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Abstract

How does the exposure to past institutions affect current cooperation? While a growing lit-

erature focuses on behavioral channels, we show how cooperation-enforcing institutions affect

rational learning about the group’s value. Strong institutions, by inducing members to cooper-

ate, may hinder learning about intrinsic values in the group. We show, using a lab experiment

with independent interactions and random rematching, that participants behave in accordance

with a learning model, and in particular react differently to actions of past partners whether

they were played in an environment with coercive enforcement or not.
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1 Introduction

Why does the level of cooperation vary across societies and organizations? A natural answer is

that rules, or the strength of their enforcement, might differ across settings. We expect high levels

of cooperation where formal enforcement punishes defectors, for instance by the means of high

fines. If strong formal enforcement is absent, cooperation will be sustained only if cooperative

values are prevalent in the group and people therefore expect to interact with cooperative people.
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For this second driver of cooperation, learning about the cooperativeness of the group becomes

essential. In this paper, we study the interaction between these two drivers of current cooperation.

Formal enforcement does not only affect the decision to cooperate, it also impacts on the capacity

to learn about others’ willingness to cooperate. In contexts with high levels of cooperation and

high fines for those who do not cooperate, it is difficult to tell apart people who cooperate because

of the threat of fines from those that are intrinsically cooperative types.

Our study relies on the combination of theory and empirics, using a lab experiment where

participants play a series of indefinitely repeated prisoner’ dilemma that, in their baseline version,

build on Dal Bó and Fréchette (2011). At the beginning of each game, it is randomly determined

whether a formal enforcement in the form of a fine will be imposed in all rounds of the game when

a participant chooses to deviate rather than cooperate.1 At the end of the game, each participant

is re-matched with a new one and a new institution is drawn. The design ensures that each

participant (i) has a different history of institutional exposure and of past behavior of partners,

and that this history both (ii) does not depend on self-selection into particular institutional

environments, and (iii) is independent from the current environment faced by each individual.

Each experimental subject thus faces a different history of past cooperation observed in different

institutional environments.

Our main result shows that in early games, where there is uncertainty about whether part-

ners are of a cooperative or a non-cooperative type, past enforcement negatively affects current

cooperation. This is somewhat surprising given the findings of a recent literature that documents

positive spillover effects of past institutions (see Galizzi and Whitmarsh, 2019, for a survey). Our

theoretical model shows that this result could be due to the interaction between fines and learning.

The behavior of partners in previous games brings information about how cooperative the group is

and thus affects current behavior. But the strength of enforcement rules implemented in the past

changes the informativeness of cooperation observed in the past. We show that lab participants

behave in accordance with these learning dynamics: cooperation by the partner in the previous

game, if it was played with a fine, has a smaller positive effect than if this cooperation took place

in a game without fines. This learning effect may imply that current fines negatively affect future

cooperation. If the group is non cooperative, fines may speed up learning, since more individuals

will be observed deviating in a coercive environment.

The focus of the paper is on the interaction between institutions and rational learning. It

is closely related to the recent literature on enforcement spillovers (e.g. Peysakhovich and Rand,

2016; Duffy and Fehr, 2018), that tends to focus on behavioral channels. Spillovers complicate the

identification of learning, since a fine in the past may have a direct effect on current cooperation at

the same time as it impacts learning. We propose two identification strategies to identify learning

separately from spillovers. The main identification strategy exploits the idea that behavioral

1In our setting when fines are present they are exogenously enforced. In this sense our setting differs from
Acemoglu and Jackson (2017) who study complementarities in the enforcement of cooperation between laws and
social norms.
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spillovers do not last (see Galbiati, Henry, and Jacquemet, 2018) while learning is cumulative:

whether cooperation was observed one or two periods ago does not matter for learning, the

information obtained being the same, but will matter for spillovers if they decay over time. We

implement this strategy by regressing current cooperation levels on variables that are history

dependent (spillovers) and history independent (learning). We show that replacing in the history

one signal of deviation without fine by a signal of cooperation without fine, increases current

cooperation by 10%; while replacing it by a signal of cooperation with fine increases current

cooperation only by 5%. This is coherent with rational learning dynamics. As a robustness

check, we also provide a structural analysis (provided in Appendix B) which identifies learning

conditional on behavioral spillover parameters. We first generalize our theoretical model to the

case in which individual values evolve over time as a result of past experience. This extended

model allows us to express the probability of cooperation as a function of both learning and

spillover parameters that we can estimate with our experimental data.

Our study provides several contributions to the existing literature. We document the dynamic

interaction between institutions and learning about group values.2 Acemoglu and Jackson (2015),

study how norms of cooperation can emerge in an environment where current generations learn

from observed cooperation in past generations. They do not consider, however, the effect of

institutional variations in the past and their interactions with learning. The main focus of our

study is the dynamic interactions between institutions and information provision, as in Benabou

and Tirole (2011). In their setup, individuals care about the inferences made by other group

members about their types. Institutions shape equilibrium behaviors and thus the amount of

information conveyed by actions. In our setup, the learning is rather about the overall group

cooperativeness. Our work also relates to a recent literature showing that formal rules (Sliwka,

2007; van der Weele, 2009) or principals’ interventions (such as the introduction of fines for

non cooperators, Friebel and Schnedler, 2011; Galbiati, Schlag, and Van Der Weele, 2013) can

convey information about the distribution of preferences or values in a group, thus leading to

ambiguous contemporaneous effects of sanctions. Other experimental papers have also studied

how the introduction of sanctions by principals in experimental delegation games affect agents

actions by providing information about the type of the principal (Falk and Kosfeld, 2006; Bowles,

2008). These papers show that contemporary sanctions may crowd-out cooperative behavior by

signaling that principals do not trust agents. Our contribution shows a different effect focusing

on past sanctions and learning about group values.

2In a related work, Dal Bó and Dal Bó (2014) show that explicit information about moral values affect cooperation
in a standard voluntary contribution game. In their setting however the information is provided by the experimenter
and does not allow for dynamic learning about the distribution of prevalent types in the lab.
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Table 1: Stage-game payoff matrices

C D
C 40 ; 40 12 ; 60
D 60 ; 12 35 ; 35

C D
C 40 ; 40 12 ; 60-F
D 60-F ; 12 35-F ; 35-F

(a) Baseline game (b) With fine

2 Descriptive experimental evidence

2.1 Experimental design

The design of the experiment closely follows the experimental literature on infinitely repeated

games and in particular Dal Bó and Fréchette (2011). Subjects in the experiment play infinitely

repeated games implemented through a random continuation rule. At the end of each round,

the computer randomly determines whether or not another round is to be played in the current

repeated game (“match”). This probability of continuation is fixed at δ = 0.75 and is independent

of any choices players make during the match. Participants therefore play a series of matches of

random length, with expected length of 4 rounds.3 At the end of each match, players are randomly

and anonymously reassigned to a new partner to play the next match. This corresponds to a quasi-

stranger design since there is a non zero probability of being matched more than once with the

same partner during the experiment. The experiment terminates once the match being played at

the 15th minute ends.

The stage-game in all interactions is a Prisoner’s dilemma. Institutions are randomly assigned:

at the beginning of each match, the computer randomly determines whether the match is played

with a fine (payoffs in Table 1b) or without (Table 1a); the two events occur with equal probability.

