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Abstract

This paper presents, solves, and estimates the first structural auction model

with seller selection. This allows me to quantify network effects arising from

endogenous bidder and seller entry into auction platforms, facilitating the es-

timation of theoretically ambiguous fee impacts by tracing them through the

game. Relevant model primitives are identified from variation in second-highest

bids and reserve prices. My estimator builds off the discrete choice literature

to address the double nested fixed point characterization of the entry equilib-

rium. Using new wine auction data, I estimate that this platform’s revenues

increase up to 60% when introducing a bidder discount and simultaneously in-

creasing seller fees. More bidders enter when the platform is populated with

lower-reserve setting sellers, driving up prices. Moreover, I show that mean-

ingful antitrust damages can be estimated in a platform setting despite this

two-sidedness. (JEL codes: D44, C52, C57, L81)
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1 Introduction

Auction platforms provide increasingly popular marketplaces for trading goods and

services, and generate revenues from fees charged to users. The platform faces a

“two-sided market” with network effects as it is more valuable to potential bidders

when more sellers enter, and vice versa. The theoretical two-sided market literature

highlights that both 1) the platform revenue-maximizing fee structure, and 2) welfare

impacts of those fees are theoretically ambiguous and depend on the magnitude of

network effects.1 To study these two issues, I exploit an original data set of wine auc-

tions and develop a structural model in which network effects arise from endogenous

bidder and seller entry.

A key innovation relative to the two-sided market literature is to leverage the

transparency of payoffs in the auction game to characterize its network effects. This

allows me to provide a tight quantitative analysis of how fee changes affect both

platform profitability and user welfare. The second novelty is that my auction model

captures endogenous entry on both sides of the market; accounting for seller selection

is new to the empirical auction literature. It generates an additional trade-off that

is crucial for platform pricing. Bidders expect lower (reservation) prices when lower-

value sellers are attracted to the platform, so bidder entry depends both on the

expected number and type of sellers that enter.2

The resulting distributions of reserve prices, transaction prices and number of

bidders are endogenous to the fee structure through optimal entry, bidding and reserve

pricing strategies. Variation in outcomes allows for the estimation of model primitives

needed to answer how fees affect user welfare in this market. As such, the wine

auctions provide an opportune setting to understand the otherwise hard to quantify

network effects by tracing fees through the auction platform game.

Moreover, certain institutional details of wine auctions facilitate tractability of

the auction platform model, despite accounting for endogenous entry of both bidders

and sellers. These “fine, rare, and vintage” wines are traded on a secondary market,

among hobbyists, and with secret reserve prices. Listing pages include a wealth

of information about the wine’s characteristics, including on temperature-controlled

storage, “ullage” or fill level, and delivery cost and conditions. Empirical patterns in

1See e.g. Evans (2003) or Rysman (2009)
2The importance of this dynamic was first postulated in Ellison et al. (2004).
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the data are consistent with bidders facing significant listing inspection cost. Most

notably given the platform setting is that listings turn out to be independent of each

other: related listings do not affect transaction / reserve prices, number of bidders,

or the number of bids per bidder. I show how inspection cost, and the resulting

independence property, minimize the complexity of the auction platform game to

facilitate empirical analysis of fee impacts.

Introducing seller selection in my structural auction model turns out to be im-

portant to capture first-order effects of fees, but it does not come without empirical

challenges. The population distribution of seller values is nonparametrically identified

using the equilibrium mapping from values to reserves, but only on the part of the

support for which platform entry is optimal for sellers. Complications for paramet-

ric estimation are that the distribution of observed reserve prices 1) relates to seller

values in the population through the model’s entry equilibrium, which is a computa-

tionally costly (double) nested fixed point problem, and 2) its support depends on the

parameters to estimate. I propose an estimator that combines a concentrated likeli-

hood function with the iterative updating of the equilibrium seller entry threshold.3

This delivers consistent estimates for any number of iterations given demonstrated

uniqueness of the entry equilibrium.

