds.

We see that p2 (t) is a strictly decreasing function with derivative bounded away from

zero, so there is a date t2 such that p2 (t2) = 0.

As we argued in the main text, we have

γ (t) =
rB2

2 (V1 (t)−B2)
,

where the value V1 (t) is defined by the following Bellman equation:

V1 (t) = γ (t)B0dt+ (1− γ(t)dt) (1− rdt)
(
V1 (t) +

·
V 1 (t) dt

)
.

Using the value of γ (t), we obtain:

·
V 1 (t) = −rB2 (B0 − V1 (t))

2 (V1 (t)−B2)
+ rV1 (t) < 0. (11)

To establish the last result, we compare the values of
·
p2(t) in the two cases. Here we

have:
·
p2(t) = − rB2

2 (V1 (t)−B2)
.
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In the benchmark case we had:

·
p2(t) = −(1− p2(t))

rB2

(B1 (t)−B2)
.

Given that V1(t) ≥ B1 and p2(t) ≤ p2(0) < 1
2 , the posterior probability decreases faster

in the benchmark case, so that t2 > tb2.

Proof of Proposition 4

Take an arbitrary line segment of n players and consider all feasible orders in which

those n players can stop. In all the arguments, the players are numbered from 1 to

n from left to right. Denote by nk, k = 0, 1, 2, the number of players that get payoff

Bk in some stopping order (i.e. number of players who have k neighbors at the date

when they stop). Every player eventually stops in each stopping order, so we must have

n0 + n1 + n2 = n.

Our model allows for the possibility that two neighbors stop simultaneously. How-

ever, that is never optimal in terms of total welfare, since by stopping sequentially (even

with a negligible lag between the stopping decisions), the payoff of one of the two players

jumps up from Bk to Bk−1. Therefore, when considering the stopping order that maxi-

mizes the total welfare, we ignore the possibility of simultaneous stopping, and take as

the set of feasible stopping orders the set of permutations of the players in the segment.

We aim to express the total welfare from an arbitrary stopping order (permutation)

as a function of n2. As a first step, we consider all the feasible values of n2 across all

possible stopping orders. We claim that

n2 ∈
{

0, ...,
N − 1

2

}
if n is odd,

n2 ∈
{

0, ...,
N − 2

2

}
if n is even. (12)

To prove this claim, it suffices to note that the smallest possible value n2 = 0 is

trivially obtained in the case of a shrinking network, i.e. in a case where the players stop

in the order 1, 2, 3, ... (or alternatively n, n− 1, n− 2, ...). The largest possible value

for n2 is obtained in any sequence where all the even numbered players stop before the

odd numbered players (i.e. a regular fragmenting). Such a sequence gives n2 = n−1
2 if

n is odd and n2 = n−2
2 if n is even. Any interior value for n2 is obtained, for example,

in a sequence, where the first n2 even numbered players stop first (each of those players

gets B2), and after that all the remaining players stop in an increasing sequence (and

get either B0 or B1 each).
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As a second step, we claim that in any stopping order, we have

n0 = n2 + 1. (13)

We prove this claim by induction. For n = 1 and n = 2, the only feasible values of

n0 and n2 are obviously n0 = 1 and n2 = 0, so (13) holds. Take a line segment of length

n where n = 3, 4, ..., and suppose as an induction hypothesis that (13) holds for all line

segments of length k < n. There are two cases to consider. First, if the first player to

stop in that segment is either player 1 or n (i.e. one of the end nodes), then this player

gets B1 and the line shrinks to length n − 1. By the induction hypothesis, (13) holds

for that reduced line and therefore (13) holds for the original line of length n as well.

Second, if the first player to stop is amongst players 2, ..., n− 1, she gets B2 and the line

segment splits into two shorter line segments of lengths n′ and n′′ with n′ + n′′ = n− 1.

By the induction hypothesis, we have n′0 = n′2 + 1 and n′′0 = n′′2 + 1, where n′k and n′′k
denote the number of players in the two shorter line segments that get payoff Bk. The

total number of players that get B2 is then n2 = 1 + n′2 + n′′2 (where 1 is added because

the first player to stop in the original line did get B2) and the total number of players

that get B0 is n0 = n′0 +n′′0. Combining these equations gives n0 = n2 + 1 i.e. (13) holds

for the original line segment as well.

As a third step, we claim that in any stopping order, we have

n1 = n− 2n2 − 1. (14)

This follows simply from combining (13) and n = n0 + n1 + n2, and solving for n1.