The result from this draw applies to both players of the current match, and to all its rounds. The

fine when imposed is set at F = 10 so that the resulting stage-game payoff matrix is isomorphic

to Dal Bó and Fréchette (2011) {δ = 3/4;R = 40} treatment, in which cooperation is a sub-game

perfect and risk dominant action. When matched with a new partner, subjects are not provided

with any information about the partner’s history. Players however receive full feedback at the

end of each round about the actions taken within the current match.4

2.2 Learning to Cooperate: Descriptive Evidence

Figure 1 provides an overview of the cooperation rate observed in each of the two institutional

environments.5 The overall average cooperation rate is 32%, with a strong gap depending on

3The expected number of rounds is given by
∑+∞
k=1 k(1 − δ)δk−1 = (1 − δ)

∑+∞
k=1 kδ

k−1 = (1 − δ) 1
(1−δ)2 = 1

1−δ .
4See Appendix A for a detailed description of the experimental procedures.
5Section A.1 in the Appendix describes the outcome variable of interest, which is the first stage decision in each

match, as well as the working sample.
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Figure 1: The disciplining effect of current enforcement

(a) Game level behavior
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(b) Individual level cooperation
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Note. Cooperation observed at first round of each match in the working sample (see the Appendix, Section A.1) as a
function of the current fine. Left-hand side: observed evolution over the number of matches played in the past. Right-hand
side: cumulative distribution of individual cooperation rate at first round of all matches played respectively with and without
a fine.

whether a fine enforces cooperation: the average cooperation rate jumps from 19% in the baseline,

to 46% with a fine. This is clear evidence of a strong disciplining effect of current enforcement.

Figure 1a documents the time trend of cooperation over matches. The vertical line identifies the

point in time beyond which we no longer observe a balanced panel—the number of matches played

within the duration of the experiment is individual specific, since it depends on game lengths.

Time trends beyond this point are to a large extent driven by the size of the sample. Focusing

on the balanced panel, our experiment replicates in both environments the standard decrease in

cooperation rates: from 15% at the initial match in the baseline, 69% with a fine, to 11% and

41% at the 13th game. The time trends are parallel between the two conditions. Note that since

the history of past institutions is both individual specific and random, it is statistically the same

for the two curves for any match number.

Figure 1b reorganizes the same data but at the individual level, based on the cumulative

distribution of cooperation in a given environment. We observe variations in both the intensive

and the extensive margin of cooperation in the adjustment to the fine—resulting in first order

stochastic dominance of the distribution of cooperation with no fine. First, regarding the extensive

margin, we observe a switch in the mass probability of subjects who always choose the same first

round response: 45% never cooperate with a fine, while only 26% do so with a fine, and the share

of subjects who always cooperate raises from 4% to 17% when a fine is implemented. More than

half the difference in mass at 0 thus moves to 1. Turning to the intensive margin, the distribution

of cooperative decisions with no fine is more concentrated toward the left: 70% of individuals

who switch between cooperation and defection cooperate less than 30% of the time with no fine,
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Figure 2: Observed dynamics of cooperation in early games

(a) The effect of past enforcement
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(b) The effect of the history of play
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Note. Cooperation at first stage in the working sample (see the Appendix, Section A.1) in early games according to the draw
of a penalty at previous match. In each figure, the data is split according to whether the match occurs early (before the 7th
match) or late. Left-hand side: each subpanel refers to current enforcement; Right-hand side each sub-panel refers to the
partner’s decision experienced at previous match.

while it is the case of only 40% of individuals who switch from one match to the other in the fine

environment.

We now turn to the main focus of the paper. To present the evidence graphically, we restrict

to early games where the uncertainty about group cooperativeness is large.6 Figure 2a documents

the surprising effect of fines experienced in previous matches on current cooperation. Comparing

the two left hand side bars to the right hand side ones unambiguously demonstrates that current

enforcement has a strong disciplining effect. For instance, restricting to matches where no fine was

experienced in the past, the average rate of cooperation increases from 0.25 to 0.54 in environments

with enforcement (bars 1 and 3). On the contrary, enforcement in the past induces a fall in

current cooperation. For instance, comparing the two bars on the right hand side, corresponding

to matches where a fine is currently in place, having played the previous match with fines decreases

cooperation from an average of 0.54 to 0.38 (bars 3 and 4). Such an effect of past institutions is

puzzling, since one would expect that past fines are either neutral or exert a positive effect on

current cooperation through behavioral channels (e.g., Peysakhovich and Rand, 2016).

The interaction between cooperation-enforcing institutions and learning can potentially ex-

plain such a pattern. Consider the case where the news are bad (i.e., the population is less

cooperative than expected; as seems to be the case according to the evolution of cooperation over

time shown in Figure 1). In this case, experiencing a fine can speed up learning the bad news,

since observing deviation in an environment with fines is a strong indicator that the partner is

non-cooperative. This interaction between institutions and learning is presented in Figure 2b,

6See the Appendix, Section B.1.3, for a detailed description of how early and late games are defined.
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which reports the level of cooperation depending on whether cooperation (right panel) or a devi-

ation (left panel) has been observed in the previous match in an environment with or without a

fine. Comparing the two left hand side bars to the right hand side ones shows that cooperation

by the partner in the previous match increases cooperation in the current match, consistent with

the idea that experimental subjects learn about the willingness to cooperate of their partners.

However this learning is clearly affected by the institutional environment. When the action (co-

operation or deviation) was taken in an environment without fines, it leads to higher levels of

current cooperation. For instance, comparing the two bars on the right hand side, corresponding

to matches where the partner cooperated in the previous match, if that cooperation was observed

in an environment with no enforcement, the average level of cooperation is 0.69 while it falls to

0.49 if the previous match was played with fines (bars 3 and 4).

Changes in cooperation according to the history of institutional exposure however combine

the effect of learning as well as the direct effect of enforcement on cooperation behavior. To

clarify the link between learning and enforcement institutions, we now turn to a theoretical model

that formalizes the interaction between the institutional environment and learning about group

cooperativeness.

3 A theoretical model of cooperation dynamics

In each match (we use index t for the match number), the players simultaneously choose between

actions C and D to maximize their payoff in the current match. At the end of the match, players

observe the partner’s decision. In the case where a match is a repeated prisoner’s dilemma, as

is the case in the experiment, this requires the first period action in a match to fully summarize

strategies.7 To ease exposition, we denote i the player under consideration and jt the partner of

i in match t. The institution experienced by player ` in match t is denoted F`,t ∈ {0, 1} and the

action of player ` in match t is denoted a`,t ∈ {C,D}.
The payoff of player i from playing ait ∈ {C,D} in match t is denoted Ua

it and is given by:{
UC
it (Fit, pit) = V C

it (Fit, pit) + βi ,

UD
it (Fit, pit) = V D

it (Fit, pit) ,

where V a
it (Fit, pit) is the material payoff player i expects from choosing action a in match t. This

expected payoff depends in particular on the beliefs player i holds on the probability that the

partner jt cooperates, pit, and on whether the current match is played with a fine, Fit. Note that

pit is in fact a function of Fit, since the presence of a fine affects the probability that the partner

cooperates.8

7As explained in Section A.1 we restrict the analysis to a set of strategies that imply that the first round action
summarizes the strategies. Specifically, we restrict players to play either Grim Trigger, Tit for Tat or Always Defect.

8We drop this dependency of pit on Fit in the notation.
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The parameter βi measures player i’s intrinsic values, i.e. the individual propensity to cooper-

ate.9 We suppose there is uncertainty on the set of group’s values, i.e the set of individual values

βi. We consider two possible states of the world. With probability q0 the state is high and βi is

drawn from the normal distribution Φ(µH , σ
2), while with probability 1 − q0, βi is drawn from

Φ(µL, σ
2), with µL < µH . The value attached to cooperation by society is higher in the high

state.

3.1 Benchmark model

First consider a benchmark model with no uncertainty on values (q = 1). We now use the specific

payoffs corresponding to the prisoner’s dilemma in order to explicitly describe the impact of fines

on payoffs. Denote πait,ajt the monetary payoff of i in a match where ait is played against ajt.

Individual i, with beliefs pit that her partner will cooperate, chooses action C if and only if the

following condition is satisfied:10

pit
1

1− δ
πC,C + (1− pit)

[
πC,D +

(
πD,D − F × 1{Fit=1}

) δ

1− δ

]
+ βi

≥ pit

[(
πD,C − F × 1{Fit=1}

)
+
(
πD,D − F × 1{Fit=1}

) δ

1− δ

]
+ (1− pit)

1

1− δ
(
πD,D − F × 1{Fit=1}

)
.