Model estimates reveal significant network effects on this platform, which can be

harnessed to improve platform profitability without harming user welfare. I esti-

mate that platform revenues increases by more than 60 percent when implementing

fee structures that subsidize buyers (more) while increasing the seller commission

and/or listing fee, attracting more serious (lower marginal cost) sellers while increas-

ing transaction prices. It requires providing winning bidders with a discount on the

transaction price. This fully agrees with the idea that businesses in two-sided mar-

kets should subsidize the side that contributes most to profits, even if this results

in negative fees. Platform revenues would also be 20 percent higher when pairing a

substantial 10-pound hike in listing fee with halving the seller commission, attracting

more high-end wines.

My framework allows for the estimation of currently hard to measure antitrust

damages from (anti-competitive) fee changes. Results show that impacts are hetero-

3This algorithm is inspired by the Aguirregabiria and Mira (2002) nested pseudo likelihood
method to solve estimation problems involving fixed point characterizations in (static) games. In
my case, the algorithm uses the auction structure to obtain seller parameters from a first order
condition.
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geneous and larger than those obtained using more simple analysis without network

effects. For example, the average seller is 13 percent worse off after increasing the

seller commission by 5 percentage points and the newly marginal seller (entrant) is

37 percent worse off in the higher-commission world. Clearly, much more than the

status-quo “pro-rata” damages of 5 percent would be justified if this concerned an

antitrust case. Furthermore, while most of the loss falls on sellers (total seller surplus

decreases by 17 percent), also winning bidders are worse off (7 percent) in the higher

seller commission world.

Relation to the literature. This paper brings together research on auctions

and two-sided markets. I build on the large and influential literature on nonpara-

metric identification and estimation of auction models, starting with Guerre et al.

(2000) for first-price auctions and Athey and Haile (2002) for English auctions. My

paper relates most to recent papers that account for endogenous bidder entry in var-

ious bidding markets, including Roberts and Sweeting (2010), Moreno and Wooders

(2011), Krasnokutskaya and Seim (2011), Li and Zheng (2009, 2012), Fang and Tang

(2014), Marmer et al. (2013), Gentry and Li (2014) and Gentry et al. (2015, 2017).

Distinctively, I address endogenous seller entry as well and show how equilibrium

entry decisions of bidders and sellers are interconnected in an auction platform. Also

important are recent papers accounting for search and/or dynamics in auction plat-

forms (e.g. Backus and Lewis (2019), Hendricks and Sorensen (2018), Bodoh-Creed

et al. (forthcoming), and Coey et al. (2019)). While these papers rely on steady-state

requirements for tractability of their platform models, I instead exploit the sizeable

listing inspection cost inherent to the idiosyncratic nature of the auctioned goods and

a large population assumption. Other related work uses eBay data to research eco-

nomic phenomena (e.g. Anwar et al. (2006), Nekipelov (2007), and Dinerstein et al.

(2018)), but none structurally estimate impacts of auction platform fees.

The second literature studies network effects and pricing in two-sided markets,

(e.g. Rysman (2007), Lee (2013), Song (2013), and Bresnahan et al. (2015)), build-

ing on an influential theoretical literature (e.g. Baye and Morgan (2001), Rochet

and Tirole (2003, 2006), Evans (2003), Wright (2004), and Armstrong (2006)). A

fundamental difference is that I use the auction structure to quantify the platform’s

attractiveness to bidders when there are more sellers, and vice versa. As such, pay-

offs from the auction platform game provide a micro-foundation of its network effects.

Two other papers that also bring a two-sided market perspective to auction data are
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Athey and Ellison (2011) and Gomes (2014), both focusing on position auctions.