We can now use (13) and (14) to compute the total welfare in an arbitrary stopping

order as a function of n2:

W (n2) = n0B0 + n1B1 + n2B2

= (n2 + 1)B0 + (N − 2n2 − 1)B1 + n2B2

= B0 + (N − 1)B1 + (B0 +B2 − 2B1)n2.

We can see from this equation that if 2B1 < B0 +B2, the total welfare is maximized

by choosing the highest possible value of n2. By (12) this is obtained with regular

fragmenting, where every even numbered player stops first. If 2B1 > B0 +B2, then the

total welfare is maximized by choosing n2 = 0, which is obtained in a shrinking network.

Proof of Proposition 5
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We start by deriving the fraction of surviving firms pe. We already outlined a proof

based on a difference equation approach in the main text. Here we present an alternative

direct proof based on the main method of analysis of this paper.

As a first step we will determine the probability with which an arbitrary firm i exits

before one of her neighbors does, a probability that we denote by ω. For t < t2 firm i

exits with a hazard rate λ2 (t) as long as none of her two neighbors have exited. Denote

by f (t) the probability density function for i’s planned exit time (i.e. time to exit if

none of her neighbors have yet stopped):

f (t) = λ2 (t) e−
∫ t
0 λ2(s)ds.

Given the information i has, the perceived hazard rate with which a neighbor of i exits

is γ (s) so that the probability that none of i’s neighbors have exited at time t (given

that i has not) is

e−
∫ t
0 2γ(s)ds.

Using this, we can write the probability that i exits before one of her neighbors as:

ω =

∫ t2

0
f (t) · e−

∫ t
0 2γ(s)dsdt =

∫ t2

0
λ2 (t) · e−

∫ t
0 λ2(s)ds · e−

∫ t
0 2γ(s)dsdt. (15)

To evaluate this expression, we utilize the connection between λ2 (s) and γ (s). We know

that:

λ2 (t) =
γ (t)

p2 (t)
, (16)

where p2 (t) evolves according to

·
p2 (t) = −λ2 (t) · p2 (t) ,

which can be solved with boundary condition p2 (0) = 1 to get a closed form formula for

p2 (t) :

p2 (t) = e−
∫ t
0 λ2(s)ds. (17)

From (16) and (17) we then have

λ2 (t) · e−
∫ t
0 λ2(s)ds = γ (t) ,

so that (15) reduces to

ω =

∫ t2

0
γ (t) · e−

∫ t
0 2γ(s)dsdt. (18)

39



Noting that

d

dt
−
∫ t

0
2γ (s) ds = −2γ (t) , and∫ t2

0
γ (s) ds = 1,

we can solve (18) to get

ω =
1

2

(
1− e−2

)
≈ 0.43.

Finally, using the same reasoning as in the proof of Proposition 4, we note that in an

infinite line, the fraction of players that get payoff B2 is the same as the fraction of

players that get payoff B0. Therefore, we have pe = ω, which establishes the first result.

We now determine the distribution of random variable lg. As a first step, consider

the gaps at time t2, i.e. the end of the first phase of the game. At that point, every

gap is of length 1 and each sequence of two gaps is separated either by an individual

remaining player or a pair of remaining players. Each gap may either remain a gap of

length lg = 1 or develop into a gap of length lg = 2 or lg = 3 as t→∞.

Let us take an arbitrary gap at time t2. Consider the probability that to the right

of this gap there is a pair of players instead of one isolated player, and denote this

probability by p. Noting that the fraction of gaps to the remaining players is ω, we can

compute p by noting that the expected number of players (including the gap) until the

next gap is 1 + (1− p) · 1 + p · 2 = 2 + p. Therefore, the fraction of gaps ω to all the

nodes can be expressed as

ω =
1

2 + p
.

Combining this with our earlier expression ω = 1
2

(
1− e−2

)
and solving for p gives

p = 2
1

1 + e2
.

By symmetry and independence of types of neighbors, p is also the probability that there

is a pair of remaining players to the left of the gap. With this information, we are in a

position to derive the probability distribution of lg. Consider the length of the gap at

t → ∞. A gap lg = 3 can only occur at the end of the game if to the right and to the

left of the initial gap (probability p2), there was a pair, and the firms closer to the gap

exited (probability 1
4). For a gap of size two to appear, you need at least one pair. The
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distribution is thus given as in the main text:

P [lg = 3] = p2
1

4
,

P [lg = 2] = p2
1

2
+ 2p(1− p)1

2
,

P [lg = 1] = p2
1

4
+ 2p(1− p)1

2
+ (1− p)2.