This condition can be re-expressed as

βi ≥ β∗(Fit) ≡ Π1 − F × 1{Fit=1} + pit

[
Π2 −

δ

1− δ
(
F × 1{Fit=1} + Π3

)]
, (1)

with the parameters defined as Π1 ≡ πD,D − πC,D > 0, Π2 ≡ (πD,C − πD,D)− (πC,C − πC,D) and

Π3 ≡ πC,C − πD,D > 0.11

Condition (1) implies that the decision to cooperate follows a cutoff rule, such that an individ-

ual i cooperates if and only if she attaches a sufficiently strong value to cooperation βi ≥ β∗(Fit),

where the cutoff β∗ depends on whether the current match is played with a fine. Since there is

no uncertainty, and thus no learning, all players share the same belief over the probability that

the partner cooperates, given by pit(Fit) = P [βj ≥ β∗(Fit)] = 1− ΦH [β∗(Fit)]. The cutoff value

β∗(Fit) is thus defined by the indifference condition:

β∗(Fit) = Π1 − F × 1{Fit=1} + [1− ΦH [β∗ (Fit)]]

[
Π2 −

δ

1− δ
(
F × 1{Fit=1} + Π3

)]
. (2)

9In the generalized model presented in the Appendix, Section B.1, we introduce spillovers by assuming that the
values βit depend on t and in particular can be affected by past experiences.

10We explicitly use the fact that players are restricted to choosing between Grim Trigger, Tit For Tat and Always
Defect.

11In the case of the experiment, Π1 = 23, Π2 = −3 and Π3 = 5.
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We show in Proposition 1 below that there always exists at least one equilibrium, and this

equilibrium is of the cutoff form. There could exist multiple equilibria, but all stable equilibria

share the intuitive property that individuals are more likely to cooperate in an environment with

fines.

Proposition 1 In an environment with no uncertainty on values (q = 1), there exists at least

one equilibrium. Furthermore all equilibria are of the cutoff form, i.e individuals cooperate if and

only if βi ≥ β∗(Fit) and, in all stable equilibria, β∗ decreases with F and with µH .

Proof. See Appendix, Section C.

The benefit of cooperation is increasing in the probability that the partner cooperates. There

exist equilibria where cooperation is prevalent, which indeed makes cooperation individually at-

tractive. On the contrary there are equilibria with low levels of cooperation which makes coop-

eration unattractive. These equilibria can be thought of as different norms of cooperativeness in

the group, driven by complementarities in cooperation.

3.2 Learning in the shadow of the law

We now consider the more general formulation with uncertainty about the group’s values. We

denote qit the belief held by player i at match t that the state is H. All group members initially

share the same beliefs qi0 = q0. They gradually learn about the group’s values when observing

the decisions of partners in previous matches and we show how fines impact learning.

First consider the initial match, t = 1. All members of the group share the same belief q0 that

the state is H. The equilibrium is defined by a single cutoff value β∗(Fit) as in the benchmark

model,

β∗(Fi1) = Π1 − F × 1{Fi1=1} + p∗1(Fi1)

[
Π2 −

δ

1− δ
(
F × 1{Fi1=1} + Π3

)]
.

The only difference with the benchmark model is that the probability that the partner cooperates

takes into account the uncertainty about the group’s values:

p∗1(Fi1) = q0 [1− ΦH [β∗(Fi1)]] + (1− q0) [1− ΦL [β∗(Fi1)]] .

We now consider how beliefs about the state of the world are updated following the initial match.

The updating following this initial match provides all the intuitions for the more general updating

process. The update depends on the action of the partner and whether the match was played with

or without a fine. The general notation we use is qit(Fit−1, ajt−1 , qit−1). For the update following

the first match, we can drop the dependence on qit−1, since all individuals initially share the same

belief.

9



Clearly, the belief that the state is H decreases if the partner chose D, while it increases if the

choice was C. The update however depends as well on whether the previous match was played

with a fine or not. If the partner cooperated in presence of a fine, it is a less convincing signal

that society is cooperative than if he cooperated in the absence of the fine—qi2(0, C) > qi2(1, C).

Similarly, deviation in the presence of a fine decreases particularly strongly the belief that the

state is high—qi2(1, D) < qi2(0, D). This is summarized in the following Lemma:12

Lemma 1 In any stable equilibrium, beliefs following the first period actions are updated in the

following way:

qi2(0, C) > qi2(1, C) > q0 ,

qi2(1, D) < qi2(0, D) < q0 .

Proof. See Appendix, Section C.

We show in Proposition 2 that this updating property is true in general for later matches.

The beliefs on how likely it is that the partner cooperates in match t, p∗t (Fit, qit), depends both on

player i’s history, but also on the beliefs about the partner’s history. For instance if the partner

faced a lot of cooperation in previous games, she becomes more likely to cooperate. The general

problem requires to keep track of the higher order beliefs. However if a stationary equilibrium

exists, with the property that β∗(0, q) > β∗(1, q) for all beliefs q, then the updating property

of Lemma 1 is preserved. Furthermore, in the appendix we show existence of such a stationary

equilibrium, under a natural restriction on higher order beliefs, i.e if we assume that a player

who had belief qit in match t believes that players in the preceding match had the same beliefs

qj′,t−1 = qit.

Proposition 2 (Learning) In an environment with spillovers and learning, if an equilibrium

exists, all equilibria are of the cutoff form, i.e individuals cooperate if and only if βi ≥ β∗(Fit, qit).

Furthermore, if in equilibrium β∗(0, q) > β∗(1, q) for all beliefs q, then the beliefs are updated in

the following way following the history in the previous interaction:

qit(0, C, qit−1) > qit(1, C, qit−1) > qit−1,

qit(1, D, qit−1) < qit(0, D, qit−1) < qit−1.

Proof. See Appendix, Section C, provided for the more general case with spillovers.

Lemma 1 and Proposition 2 show how institutions affect learning. These results imply that

having fines in the previous match can potentially decrease average cooperation in the current

match. If the state is low, a fine can accelerate learning if, on average, sufficiently many people

deviate in the presence of a fine. This in turn decreases cooperation in the current match.

12Stability guarantees that when the current match is played with a fine, the probability of cooperation increases.
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4 Results

We now study empirically the interaction between institutions and learning highlighted in the

model. The descriptive evidence provided in Figure 2b, discussed in Section 2, suggests that the

pattern of cooperation observed in the current match is consistent with the ranking of posterior

beliefs predicted in Lemma 1 and Proposition 2, qit(0, C) > qit(1, C) > qit(0, D) > qit(1, D).13

The identification of learning effects is however complicated by the fact that both institutions

and cooperation by the partner in previous matches can also create spillovers on current coopera-

tion, as highlighted in the literature (Galizzi and Whitmarsh, 2019). Two types of such spillovers

of past institutions can be at stake: direct spillovers, where the fine experienced in the immediate

past directly affects preferences and increases current cooperation, and indirect spillovers, where

fines in the past increase cooperation of the previous partner, which in turn increases current

cooperation. This second type of spillover is consistent with indirect reciprocity motives (Nowak

and Roch, 2007).

If such spillovers exist, they both interfere with the identification of learning effects. On the

one hand, cooperation by the previous partner affects current cooperation both because it provides

information on the cooperativeness of the group, but also because of indirect spillovers. On the

other hand, a fine in the previous period similarly impacts learning as explained in the model,

but also gives rise to direct spillovers. Direct and indirect spillovers are documented in Galbiati,

Henry, and Jacquemet (2018).14 Their empirical results show that these spillovers are short-living:

cooperation by the partner two matches ago has a much weaker effect on than cooperation by the

partner in the previous match.

We use these findings to identify separately learning from spillovers. To illustrate the idea,

compare two situations, with identical institutional histories: the first where the partner in the

previous match cooperated while the one two matches ago did not and the second, with the

opposite behavior, the partner in the previous match deviated and the one two matches ago did

not. From the point of view of learning, both situations are equivalent since the information

obtained is identical. However, in terms of spillovers, the first situation should lead to higher

levels of current cooperation.