Finally, there is partial overlap with other papers that study wine (e.g. McAfee

and Vincent (1993), Ashenfelter et al. (1995)), the incidence of commissions in wine

auctions (Ashenfelter and Graddy (2003, 2005), Marks (2009)), theoretical properties

of auctions with commissions and bidder entry (Ginsburgh et al. (2010)), theoretical

listing fee impacts (Deltas and Jeitschko (2007)), transaction cost in posted-price

platforms (e.g. Fradkin (2017), Ershov (2019)), and compositional impacts of fees in

other markets (e.g. broadcasting: Sweeting (2013)).

The rest of this paper is organized as follows. Section 2 presents the auction

platform model with two-sided entry, and solves for equilibrium strategies. Section 3

presents the wine auction data and highlights the role of listing inspection cost and

seller selection. Section 4 discusses nonparametric identification of model primitives,

and Section 5 presents a computationally-feasible estimation strategy. Estimation

results, model fit and validation, and robustness analyses are discussed in Section 6.

Structural estimates are used to evaluate counterfactual fee structures and their im-

pacts on platform revenue, volume, and user welfare in Section 7. Section 8 concludes

and provides directions for future research.

2 A model of auction platforms with idiosyncratic

goods

This section presents a parsimonious and tractable structural auction platform model

and solves for its equilibrium properties. The model is informed by empirical patterns

in my wine auction data (especially independent listings) that are described further

in section 3. I expect the model to also capture first-order aspects of other auction

platforms with second-hand, used, or individualized goods.4 Henceforth I use the

generic term “idiosyncratic”, as in Einav et al. (2018), to describe such items.

4Such as vintage cars on ClassicCarAuctions.co.uk or CarsontheWeb.com, individualized jobs at
Upwork.com or uShip.com, and certain product categories on eBay.com.
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2.1 Model assumptions and game structure

Consider a monopoly auction platform populated by listings that are generated by

sellers, aimed at allocating indivisible goods among bidders with unit demands. Risk-

neutral potential bidders and sellers face homogeneous opportunity cost of time spent

on the platform, on top of any monetary fees charged. For bidders, these opportu-

nity cost are referred to as “listing inspection cost”. While more general Riley and

Samuelson (1981) mechanism restrictions would suffice, to match the data and given

my abstraction from inter-auction dynamics the allocation mechanism in each listing

is taken to be a second-price sealed bid auction. Sellers set non-negative secret reserve

prices. The presence of a positive reserve price is the only thing that bidders observe

for free. This is motivated by highly visible “no reserve price” buttons attached to

such listings on the platform’s auction landing page.

I model this environment as a two-stage game. In the first stage potential bidders

and sellers enter the platform simultaneously. For potential sellers, entry means

paying the listing fee and creating a listing. For potential bidders, entry means

opening the site and clicking on a listing. I allow for a positive entry fee for bidders

although my platform does not have one. Listings are ex-ante identical up to whether

or not they have a reserve price - so no additional listing selection takes place. Bidder

entry is therefore modelled as opening the site and being allocated uniformly over

available listings.

I let the second stage describe the usual auction behavior. Sellers that set a secret

reserve price pay a reserve price fee. Bidders pay non-monetary listing inspection

cost, learn their valuation, and bid. If the highest bid exceeds the reserve price, the

good gets sold to the winning bidder for the hammer price. In that case the platform

collects buyer premium and seller commission (both as shares of the hammer price).

Notation. The platform fee structure f = {cB, cS, eB, eS, eR} contains buyer’s pre-

mium, seller commission, buyer entry fee, listing fee, and reserve price fee. Oppor-

tunity cost of time for potential bidders in zero and positive reserve price auctions

equal eoB,r=0 and eoB,r>0. Opportunity cost of time for sellers equals eoS. Random

vector Z contains auction covariates observed at the listing page. NB
r=0, NB

r>0, NS,

Tr=0, Tr>0 denote the number of: potential bidders for no reserve auctions, potential

bidders for positive reserve auctions, potential sellers, and listings (sellers) in no and

positive reserve auctions. NB and N S denote the sets of potential bidders and sellers,
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NB = NB
r=0 + NB

r>0 the total number of potential bidders, and T = Tr=0 + Tr>0 the

total number of listings. FV0|Z and FV |Z denote the conditional valuation distributions

for potential sellers and bidders. Random variables are denoted in upper case and

their realizations in lower case.