Proof of Proposition 6

We first compute the expected subsidy payment separately for each type. For type

0, the payment is made immediately, so the cost is simply s. For type k = 1, payment

accrues at time τ that is exponential with parameter λ1 (s) + γpe (s), so the discounted

cost is

E
(
e−rτs

)
= s

∞∫
0

(λpe1 (s) + γpe (s)) e−(λ1(s)+γ
pe(s))te−rtdt =

λpe1 (s) + γpe (s)

λpe1 (s) + γpe (s) + r
s.

Type k = 2 becomes type k = 1 at time τ1 that is exponential with parameter 2γpe (s),

and then will wait another time interval τ to stop. The expected payment is therefore

E
(
e−r(τ1+τ)s

)
= E

(
e−rτ1

)
E
(
e−rτ

)
s =

2γpe (s) (λpe1 (s) + γpe (s))

(2γpe (s) + r) (λpe1 (s) + γpe (s) + r)
s.

Weighting the cost terms with the population shares of different types, the expected

discounted subsidy payment to an arbitrary player is:

Cpe (s) = q0s+ q1
λpe1 (s) + γpe (s)

λpe1 (s) + γpe (s) + r
s+ q2

2γpe (s) (λpe1 (s) + γpe (s))

(2γpe (s) + r) (λpe1 (s) + γpe (s) + r)
s.

Substituting in γpe (s) and λpe1 (s) from (8), using q0 + q1 + q2 = 1, and simplifying, we

can write this as:

Cpe (s) = s
q0 (B0 −B1) + 2 (B1 + s)

B0 +B1 + 2s
.

Plugging this and (9) in (7), the total welfare is:

W pe (s) = q0 (B0 + s) + q1 (B1 + s) + q2
2 (B1 + s)2

B0 +B1 + 2s

− (1 + α) s
q0 (B0 −B1) + 2 (B1 + s)

B0 +B1 + 2s
.
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It is easy to show by direct computation that W pe (s) is concave in s, and

(W pe)′ (0) > (<) 0

⇐⇒

α < (>) a∗,

where

α∗ :=
q02B

2
1 + q1

(
B2

0 +B2
1

)
+ q22B0B1 − 2B2

1

(B0 +B1) ((B0 −B1) q0 + 2B1)
> 0.

Since W pe (0) gives the total welfare without any subsidy, this proves Proposition 6.

Proof of Proposition 7

We write the total welfare as

W ra (s, κ) = Gra (s, κ)− (1 + α)Cra (s, κ) ,

where Gra (s, κ) is the welfare of the players and Cra (s, κ) is the financial cost of the

policy.

Consider first the welfare term Gra (s, κ). As before, we can write it as

Gra (s, κ) = q0 (B0 + s) + q1 (B1 + s) + q2V
ra (s, κ) ,

where V ra (s, κ) is the value of type k = 2. Since both of her neighbors stop with hazard

rate γra (s, κ) until the subsidy expires, she observes an exit at rate 2γra (s, κ). If one of

her neighbors exit before expiration, she gets B1 + s, otherwise she will get value

V2 =
2B2

1

B0 +B1

at the time of expiration of the policy. Therefore, we get

V ra (s, κ) =

∫ ∞
0

κe−κt
[∫ t

0
2γra (s, κ) e−2γ

ra(s,κ)ue−ru (B1 + s) du+ e−rte−2γ
ra(s,κ)tV2

]
dt

=
2γra (s, κ) (B1 + s) + κV2

2γra (s, κ) + κ+ r
=

2γra (s, κ) (B1 + s) + κ
2B2

1
B0+B1

2γra (s, κ) + κ+ r
.

We write the cost term Cra (s, κ) as

Cra (s, κ) = q0s+ q1C
ra
1 (s, κ) + q2C

ra
2 (s, κ) ,
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and proceed to compute the terms Cra1 (s, κ) and Cra2 (s, κ) corresponding to types k = 1

and k = 2. For a player i of type k = 1, the subsidy has to be paid either if i) i exits

before subsidy expires, or ii) i’s only neighbor exits before subsidy expires. Event i)

arrives at rate

λra1 (s, κ) =
γra1 (s, κ)

p1 (0)
=
γra1 (s, κ) (q1 + 2q2)

q1
,

and event ii) arrives at rate γra1 (s, κ). We have

γra1 (s, κ) + λra1 (s, κ) = γra1 (s, κ)

(
1 +

q1 + 2q2
q1

)
= 2γra1 (s, κ)

q1 + q2
q1

,

and so we can write Cra1 (s, κ) as

Cra1 (s, κ) =

∫ ∞
0

κe−κt
[∫ t

0
2γra1 (s, κ)

q1 + q2
q1

e
−2γra1 (s,κ)

q1+q2
q1

u
e−rusdu

]
dt

= s
2γra1 (s, κ) q1+q2q1

2γra1 (s, κ) q1+q2q1
+ κ+ r

.