We exploit this idea in Figure 3, where we examine the effect of the history, in terms of

institutions and behavior of the partner, in the five previous matches independently of the order

in which this history occurred. Figure 3a for instance displays how average cooperation is affected

by the number of matches without fines where the partner cooperated (an outcome we denote C0).

An increase in the number of C0 has a very strong effect on current cooperation, with an average

rate of cooperation of 0.29 when it never occurred in the 5 previous matches to full cooperation

13qit(0, C) corresponds to the third bar in Figure 2b, qit(0, D) to the fourth, qit(0, D) to the first and qit(1, D)
to the second.

14Galbiati, Henry, and Jacquemet (2018) use the same experimental setup, but limit the analysis to late matches,
where learning has converged, while the graphical evidence in Figures 2a and 2b is based on behavior in early
matches.
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Figure 3: Current cooperation as a function of history in the previous 5 games
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(c) Nb of D0
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Note. Each panel reports the average level of cooperation in t as a function of the number of decisions aj,t−s, s = 1, ..., 5 in

the current history. The abscissa is
∑5
s=1 C

0
t−s in panel 3a,

∑5
s=1 C

1
t−s in panel 3b,

∑5
s=1 D

0
t−s in panel 3c and

∑5
s=1 D

1
t−s

in panel 3d. For both C0 and D1, observed histories only range from 0 to 4. For D1, the observed level of cooperation when
5 of them belong to history is 0%.

when it occurred 4 times. Another striking feature visible in Figure 3, is that the rate of increase

in cooperation is much faster as a function of the number of C0 than as a function of the number of

C1 (cooperation of the partner in an environment with fines). As visible in Figure 3b, the average

rate of cooperation increases from 0.15 when C1 never occurred in the 5 previous matches to 0.53

when it occurred 4 times. This reflects the idea, highlighted in the model, that cooperation in the

absence of fine is a much stronger signal on underlying values than cooperation in the presence

of fines. The behavior for D0 and D1 is similar. The rate of cooperation tends to decrease more

sharply with the number of D1 than with the number of D0, even though the pattern is less

striking than in the case of cooperation.
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Table 2: Statistical evidence on institution specific learning

(1) (2) (3)
Coef. Marg. eff. Coef. Marg. eff. Coef. Marg. eff.

Constant 0.040 0.147 0.179
(0.274) (0.306) (0.152)

1{Ft=1} 1.356∗∗∗ 0.305∗∗∗ 1.361∗∗∗ 0.303∗∗∗ 1.355∗∗∗ 0.302∗∗∗

(0.270) (0.052) (0.271) (0.051) (0.268) (0.047)∑5
s=1 C

0
t−s 0.410∗∗∗ 0.092∗∗∗ 0.406∗∗∗ 0.091∗∗∗ 0.433∗∗∗ 0.097∗∗∗

(0.061) (0.013) (0.056) (0.011) (0.083) (0.017)∑5
s=1 C

1
t−s 0.210∗∗∗ 0.047∗∗∗ 0.164∗∗∗ 0.037∗∗∗ 0.167∗ 0.037∗

(0.016) (0.006) (0.009) (0.003) (0.092) (0.020)∑5
s=1D

1
t−s -0.123∗∗∗ -0.028∗∗∗ -0.180∗∗∗ -0.040∗∗∗ -0.195∗∗∗ -0.043∗∗∗

(0.046) (0.008) (0.038) (0.006) (0.063) (0.014)

1{Ft−1=1} 0.230∗∗∗ 0.051∗∗∗ 0.199 0.044
(0.070) (0.019) (0.275) (0.061)

1{ajt−1=C} -0.019 -0.004 0.073 0.016

(0.037) (0.008) (0.111) (0.025)

ajt = C in a row -0.059 -0.013∗

(0.037) (0.008)

Fit in a row 0.020 0.004
(0.152) (0.034)

N 599 — 599 — 599 —
σu 1.196 — 1.201 — 1.208 —
ρ 0.588 — 0.591 — 0.593 —
LL -220.466 — -219.610 — -219.454 —

Note. Probit models with individual random effects on the decision to cooperate at first stage estimated on the working
sample (see the Appendix, Section A.1). Standard errors (in parenthesis) are clustered at the session level. All specifications
include control variables for gender, age, whether participant is a student, whether a fine applies to the first match, the
decision to cooperate at first match, the length of the previous game and match number. Marginal effects are computed at
sample mean, assuming random effects are 0. Significance levels: ∗10%, ∗∗5%, ∗∗∗1%.

We confirm these graphical results in Table 2 where we estimate a Probit model on Cit =

1{ait=C} ∈ {0, 1}, the observed decision to cooperate of participant i at the first round of match

t in the experiment. In all columns we control for current enforcement. Current fines have a very

strong disciplining effect on current cooperation, increasing the probability of cooperation by more

than 30%. In column (1), we do not account for spillovers and examine the effect of the history

in the five previous matches.15 The ranking of the effect is perfectly coherent with the results of

Proposition 2: the signal C0 has a positive significant effect compared to D0 and the effect is larger

than C1. Similarly, D1 decreases cooperation relative to D0. In terms of magnitudes, replacing

15All results are robust to alternative definitions of the number of previous matches included in the past history.
The results are available from the authors upon request.
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in the history one signal D0 by a signal C0 increases the probability of cooperation by 10% while

replacing it by a signal C1 only increases the probability of cooperation by 5%. Replacing in the

history one signal D0 by a signal D1 decreases the probability of cooperation by 3%.

In columns (2) to (3) we control for potential spillovers. In column (2), we introduce short-

living spillovers by controlling for whether the previous match was played with a fine and whether

the partner cooperated in the previous match. As explained previously, identification here relies

on the assumption that spillovers are short lived, whereas learning is cumulative. Controlling

for spillovers does not change the ordering of histories and only marginally affects magnitudes.

Finally, in column (3), we relax the identifying assumption and allow spillovers to be longer lasting.

We add a control for the number of matches in a row where partners cooperated, as well as the

number of fines in a row in all previous matches. Identification here relies on the assumption

that learning does not depend on the order in which signals were received, while it affects the

strength of the effect of spillovers. None of these controls impact the results on learning, which

still strongly affects how current cooperation react to past institutions and behavior.

We provide an alternative identification strategy in Appendix B, where we model explicitly the

interaction between learning and spillovers. We extend the model in Section 3 to the assumption

that the taste for cooperation, βi, is directly affected by the history of partner’s behavior and

institutional settings. Proposition D shows that the ranking of belief updating shown in Propo-

sition 2 is preserved. This model explicitly shows that the learning and spillovers parameters

cannot be separately identified when both affect cooperation. The empirical analysis provided in

Section B.1.2 relies on the assumption that learning has converged in games occurring late in the

experiment to achieve separate identification of both kinds of parameters. We test the predictions

of the model and confirm in Table C the ranking predicted in Proposition D.

5 Conclusion

An emerging literature studies how institutions affect individual choices over and beyond shaping

incentives when they are present (e.g., Guiso, Sapienza, and Zingales, 2016; Fisman and Miguel,

2007). This paper focuses on situations in which individuals interact without knowing each others’

propensity to cooperate. In these situations, institutions that enforce cooperation affect individ-

uals’ capacity to make inferences about the prevalent types in the society and, as a consequence,

their propensity to cooperate.

We analyze this situation through the lens of a theoretical model tailored to interpret the re-

sults from an experiment where individuals play a series of infinitely repeated games with random

re-matching. We rely on two different identification strategies to disentangle institution-specific

learning from the effect of past institutions on one’s own willingness to cooperate (i.e., institu-

tional spillovers). The first relies on the fact that institution-specific learning, in contrast with

spillovers, does not depend on the order in which a given history of cooperation occurred. The
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second, presented in the Appendix, relies on the structure of the model and the (untestable)

assumption that learning has converged in games occurring late in the experiment. The results

provide strong support for the main behavioral insights of the model. The institutional environ-

ment affects the dynamics of learning about others’ likely behavior: cooperation from partners

faced in the past fosters cooperation today (with different partners) differently according to the

institutional environment of past interactions. Past cooperation is more informative about other’s

likely behavior when it is observed under weak institutional enforcement of cooperation. Similarly,

defection is more detrimental to cooperation when it was observed in an environment with strong

enforcement.