To compute Cra2 (s, κ), note that for type k = 2 to obtain the subsidy, one of her two

neighbors must first exit before subsidy expires. This event arrives at rate 2γra1 (s, κ),

and once it happens the player turns into type k = 1 and the continuation subsidy cost

at that date is Cra1 (s). Hence, we have

Cra2 (s, κ) =

∫ ∞
0

κe−κt
[∫ t

0
2γra1 (s, κ) e−2γ

ra
1 (s,κ)ue−ruCra1 (s) du

]
dt

=
2γra1 (s, κ)Cra1 (s)

2γra1 (s, κ) + κ+ r
= s

2γra1 (s, κ)
2γra1 (s,κ)

q1+q2
q1

2γra1 (s,κ)
q1+q2
q1

+κ+r

2γra1 (s, κ) + κ+ r
.

The total welfare is then:

W ra (s, κ) = q0 (B0 + s) + q1 (B1 + s) + q2

2γra (s, κ) (B1 + s) + κ
2B2

1
B0+B1

2γra (s, κ) + κ+ r



− (1 + α) s

q0 + q1
2γra1 (s, κ) q1+q2q1

2γra1 (s, κ) q1+q2q1
+ κ+ r

+ q2

2γra1 (s, κ)
2γra1 (s,κ)

q1+q2
q1

2γra1 (s,κ)
q1+q2
q1

+κ+r

2γra1 (s, κ) + κ+ r

 .
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Plugging in

γra (s, κ) =
r (B1 + s) + κs

B0 −B1

it is straightforward to show by direct computation that

∂W ra (s, κ)

∂κ
> 0,

and

lim
κ→0

(W ra (s;κ)) = W pe (s) .

We can now also compute the total welfare in the limit κ→∞ as:

W ra
∞ (s) : = lim

κ→∞
W ra (s;κ) = q0 (B0 + s) + q1 (B1 + s)

+q2

[
2s (B1 + s)

B0 −B1 + 2s
+

B0 −B1

B0 −B1 + 2s

2B2
1

B0 +B1

]
− (1 + α) s ·

[
q0 + q1

(
2s (q1 + q2)

2s (q1 + q2) + q1 (B0 −B1)

)
+ q2

(
2s

2s+B0 −B1

2s (q1 + q2)

2s (q1 + q2) + q1 (B0 −B1)

)]
.

Proof of Proposition 8

Consider a subsidy policy that starts from level s and declines linearly to zero:

s (t) =

{
s− ξt for t ≤ s

ξ

0 for t > s
ξ

,

where ξ is a parameter that defines the speed of decline. The hazard rate of exit is then

γsm (t) =
r (B1 + s (t))− ·s (t)

B0 −B1
=
r (B1 + s (t))

B0 −B1
+

ξ

B0 −B1
,

which is linear in ξ. We will analyze the limit ξ → ∞. Note that in this limit the

second term of the hazard rate explodes while the first term is bounded and becomes

negligible relative to the second term. Therefore, we approximate the effect of the policy

by ignoring the first term and replacing the actual hazard rate of exit by

γ (ξ) :=
ξ

B0 −B1
.
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Since the policy is in effect for a vanishingly short time period
[
0, s0ξ

]
, the error due to

this approximation vanishes in the limit ξ →∞. Let

λ (ξ) :=
γ (ξ)

p1 (0)
=
q1 + 2q2
q1

γ (ξ)

denote the corresponding approximate stopping rate of an individual player of type

k = 1.

Consider now the benefits of such a policy. Type 0 will stop immediately and type

1 is indifferent between stopping immediately, so the payoffs to those types are given by

B0 + s and B1 + s, as before. Denote payoff of type 2 by V sm (s). Since both of her

neighbors stop with hazard rate γ (ξ) within
[
0, sξ

]
, she observes an exit at rate

2γ (ξ) =
2ξ

B0 −B1

within that interval, and gets value

B1 + s (t) = B1 + s− ξt

at the date when a neighbor exits. Since the length of the subsidy period
[
0, s0ξ

]
is

negligible when ξ is large, we can ignore discounting within the period, and compute

V sm
2 (s) =

∫ s
ξ

0
(B1 + s− ξt) 2ξ

B0 −B1
e
− 2ξ
B0−B1

t
dt

+

(
1−

∫ s
ξ

0

2ξ

B0 −B1
e
− 2ξ
B0−B1

t
dt

)
V2 + ∆ (ξ)

=

(
3

2
B1 −

1

2
B0

)(
1− e−

2s
B0−B1

)
+ s0 + e

− 2s
B0−B1

2B2
1

B0 +B1
+ ∆ (ξ) ,

where ∆ (ξ)→ 0 as ξ →∞. Denoting by Gsm∞ (s) the welfare of the players in the limit

ξ →∞, we have then

Gsm∞ (s) = q0 (B0 + s) + q1 (B1 + s)

+q2

[(
3

2
B1 −

1

2
B0

)(
1− e−

2s
B0−B1

)
+ s+ e

− 2s
B0−B1

2B2
1

B0 +B1

]
.

Consider next the financial costs of the policy. For type 0 cost is s as with other

policies. For player i who is type 1, subsidy has to be paid either if i) i exits before

subsidy expires, or ii) i’s only neighbor exits before subsidy expires. Event i) arrives at
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rate

λ (ξ) =
γ (ξ) (q1 + 2q2)

q1

and event ii) arrives at rate γ∞. We have

γ (ξ) + λ (ξ) = γ (ξ)

(
1 +

q1 + 2q2
q1

)
= 2γ (ξ)

q1 + q2
q1

=
2ξ (q1 + q2)

q1 (B0 −B1)
,

and so the expected subsidy payment conditional on it occurring is

Csm1 (s) =

∫ s
ξ

0
(s− ξt) 2ξ (q1 + q2)

q1 (B0 −B1)
e
− 2ξ(q1+q2)
q1(B0−B1)

t
dt+ ∆′ (ξ)

=

(B0 −B1) q1

(
e
− 2s(q1+q2)
q1(B0−B1) − 1

)
2 (q1 + q2)

+ s+ ∆′ (ξ) ,

where again ∆′ (ξ) → 0 as ξ → ∞. Type 2 will obtain subsidy if i) one of her two

neighbors exits before subsidy expires, and ii) she herself exits before subsidy expires.

The first event arrives at rate

2γ (ξ) =
2ξ

B0 −B1
,

and so, noting that Csm1 (s− ξt) is the expected payment to a player that becomes type 1

at time t ≤ s
ξ and using iterated law of expectation, we can write the expected payment

to type 2 as

Csm2 (s) =

∫ s
ξ

0
Csm1 (s− ξt) 2ξ

B0 −B1
e
− 2ξ
B0−B1

t
dt+ ∆′′ (ξ)

=

∫ s
ξ

0

(B0 −B1) q1

(
e
− 2(s−ξt)(q1+q2)

q1(B0−B1) − 1

)
2 (q1 + q2)

+ (s− ξt)

 2ξ

B0 −B1
e
− 2ξ
B0−B1

t
dt+ ∆′′ (ξ)

=

(B0 −B1)

(
(q1+q2)

2e
− 2s
B0−B1 −(q1)2e

− 2s(q1+q2)
q1(B0−B1)

q2
− (2q1 + q2)

)
2 (q1 + q2)

+ s+ ∆′′ (ξ) ,
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where again ∆′′ (ξ)→ 0 as ξ →∞. The expected total cost in the limit ξ →∞ is then

Csm∞ (s) = q0s+ q1

(B0 −B1) q1

(
e
− 2s(q1+q2)
q1(B0−B1) − 1

)
2 (q1 + q2)

+ s



+q2


(B0 −B1)

(
(q1+q2)

2e
− 2s
B0−B1 −(q1)2e

− 2s(q1+q2)
q1(B0−B1)

q2
− (2q1 + q2)

)
2 (q1 + q2)

+ s


and the total welfare is

W sm
∞ (s) = q0 (B0 + s) + q1 (B1 + s)

+q2

[(
3

2
B1 −

1

2
B0

)(
1− e−

2s
B0−B1

)
+ s+ e

− 2s
B0−B1

2B2
1

B0 +B1

]
− (1 + α) s

{
q0s+ q1

[
(B0 −B1) q1

(
e
− 2s(q1+q2)
q1(B0−B1) − 1

)
+ s

]

+q2

(
1− e−

2s
B0−B1

)(B0 −B1) q1

(
e
− 2s(q1+q2)
q1(B0−B1) − 1

)
2 (q1 + q2)

+ s


 .