Our findings also suggest that identifying spillovers, the focus of a large recent literature (see

Galizzi and Whitmarsh, 2019, for a survey), can be challenging when the group members are also

learning about prevalent values. In particular, this might lead to an underestimation of the size

of spillovers in the case where the group has a low level of cooperation, since having fines might

speed up learning and thus initially have a negative effect on cooperation.
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Appendix

A Data description

Our data come from three sessions of the experiment conducted at Ecole Polytechnique experimental

laboratory. The 46 participants are both students (85% of the experiment pool) and employees of the

university (15%). Individual earnings are computed as the sum of all tokens earned during the experiment,

with an exchange rate equal to 100 tokens for 1 Euro. At the end of the experiment, participants are asked

to answer a socio-demographic questionnaire about their gender, age, level of education, labor market

status (student/worker/unemployed) as well as the Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner

(2011) self-reported measure of risk-aversion. Participants earned on average 12.1 Euros from an average

of 20 matches, each featuring 3.8 rounds.16 This data delivers 934 game observations, 48% of which are

played with no fine. Figure Da displays the empirical distribution of game lengths in the sample split

according to the draw of a fine. With the exception of two-rounds matches, the distributions are very

similar between the two environments. This difference in the share of two-rounds matches mainly induces

a slightly higher share of matches longer than 10 rounds played with a fine. In both environments, one

third of the matches we observe lasts one round, and one half of the repeated matches last between 2 and

16The size of each session is: 16, 18 and 12 participants.
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Figure D: Sample characteristics: distribution of game lengths and repeated-game strategies

(a) Distribution of game lengths
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Note. Left-hand side: empirical distribution of game lengths in the experiment, split according to the draw of the fine.
Right-hand side: distribution of repeated-games strategies observed in the experiment. One-round matches are excluded.
AD: Always Defect; AC: Always Cooperate; TFT: Tit-For-Tat; GT: Grimm Trigger.

5 rounds. A very small fraction of matches (less than 5% with a fine, less than 2% with no fine) feature

lengths of 10 rounds or more.

A.1 Empirical measures: strategies

Our analysis focuses on between match variations induced by the exogenous change in the institutional

environment. While the first round decision in a given match is a measure of the effect of past history of

play on individual behavior, the decisions made within the course of a match are a mix of this component

and the strategic interaction with the current partner. For matches that last more than one round (2/3 of

the sample), we thus reduce the observed outcomes to the first round decision in each match, consistently

with the theory.

The first round decision is a sufficient statistic for the future sequence of play if subjects choose

among the following repeated-game strategies: Always Defect (AD), Tit-For-tat (TFT) or Grim Trigger

(GT). While AD dictates defection at the first round, both TFT and GT induce cooperation and are

observationally equivalent if the partner chooses within the set restricted to these three strategies and

give rise to the same expected payoff. Figure Db displays the distribution of strategies we observe in the

experiment (excluding games that last one round only).17

All sequences of decisions that do not fall in any of these strategies cannot be classified—this accounts

for 14% of the games played without a fine, and 24% of those played with fine. The three strategies on

17Decisions are classified in each repeated game and for each player based on the observed sequence of play. For
instance, a player who starts with C and switches forever to D when the partner starts playing D will be classified
as playing GT. In many instances, TFT and GT cannot be distinguished (so that the classes displayed in Figure
Db overlap): it happens for instance for subjects who always cooperate against a partner who does the same (in
which case, TFT and GT also include Always Cooperate, AC), or if defection is played forever by both players once
it occurs. Last, the Figure also reports the share of Always Cooperate that can be distinguished from other match
strategies—when AC is played against partners who do defect at least once.

17



which we focus are thus enough to summarize a vast majority of match decisions: AD accounts for 70%

of the repeated-game observations with no fine, and 41% with a fine, while TFT and GT account for 14%

and 34% of them. In the remainder of the text, we restrict the sample to player-game observations for

which the first round decision summarizes the future history. Our working sample is made of 40 subjects,

785 games among which 50.3% are played with a fine, and with an average duration of 3.3 rounds. Our

outcome variable of interest is the first round decision made by each player in each of these matches. All

lagged variables are computed according to actual past experience: one’s own cooperation at previous

match, partner’s decision and whether the previous match was played with a fine are all defined according

to the match played just before the current one, whether or not this previous match belongs to the working

sample.

B Alternative identification strategy

The empirical evidence presented in the paper relies on the insights from the model to provide a reduced

form statistical analysis of the interaction between learning and enforcement institutions. As a complement

to this evidence, this section provides a structural analysis which takes into account both learning and

behavioral spillovers. To that end, we first generalize the model presented in Section 3.2 to the case in

which individual values evolve over time as a result of past experience. We then estimate the parameters

of the model. This provides an alternative strategy to separately estimate learning and spillovers.

B.1 The dynamics of learning with behavioral spillovers

Consistent with Galbiati, Henry, and Jacquemet (2018), we allow both for past fines and past behaviors of

the partners to affect values:

βit = βi + φF 1{Fit−1=1} + φC 1{ajt−1,t−1=C} . (c)

According to this simple specification, personal values evolve through two channels. First, direct spillovers

increase the value attached to cooperation in the current match if the previous one was played with a fine,

as measured by parameter φF . Second, indirect spillovers, measured by φC , increase the value attached to

cooperation if in the previous match the partner cooperated.18

B.1.1 Introducing behavioral spillovers in the benchmark

We start by introducing spillovers in the benchmark model. Under the assumption that values follow the

process in (c) and φF > 0, φC > 0, the indifference condition (1) remains unchanged,19 but now βit is no

18The model can easily be extended to allow for longer histories to impact values. For instance, the effect on past
institutions on values could be extended to:

βit = βi +

T∑
τ=1

φFτ 1{Fit−τ=1} +

T∑
j=1

φCτ 1{ajt−τ ,t−τ=C},

with φFτ and φCτ increase in τ , in other words the more recent history having more impact. This could be
introduced at the cost of added complexity.

19As stated above, we work under the assumption that players are myopic and choose between C and D to
maximize their payoff in the current match. Without this assumption, when spillover are introduced, a player
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longer constant and equal to βi since past shocks affect values. In this context, individual i cooperates at

t if and only if:

βit ≥ Π1 − F × 1{Fit=1} + pitΠ2 −
δ

1− δ
pit
(
F × 1{Fit=1} + Π3

)
.

The cutoff value is defined in the same way as before:

β∗t (Fit) = Π1 − F × 1{Fit=1} + p∗t (Fit)

[
Π2 −

δ

1− δ
(
F × 1{Fit=1} + Π3

)]
. (d)

The main difference with the benchmark model is in the value of p∗t (Fit). There is now a linkage between

the values of the cutoffs at match t, β∗t , and the values of the cutoffs β∗t′ in all the preceding matches

t′ < t through p∗t (Fit). Indeed, when an individual evaluates the probability that her current partner

in t, player jt, will cooperate, she needs to determine how likely it is that she received a direct and/or

an indirect spillover from the previous period. The probability of having a direct spillover is given by

P [Fjt−1 = 1] = 1/2 and is independent of any equilibrium decision. By contrast, the probability of having

an indirect spillover is linked to whether the partner of jt in her previous match cooperated or not. This

probability in turn depends on the cutoffs in t − 1, β∗t−1, which also depends on whether that individual

himself received indirect spillovers, i.e on the cutoff in t−2. Overall, these cutoffs in t depend on the entire

sequence of cutoffs.

In the remaining, we focus on stationary equilibria, such that β∗ is independent of t. We show in

Proposition C that such equilibria do exist.