By direct computation, we find that W sm is strictly concave:

(W sm
∞ )′′ (s) < 0

for all s ≥ 0. Moreover, we find

W sm
∞ (s)−W ra

∞ (s)

=
(B0 −B1) e

− 2s
B0−B1

[
(B0 −B1)

(
e

2s
B0−B1 − 1

)
− 2s

]
[(B0 +B1) (q1 (1 + α) + q2α) + 2q2α]

2 (B0 +B1) (B0 −B1 + 2s)
> 0.

Proof of Proposition 9

We show that any constant adoption rate γ implemented by a permanent subsidy s

handed to any adopting agent is also implemented by a restricted permanent subsidy s∗

handed only to adopting type 1 agents, with s∗, with s∗ < s. This will then establish

that the social planner can implement any given constant neighbor adoption rate γ at
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lower cost under a neighbor reward policy than under a permanent subsidy.

For any γ ≥ γ1, the permanent subsidy s required to implement γ is

s = (B0 −B1)
(γ
r

)
−B1 ≥ 0

whereas the restricted subsidy s∗ required to implement the same neighbor adoption

rate γ satisfies

s∗ =
(B0 −B1)

(γ
r

)
−B1

γ
r + 1

∈ [0, s) .

These two policies implement an identical joint distribution of adoption rates and type

at the time of adoption. The amount s∗ of the restricted permanent subsidy is lower than

the amount s of the permanent subsidy. Moreover, the restricted permanent subsidy is

paid only to agents who are of type 1 at the time of adopting, unlike the permanent

subsidy, which is also paid to type 0. It follows that the restricted permanent subsidy

s∗ yields a higher social welfare than the permanent subsidy s. Moreover, the restricted

subsidy s∗ is payoff equivalent to the neighbor reward program m, with

m =

(
1 +

p1
γ
r

)
s∗.

In other words, the permanent subsidy s > 0 yields a lower social welfare than the

neighbor reward

m =

(
1 +

p1 (B0 −B1)

s+B1

)
s (B0 −B1)

s+B0
,

which is an amount in [0, B0 −B1] .
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8 Appendix B: NOT FOR PUBLICATION

B1: Informational spillovers

We present a specific model involving informational spillovers across neighbors in

the case of the line. Suppose that the cost of adopting depends on the technique used.

There are two choices to be made when adopting, for instance different organizational

dimensions, a1 ∈ {L,R} and a2 ∈ {L,R}. The state of nature, described by θ = {θ1, θ2}
determines which adoption technique is less costly. Specifically, the cost of adoption is

c = c1 + c2 where ci = cl1ai=θi + ch1ai 6=θi , i.e the cost is minimized when the technique

used matches the state. When a player observes her neighbor, with probability 1/2, she

learns perfectly about dimension 1 and with probability 1/2 about dimension 2. What

is learned does not depend on the choice the neighbor actually made, which ensures that

there is no inference made on the information the neighbor’s neighbor held.

In this case

B2 = B − 2
1

2
(cl + ch) = B − (cl + ch),

B1 = B − cl −
1

2
(cl + ch) = B − (

3

2
cl +

1

2
ch),

B0 = B − cl −
1

2
(cl)−

1

4
(cl + ch) = B − (

7

4
cl +

1

4
ch).

So that

B0 −B1 =
1

4
(ch − cl),

B1 −B2 =
1

2
(ch − cl).

In this case we have γ1 > γ2, so that this setup will naturally correspond to the shrinking

network setup.

B2: War of attrition

We present here a more classical version of the war of attrition, adding as in the rest

of the paper the network structure. Firms decide when to exit, where exit is irreversible.

Staying in costs c > 0 per unit of time, but there is no discounting.

Once both neighbors of a firm exit, the remaining isolated firm gets prize B. As in

the rest of the paper, each player only observes whether her neighbors are active or not,

but cannot see the status of any other player in the network.

We show there exists a symmetric equilibrium, characterized by a date t′ > 0 such

that within (0, t′) all those players who have two active neighbors mix, and within (t′,∞)
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there are only players with one active neighbor left (i.e. isolated pairs of players) who

play a standard war of attrition with each other.

Denote by V (t) the value of a player, who has one active neighbor left (so that one

of her two neighbors have exited). We have V (t) > 0 for t ∈ (0, t′) and V (t′) = 0.

Let us denote by γ (t) the hazard rate with which an arbitrary neighbor exits at time

t, where t ∈ (0, t′). For a randomizing player to be indifferent, the benefit of delaying

exit by dt must equate the cost of doing so, i.e. 2γ (t) dtV (t) = cdt, so that

2γ (t)V (t) = c,

or

γ (t) =
c

2V (t)
. (19)

The Bellman equation for the player who has only one neighbor left can be written:

V (t) = γ (t) dtB + (1− γ (t) dt)

(
V (t) +

·
V (t) dt

)
− cdt,

which gives
·
V (t) = −γ (t) (B − V (t)) + c. (20)

Plugging (19) in (20) gives us a differential equation for V (t):

·
V (t) = − cB

2V (t)
+

3

2
c.

Starting with any initial value V (0) such that 0 < V (0) < B
3 this has a solution V (t)

that is decreasing and hits zero at some time point t′.

B3: Generalization with two state variables

In the application to the adoption of technologies, a more general model should keep

track of two state variables:

• a the number of active neighbors

• i the number of inactive neighbors

Types are thus described by (a, i) where a ∈ {0, 1, 2} and i ∈ {0, 1, 2}. A random

member of the network can be of types (2, 0), (1, 0), (1, 1), (0, 2), (0, 1) or (0, 0). In the

model used in the core of the paper, we restrict ourselves to one state variable. The

implicit assumption we make is that a+ i = 2, i.e everyone starts with the same number
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of neighbors, some active and some inactive. Thus in the main part of the paper there

were only three possible types (2, 0), (1, 1), and (0, 2). We now show that the general

pattern is preserved with a slight complication due to the existence of types (1, 0). Types

(0, 2), (0, 1) or (0, 0) do not have any active neighbors and therefore stop immediately

regardless whether they have 0, 1 or 2 inactive neighbors.

As in the main model we introduce some important measures:

γ(1,0) :=
rB2

B1 −B2
,

γ(1,1) :=
rB1

B0 −B1
,

γ(2,0) :=
rB2

2 (B1 −B2)
.

The equivalence between types here and in the model of section 3 implies that γ(1,1) = γ1

and γ(2,0) = γ2. We consider two cases: γ(1,0) > γ(1,1) and γ(1,0) < γ(1,1).

Case 1: γ(1,0) > γ(1,1)

In this case types (1, 0) have the highest incentives to stop. Indeed these types always

have a higher incentive to stop than types (2, 0), since they get the same benefit from

stopping B2, but they get lower benefit of waiting µ(B1 −B2), whereas types (2, 0) get

benefit (2µ(V1 −B2) with V1 > B1). We now describe the evolution of beliefs.

·
p(1,0) (t) = −λ (t) p(1,0) (t)

(
1− p(1,0) (t)

)
< 0.

As time passes, players become less confident that their neighbor is of type (1, 0).

Whereas in section 3 there were two countervailing forces affecting beliefs, here the

second force is not present since types (2, 0), if their other neighbor happens to stop,

will turn into a type (1, 1), not a type (1, 0).

Thus at some date t(1,0) all types (1, 0) will have stopped. We are then back to the

case studied in section 3 with only types (1, 1) and (2, 0). Depending on the relative size

of γ(1,1) := rB1
B0−B1

and γ(2,0) := rB2
2(B1−B2)

, we will be either in the case of shrinking or of

fragmenting networks.

Case 2: γ(1,1) > γ(1,0)

Types (1, 1) initially mix. The evolution of beliefs is given by:

·
p(1,1) (t) = −λ (t) p(1,1) (t)

(
1− p(1,1) (t)

)
+ γ(1,1) (t) p(2,0) (t)

= −γ(1,1)
(
1− p(1,1) (t)− p(2,0) (t)

)
< 0
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In this case, as in the case studied in section 3, there are two forces affecting the

belief p(1,1) (t). However, the dominating effect is the evolution of beliefs and as time

passes, active members of the network become less confident that their neighbor is of

type (1, 1). At some date t(1,1), among active members of the networks, only types (1, 0)

and (2, 0) remain. The networks are therefore formed of lines of random sizes with types

(1, 0) at the extremities. Types (1, 0) then have a strictly higher incentive to adopt. As

soon as a type (1, 0) adopts, the neighbor, if he is of type (2, 0), transforms into a type

(1, 1) and thus immediately adopts. Thus entry by a type (1, 0) creates an immediate

cascade that immediately covers the entire line. It is therefore as if types (1, 0) were

playing a waiting game with no type uncertainty. They therefore mix at rate γ(1,0) and

as soon as one adopts, so does the entire line.