Proposition C (Spillovers) In an environment with spillovers (φF > 0 and φC > 0) and no uncertainty

on values, there exists a stationary equilibrium. Furthermore all equilibria are of the cutoff form, i.e

individuals cooperate if and only if βit ≥ β∗(Fit).

Proof. See Section C.

Proposition C proves the existence of an equilibrium and presents the shape of the cutoffs. The

Proposition also allows to express the probability that a random individual cooperates as:

1− ΦH

[
Λ1 − φF 1{Fit−1=1} − φC 1{ajt−1,t−1=C} − Λ21{Fit=1}

]
, (e)

where:

Λ1 ≡ β∗(0) = Π1 + p∗(0)

[
Π2 −

δ

1− δ
Π3

]
,

Λ2 ≡ β∗(1)− β∗(0) = F + [p∗(0)− p∗(1)]

[
Π2 −

δ

1− δ
Π3

]
+

δ

1− δ
p∗(1)F .

B.1.2 The dynamics of cooperation with learning and spillovers

We now solve the full model with uncertainty about the group’s values and with spillovers. As in the main

text, we denote qit the belief held by player i at match t that the state is H.

would need to take into account that her current action would influence her partner’s future actions and thus
influence the partner’s future partners. An alternative would be to assume that players are negligible enough so
that current actions cannot influence future beliefs.
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In this expanded model, the beliefs on how likely it is that the partner cooperates in match t, p∗t (Fit, qit),

depends on the probability that the partner experienced spillovers. In addition, the probability that the

partner j had an indirect spillover itself depends on whether his own partner k in the previous match

did cooperate, and thus depends on the beliefs qkt−1 of that partner in the previous match. The general

problem requires to keep track of the higher order beliefs. The proof of the following Proposition shows

the existence of such a stationary equilibrium, under a natural restriction on higher order beliefs, i.e if we

assume that a player who had belief qit in match t believes that players in the preceding match had the

same beliefs qj′,t−1 = qit.

Proposition D In an environment with spillovers and learning, if an equilibrium exists, all equilibria are

of the cutoff form, i.e individuals cooperate if and only if βi ≥ β∗(Fit, qit). Furthermore, if in equilibrium

β∗(0, q) > β∗(1, q) for all beliefs q, then the beliefs are updated in the following way following the history

in the previous interaction:

qit(0, C, qit−1) > qit(1, C, qit−1) > qit−1 ,

qit(1, D, qit−1) < qit(0, D, qit−1) < qit−1 .

Proof. See Section C.

Proposition D derives a general property of equilibria. The Proposition also allows to express the

probability of cooperation for given belief qit−1 as:

1− ΦH

[
Λ3 − φF 1{Fit−1=1} − φC 1{ajt−1,t−1=C} − Λ41{Fit=1}

−
∑

j,k∈{0,1},l∈{C,D}

Λjk,l 1{Fit=j,Fit−1=k,ajt−1,t−1=l}

 .
(f)

where:

Λ3 ≡ Π1 + p∗(0, 0, D, q)

[
Π2 −

δ

1− δ
Π3

]
,

Λ4 ≡ F − [p∗(1, 0, D, q)− p∗(0, 0, D, q)]
[
Π2 −

δ

1− δ
Π3

]
+

δ

1− δ
p∗(1, 0, D, q)F > 0 ,

Λ0
k,l ≡ [p∗(0, k, l, q)− p∗(0, 0, D, q)]

[
Π2 −

δ

1− δ
Π3

]
,

Λ1
k,l ≡ −[p∗(0, k, l, q)− p∗(0, 0, D, q)]

[
Π2 −

δ

1− δ
(F + Π3)

]
.

Note that the parameters Λ3, Λ4 and Λjk,l in equation (f) depend on qit−1. Compared to the case

without learning, there are 6 additional parameters, reflecting the updating of beliefs. According to the

result in Proposition D, these parameters, both in the case where the current match is played with a fine

and when it is not, are such that:

Λ1
0,C > Λ1

1,C > 0 > Λ1
1,D ,

Λ0
0,C > Λ0

1,C > 0 > Λ0
1,D .

(g)

Overall, having fines in the previous match can potentially decrease average cooperation in the current
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match. There are two countervailing effects. On the one hand, a fine in the previous match increases the

direct and indirect spillovers and thus increases cooperation. On the other hand, if the state is low, a fine

can accelerate learning if, on average, sufficiently many people deviate in the presence of a fine. This then

decreases cooperation in the current match.

B.1.3 Statistical estimation of the model

The main behavioral insights from the model are summarized by equation (f), which involves both learning

and spillover parameters. As the equation clearly shows, exogenous variations in legal enforcement are not

enough to achieve separate identification of learning and spillover parameters—an exogenous change in any

of the enforcement variables, or past behavior of the partner, involves both learning and a change in the

values βit. In the main text, identification relies on the assumption that spillovers are short-living in the

sense that their effect on behavior is smaller the earlier they happen in one’s own history—while learning

should not depend on the order in which a given sequence of actions happens. In this section, we report the

results from an alternative identification strategy that relies on the assumption that learning has converged

once a large enough number of matches has been played. Under this assumption, in late games, behavior is

described by equation (e), which involves only spillover parameters. Exogenous variations in enforcement

thus provide identification of spillover parameters in late games, which in turn allows to identify learning

parameters in early ones.

To that end, we split the matches in three groups, in such a way that one third of the observed decisions

are classified as “early”, and one third as “late”. We use matches, rather than periods, as a measure of time

since we focus on games for which the first stage decision summarizes all future actions within the current

repeated game—hence ruling out learning within a match. Observed matches are accordingly defined as

“early” up to the 7th, as late after the 13th—we disregard data coming from intermediary stages.20 Denote

1{Early} the dummy variable equal to 1 in early games and to 0 in late games. Under this identifying

assumption, the model predicts that behavior in the experiment is described by:

P (Cit = 1) = 1− ΦH

[
Λ1 + (Λ3 − Λ1) 1{Early} − φF 1{Fit−1=1} − φC 1{ajt−1,t−1=C} − Λ21{Fit=1}

− (Λ4 − Λ2) 1{Fit=1} × 1{Early} −
∑

j,k∈{0,1},l∈{C,D}

Λjk,l 1{Fit=j,Fit−1=k,ajt−1,t−1=l} × 1{Early}


which is the structural form of a Probit model on the individual decision to cooperate. This probability

results from equilibria of the cutoff form involving the primitives of the model. Denoting εit observation

specific unobserved heterogeneity, θ the vector of unknown parameters embedded in the above equation,

xit the associated set of observable describing participant i experience up to t and C∗it the latent func-

tion generating player i willingness to cooperate at match t, observed decisions inform about the model

parameters according to:

Cit = 1[C∗it = xitθ + εit > 0]

The structural parameters govern the latent equation of the model. Our empirical test of the model is thus

based on estimated coefficients, θ = ∂C∗

∂xit
, rather than marginal effects, ∂C

∂xit
= θ ∂Φ(xitθ)

∂xit
.

In the set of covariates, both current (1{Fit=1}) and past enforcement (1{Fit−1=1}) are exogenous by

20All results are robust to alternative definitions of these thresholds. The results are available from authors upon
request.
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design. The partner’s past decision to cooperate, Cjt−1, is exogenous to Cit as long as player i and j have

no other player in common in their history. Moreover, due to the rematching of players from one match

to the other, between subjects correlation might arise if player j met another player with whom i has

already played once. We address these concerns in three ways. We include the decision to cooperate at

the first stage of the first match in the set of control variables, as a measure of individual unobserved ex

ante willingness to cooperate. To further account for the correlation structure in the error of the model,

we specify a panel data model with random effects at the individual level, control for the effect of time

thanks to the inclusion of the match number, and cluster the errors at the session level to account in a

flexible way for within sessions correlation.

Table C reports the estimation results from several specifications, in which each piece of the model is

introduced sequentially. The parameters of interest are the two spillovers components of individual values,

φF and φC , and the learning parameters Λk,l, k ∈ {0, 1}, l ∈ {C,D}.21 Columns (1) and (2) focus on

the effect of past and current enforcement. While we do not find any significant change due to moving

from early to late games per se (the Early variable is not significant), the effect of current enforcement on

the current willingness to cooperate is much weaker in early games. This is consistent with participants

becoming less confident that the group is cooperative, thus less likely to cooperate, as time passes—i.e.,

prior belief over-estimate the average cooperativeness of the group. The disciplining effect of current fines

is thus stronger in late games.

Column (3) introduces learning parameters. As stressed above, the learning parameters play a role

before beliefs have converged. They are thus estimated in interaction with the Early dummy variable. Once

learning is taken into account, enforcement spillovers turn-out significant. More importantly, the model

predicts that learning is stronger when observed decisions are more informative about societal values, which

in turn depends on the enforcement regime under which behavior has been observed—i.e., cooperation

(defection) is more informative under weak (strong) enforcement. This results in a clear ranking between

learning parameters—see equation (g). We use defection under weak enforcement as a reference for the

estimated learning parameters. The results show that cooperation under weak enforcement (Early × C0)

leads to the strongest increase in the current willingness to cooperate. Observing this same decision but

under strong enforcement institutions rather than weak ones (Early× C1) has almost the same impact as

observing defection under strong institutions (the reference): in both cases, behavior is aligned with the

incentives implemented by the rules and barely provides any additional insights about the distribution of

values in the group. Last, defection under strong institutions (Early × D0) is informative about a low

willingness to cooperate in the group, and results in a strongly significant drop in current cooperation.

Column (4) adds indirect spillovers, induced by the cooperation of the partner in the previous game.

The identification of learning parameters in this specification is quite demanding since both past enforce-

ment and past cooperation are included as dummy variables in this specification. We nevertheless observe

a statistically significant effect of learning in early games, with the expected ordering according to how

informative the signal is, with the exception of C1—i.e., when cooperation has been observed under fines.

Finally, column (5) provides a robustness check for the reliability of the assumption that learning has con-

verged in late games. To that end, we further add the interaction between observed behavior from partner

in the previous game and the enforcement regime. Once learning has converged, past behavior is assumed

to affect the current willingness to cooperate through indirect spillovers only. Absent learning, this effect

21Note that we do not separately estimate these parameters according to the current enforcement environment,
but rather estimate weighted averages Λk,l = 1{Fit=0}Λ

0
k,l + 1{Fit=1}Λ

1
k,l.
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Table C: Learning and spillovers arising from past enforcement

Variable
Model

(1) (2) (3) (4) (5)
parameter

Constant (−Λ1) -1.986∗∗∗ -2.020∗∗∗ -2.290∗∗∗ -2.302∗∗∗ -2.291∗∗∗

(0.392) (0.362) (0.298) (0.317) (0.220)

1{Fit} (Λ2) 1.448∗∗∗ 1.454∗∗∗ 1.480∗∗∗ 1.473∗∗∗ 1.472∗∗∗

(0.164) (0.149) (0.150) (0.142) (0.137)
Early (−Λ3 + Λ1) 0.285 0.292 0.348 0.460 0.453

(0.411) (0.415) (0.440) (0.383) (0.377)
Early ×1{Fit} (Λ4 − Λ2) -0.698∗∗∗ -0.698∗∗∗ -0.646∗∗ -0.644∗∗ -0.643∗∗

(0.243) (0.245) (0.258) (0.261) (0.271)
1{Fit−1} (φF ) 0.049 0.306∗∗ 0.094 0.085

(0.120) (0.140) (0.193) (0.306)
1{ajt−1=C} (φC) 0.693∗∗∗ 0.674∗∗∗

(0.169) (0.121)
Early ×C0 (Λ0,C) 1.066∗∗∗ 0.430 0.448∗

(0.186) (0.363) (0.246)
Early ×C1 (Λ1,C) 0.233 -0.228∗∗ -0.230∗∗

(0.168) (0.096) (0.094)
Early ×D1 (Λ1,D) -0.876∗∗ -0.631∗ -0.621∗

(0.423) (0.329) (0.334)
C1 0.029

(0.380)

N 553 553 553 553 553
σu 1.063 1.064 1.063 1.060 1.060
ρ 0.531 0.531 0.530 0.529 0.529
LL -234.677 -234.624 -224.416 -220.033 -220.031

Note. Probit models with individual random effects on the decision to cooperate at first stage estimated on the working
sample restricted to early (before the 7th) and late (beyond the 13th) games. Standard errors (in parenthesis) are clustered
at the session level. All specifications include control variables for gender, age, whether participant is a student, whether a
fine applies to the first match, the decision to cooperate at first match, the length of the previous game and match number.
Significance levels: ∗10%, ∗∗5%, ∗∗∗1%.

should not interact with the enforcement rule that elicited this behavior. As expected, this interaction

term is not significant: in late games, it is cooperation per se, rather than the enforcement regime giving

rise to this decision, that matters for current cooperation.

C Proofs

Proof of Proposition 1

As derived in the main text, if an equilibrium exists, it is necessarily such that players use cutoff strategies.

Reexpressing characteristic equation (2), we can show that the cutoffs are determined by the equation

g(β∗[Fit]) = 0, where g is given by

g(x) = −x + Π1 − F 1{Fit=1} + (1− ΦH (x))

[
Π2 −

δ

1− δ
(
F 1{Fit=1} + Π3

)]
.
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The function g has the following properties: g(x) > 0 when x converges to −∞ and g(x) < 0 when x

converges to +∞. Thus, since g is continuous, there is at least one solution to the equation g(β∗[Fit)] = 0.

At least one equilibrium exists.

If g is non monotonic, there could exist multiple equilibria. However, in all stable equilibria, β∗ is such

that g is decreasing at β∗, i.e.

− 1− φH [β∗]

[
Π2 −

δ

1− δ
(
F 1{Fit=1} + Π3

)]
< 0 . (h)

Using the implicit theorem we have:

∂β∗

∂F
= − ∂g

∂F
/
∂g

∂β∗
= −

−1− (1− ΦH [β∗]) δ
1−δ

−1− φH [β∗]
[
Π2 − δ

1−δ
(
F 1{Fit=1} + Π3

)] ,
where φH is the density corresponding to distribution ΦH . For stable equilibria, the denominator is negative

as shown in (h), so that overall

∂β∗

∂F
< 0 .

Similarly,

∂β∗

∂µH
= −

−∂ΦH [β∗]
∂µH

[
Γ2 − δ

1−δ
(
F 1{Fit=1} + Π3

)]
−1− φH [β∗]

[
Π2 − δ

1−δ
(
F 1{Fit=1} + Π3

)] .
Again, in stable equilibria the denominator is negative by (h). Furthermore we have ∂ΦH [β∗]

∂µH
< 0 since an

increase in the mean of the normal distribution decreases ΦH [x] for any x. Overall we get

∂β∗

∂µH
< 0 .

Proof of Lemma 1

We first show the result: qi2(1, D) < qi2(0, D) < q0. According to Baye’s rule, the belief that the state is

H following a deviation by the partner in the first match (which has been played with a fine) is:

qi2(1, D) =
q0 P [D|Fi1 = 1, s = H]

q0 P [D|Fi1 = 1, s = H] + (1− q0) P [D|Fi1 = 1, s = L]

=
q0 ΦH [β∗(1)]

q0 ΦH [β∗(1)] + (1− q0) ΦL [β∗(1)]

=
1

1 + 1−q0
q0

ΦL[β∗(1)]
ΦH [β∗(1)]

. (i)

Furthermore, since ΦL [β∗(1)] > ΦL [β∗(1)], we have qi2(1, D) > q0. Similarly we have:

qi2(0, D) =
1

1 + 1−q0
q0

ΦL[β∗(0)]
ΦH [β∗(0)]

> q0 . (j)
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Thus,

qi2(1, D) < qi2(0, D)⇔ ΦL [β∗(0)]

ΦH [β∗(0)]
<

ΦL [β∗(1)]

ΦH [β∗(1)]
.