Appendix C: Non-Markovian equilibria

Both in the shrinking and fragmenting network cases, there can be non-Markovian Equi-

libria, where the agents use the realizations of their neighbor’s exit dates as randomiza-

tion devices for their own dates of exit. Importantly, such equilibria are associated with

the same distribution F (t) of dates at which a neighbor stops, and also with the same

hazard rate γ (t) at which a neighbor stops.

Shrinking networks

In the shrinking network case, a simple (and extreme) example of such an equilibrium

is the following. In every component, the two players who start off as types 1 from the

beginning of the game mix at constant rate λ1 (t) = γ1. Type 2 players never stop, unless

one of their neighbors stops, in which case they follow immediately, as soon as they turn

into types 1.

Under these strategies, the belief p1 (t) about a neighbor remains constant equal to

p1 (0) , exactly like in the case of this Markovian equilibrium, but for different reasons.

First, a failure to stop is not informative about a neighbor’s type, since a type 1 or a

type 2 neighbor are equally likely to stop at any given time: a type 1 neighbor, on her

own initiative, and a type 2 in reaction to her other neighbor’s exit. Thus the belief

updating effect is null. Second, a neighbor who was perviously a type 2 cannot possibly

have turned into a type 1, otherwise she would have stopped immediately. Thus the

evolving type effect is also absent. Overall, the belief about a neighbor’s type remains

constant.
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In this non-Markovian equilibrium, the distribution of the stopping date of an average

player is exponential with parameter 2γ1
q1+q2q1+q2

, as in the Markovian case. As a result,

the average time before an average member of the network stops is the same as in the

Markovian equilibrium

E [T ] = (q1 + q2)
1

2γ1
.

Note also that the distribution of the stopping date is the same for all agents initially of

type either 1 or 2, since all agents of a given component stop at the same date.

This is different in the Markovian equilibrium. There, the distribution is different for

players who are initially type 1 and the ones who are initially type 2. The distribution

of the stopping date of an agent who is initially of type 1 is also exponential with rate
2(q1+q2)γ1

q1
. For agents who are initially type 2, the stopping date is the sum of two

variables, each of which follows an exponential distribution, the first with rate 2γ1 and

the second with rate 2(q1+q2)γ1
q1

. But the distribution of the stopping date of an average

player is the same in both the Markovian and non-Markovian equilibrium.

The main observable (and testable) difference between the two equilibria is in the

joint distribution of the stopping time profiles. While the non-Markovian equilibrium

example has all the agents exiting at the same date, there is some dispersion of exit

dates in the Markovian equilibrium.21

Fragmenting networks

Fragmenting networks too admit non-Markovian equilibria, but their properties differ

from the Markovian ones even less than in the shrinking case. In one instance of such

an equilibrium, agents who are still active at date t2 and are of type k = 1 at date t2

could choose a stopping date that is an increasing function φ of the date at which their

neighbor who stopped prior to t2 did it. For an appropriately chosen function φ, this is

an equilibrium.

The main properties of this equilibrium remain the same as for the Markovian equi-

librium. One noticeable difference is the calculation of the distribution of the gap lg

from Proposition 5.

Indeed, when the equilibrium played is the one outlined in the previous paragraph,

the events that two players separated by a gap at date t2 and who are type 1 at that date

both stop before their neighbors are no longer independent. As a result, the probability

21It is easy to construct other non-Markovian equilibria. For example, consider all the convex combina-
tions of the Markovian equilibrium and our non-Markovian example. Or equilibria where players play the
Markovian strategy in some set of dates and the non-Markovian example strategy in the complementary
set of dates.
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of this event is no longer 1/2 ·1/2 = 1/4 but it equals the probability that their common

neighbor who stopped prior to date t2 did it earlier than both of the neighbors of the

neighbors of these two agents, which is a number p′ greater than 1/3.

Similarly, the events that two players separated by a gap at date t2 and who are

type 1 at that date both stop later than their neighbors are no longer independent. As

a result, the probability of this event is no longer 1/2 · 1/2 = 1/4 but it equals the

probability that their common neighbor who stopped prior to date t2 did it earlier than

both of the neighbors of the neighbors of these two agents, which is a number p′′ smaller

than 1/3.

As a result, we obtain instead the following probabilities:

P [lg = 3] = p2p′ > 0.02

P [lg = 2] = p2
(
1− p′ − p′′

)
+ p (1− p)

P [lg = 1] = p2p′′ + p (1− p) + (1− p)2 < 0.78.
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