Using the fact that ΦL[x]
ΦH [x] is decreasing in x as shown in Property 1 below, and the fact that in stable

equilibria, we have β∗(1) ≤ β∗(0), as shown in Proposition 1, implies directly that qi2(1, D) < qi2(0, D).

The proof that qi2(0, C) > qi2(1, C) > q0 follows similar lines.

Property 1 ΦH [x]
ΦL[x] is increasing in x.

Proof. Denote φH (resp. φL) the density of ΦH (resp. ΦL). Given that φH (resp. φL) is the density

of a normal distribution with standard deviation σ and mean µH (resp. µL), it is the case that:

φH [x]

φL [x]
=

1
σ
√

2π
e−(x−µH)2/σ2

1
σ
√

2π
e−(x−µL)2/σ2

= e−(x−µH)2/σ2+(x−µL)2/σ2

= e
1
σ2

(µH−µL)(2x−µL−µH) .

Thus φH
φL

is increasing in x. In particular for y < x, we have: φH [y]φL [x] < φL [y]φH [x]. By definition,

Φs(x) =
∫ x
−∞ φs(y)dy. Integrating with respect to y between −∞ and x thus yields:

ΦH [x]φL [x] < ΦL [x]φH [x] . (k)

Consider now the function ΦH
ΦL

. The derivative of this function is given by φHΦL−φLΦH
Φ2
L

, which is positive

by equation (k). This establishes Property 1 that ΦH [x]
ΦL[x] is increasing in x.

Proof of Proposition D (that generalizes Proposition 2)

In the first part of the proof we assume a stationary equilibrium exists and is such that the equilibrium

cutoffs are always higher without a fine in the current match β∗(0, q) > β∗(1, q) for any given belief q. We

then derive the property on updating of beliefs. In the second part of the proof we show existence under

a natural restriction on beliefs.

Part 1: We first derive the properties on updating. We have

qit(Fit−1, ajt−1,t−1, qit−1) =
qit−1P [ajt−1,t−1|Fit−1, s = H]

qit−1P [ajt−1,t−1|Fit−1, s = H] + (1− qit−1)P [ajt−1,t−1|Fit−1, s = L]
. (l)

We can express the probability that the partner jt−1 in match t − 1 cooperated, by considering all the

possible environments this individual might have faced in the past, in particular what his partner in match
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t− 2, individual kt−1 chose:

P [ajt−1,t−1 = D | Fit−1, s = H] =∑
Fjt−1,t−2,akt−1,t−2,qjt−1,t−1

ΦH

[
β∗(1, qjt−1,t−1)− φF 1{Fjt−1,t−2=1} − φC 1{akt−1,t−2=C}

]
× P [Fjt−1,t−2, akt−1,t−2, qjt−1,t−1].

Denote

γ∗
(
Fjt−1,t−2, akt−1,t−2, qjt−1,t−1

)
= β∗(1, qjt−1,t−1)− φF 1{Fjt−1,t−2=1} − φC 1{akt−1,t−2=C}.

and

R(x) ≡

∑
Fjt−1,t−2,akt−1,t−2,qjt−1,t−1

ΦH
[
γ∗
(
x, akt−1,t−2, qjt−1,t−1

)]
P [Fjt−1,t−2, akt−1,t−2, qjt−1,t−1]∑

Fjt−1,t−2,akt−1,t−2,qjt−1,t−1
ΦL
[
γ∗
(
x, akt−1,t−2, qjt−1,t−1

)]
P [Fjt−1,t−2, akt−1,t−2, qjt−1,t−1]

.

Using expression (l), we have:

qit(1, D, qit−1) < qit(0, D, qit−1)⇔ R(1) ≥ R(0) .

We then use all possible values of the vector (Fjt−1,t−2, akt−1,t−2, qjt−1,t−1) in turn. Take such a value

v for this vector and denote

a ≡
∑

(Fjt−1,t−2,akt−1,t−2,qjt−1,t−1)6=v

ΦH
[
γ∗
(
x, akt−1,t−2, qjt−1,t−1

)]
P [Fjt−1,t−2, akt−1,t−2, qjt−1,t−1] ,

b ≡
∑

(Fjt−1,t−2,akt−1,t−2,qjt−1,t−1)6=v

ΦL
[
γ∗
(
x, akt−1,t−2, qjt−1,t−1

)]
P [Fjt−1,t−2, akt−1,t−2, qjt−1,t−1] .

We clearly have a < b. Furthermore, we can write

R(x) ≡ a+ ΦH [γ∗ (v)]P [v]

b+ ΦL [γ∗ (v)]P [v]

We have β∗(0, q) > β∗(1, q) imply that γ∗ (0, ak′t−2, qj′t−1) > γ∗ (1, ak′t−2, qj′t−1). Thus using Property 2

below, it implies that R(1) ≥ R(0) and thus qit(1, D, qit−1) < qit(0, D, qit−1).

Property 2 a+pΦH [x]
b+pΦL[x] where b > a is increasing in x.

Proof. The derivative of the ratio is given by

φH (b+ pΦL)− φL (a+ pΦH)

(b+ pΦL)
2 (m)

We showed in the proof of Property 1 that: φHΦL − φLΦH > 0. Furthermore, we also showed that φH
φL

is increasing and since a < b this implies: φHb − φLa > 0. Combining these two results in condition (m)

establishes Property 2.

26



Part 2: We show that an equilibrium exists if we assume that a player who has belief qit in match t

believes that other players in match t and t− 1 shared the same belief qjt,t = qkt,t = qit.

If a stationary equilibrium exists, it is necessarily such that players use cutoff strategies where the

cutoff is defined by:

β∗t (Fit, qit) = Π1 − F 1{Fit=1} + p∗t (Fit, qit)

[
Π2 −

δ

1− δ
(
F 1{Fit=1} + Π3

)]
We have:

p∗t (Fit, qit) = P [ajt,t = C|Fit, qit]

= qit
∑

(Fjt,t−1,akt,t−1,qjt,t−1)

[
1− ΦH

[
β∗(Fjt,t, qjt,t−1)− φF 1{Fjt,t−1=1} − φC 1{akt,t−1=C}

]]
× P [Fjt,t−1, aktt−1, qjt,t−1|s = H]

+ (1− qit)
∑

(Fjt,t−1,akt,t−1,qjt,t−1)

[
1− ΦL

[
β∗(Fjt,t, qjt,t−1)− φF 1{Fjt,t−1=1} − φC 1{akt,t−1=C}

]]
× P [Fjt,t−1, aktt−1, qjt,t−1|s = L]

Furthermore, we have

P [Fjt,t−1, akt,t−1, qjt,t−1|s = H] = P [Fjt,t−1] P [akt,t−1|Fjt,t−1, s = H] ft(qjt,t−1|s = H)

=
1

2
P [akt,t−1|Fjt,t−1, s = H] ft(qjt,t−1|s = H)

we assumed that a player who had belief qit−1 in match t− 1 believes that all other players in that match

share the same belief qit−1. Under this restriction, we have ft(qj′t−1|s = .) = 1(qj′t−1=qit−1)

P [1, D, q|s = H] =
1

2
p∗t (1, q)

We get a similar expression as in the proof of Proposition 2:

p∗(Fit, qit) = [1− ΦH [β∗(Fit, qit)− φF − φC ]]
1

2
p∗(1, qit) + [1− ΦH [β∗(Fit, qit)− φF ]]

1

2
[1− p∗(1, qit)]

+ [1− ΦH [β∗(Fit, qit)− φC ]]
1

2
p∗(0, qit) + [1− ΦH [β∗(Fit, qit)]]

1

2
[1− p∗(0, qit)] . (n)

This implies that for each belief q, there is a system of equation equivalent to system A in the proof if

Proposition 2. We thus have a solution of this system for each value q.
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