Sellers are endowed with a product with characteristics z ∈ Z. The two population

value distributions are allowed to differ, and satisfy:

Assumption (two-sided IPV). All i = {1, ..., NB} potential bidders independently

draw values vi from V ∼ FV |Z and all k = {1, ..., NS} potential sellers independently

draw values v0k from V0 ∼ FV0|Z such that, ∀z ∈ Z:

i) (vi ⊥ vi′)|z, ∀i 6= i′ ∈ NB

ii)(vi ⊥ v0k)|z, ∀i ∈ NB and ∀k ∈ N S

and FV |Z and FV0|Z satisfy regularity conditions:

iii) supp(V )=[v, v̄], and supp(V0)=[v0, v̄0]

iv) FV |Z is absolutely continuous

v)
fV |Z(x)

1−FV |Z(x)
< 0 ∀x ∈ [v, v̄] (Increasing Failure Rate)

Most importantly, this assumption states that conditional on the vector of ob-

served product attributes, variation in valuations across buyers and sellers is of a

purely idiosyncratic -private values- nature. In addition, the idiosyncratic variation

is independent.5

The valuation distributions, allocation mechanism, population sizes, and all cost

(fees and opportunity cost) are common knowledge. The incomplete information

structure and strategic interaction makes this suitable to study with the usual game-

theoretic tools.

2.2 Equilibrium strategies

In this section, I solve for players equilibrium strategies focusing on two distinct stages

of entry and auction. Any omitted proofs are delegated to the appendix. I restrict

attention to symmetric Bayesian-Nash equilibria in weakly undominated strategies,

requiring that strategies are best responses given competitors’ strategies and that

beliefs are consistent with those strategies in equilibrium.

5Independence and continuity are needed for identification of FV |Z but can be omitted on the
seller side. IFR guarantees uniqueness of the optimal reserve price and that listing-level bidder
surplus decreases in the number of bidders (see Lemma 3).
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2.2.1 Auction stage

Conditional on entry decisions and the matching of bidders to listings, the idiosyncratic-

good auction platform is made up of independent second-price sealed bid auctions.

I therefore derive standard reserve pricing (as in: Riley and Samuelson (1981)) and

bidding (as in: Vickrey (1961)) strategies, up to the impact of buyer premium and

seller commission.

Lemma 1. A bidder with valuation v bids:

b∗(v, f) ≡ v

1 + cB
(1)

Proof. This follows directly from Vickrey (1961): bidding more may result in negative

utility and bidding less decreases the probability of winning without affecting the

transaction price.

Zero reserve price auctions attract more bidders, but the benefit of setting a

positive reserve price increases in the seller’s value. Combined with a positive reserve

price fee, the set of sellers that sets a zero reserve price is determined by a threshold-

crossing problem. I chose not to endogenize this “screening value” v0,r=0, as doing so

significantly complicates estimation of the game.

Lemma 2. Sellers with valuation v0 ≥ v∗0,r=0 set a reserve price solving:

r∗(v0, f) =
v0

1− cS
+

1− FV |Z((1 + cB)r∗(v0, f))

(1 + cB)fV |Z((1 + cB)r∗(v0, f))
(2)

Note that, if cS = cB = 0, the optimal reserve price is identical to the Riley and

Samuelson (1981) public reserve price in auctions with a fixed number of bidders.

Because r∗(v0, f) is secret, it does not affect the number of bidders in the seller’s list-

ing. This is true for any reserve price strategy of competing sellers, and generally the

entry equilibrium results are therefore valid as long as r∗ is monotonically increasing

in v0. The optimal reserve price is increasing in cS and (given IFR) decreasing in cB.

I denote a buyer premium-adjusted optimal reserve price by r̃:

r̃ =

{
(1 + cB)r∗(v0, f) for v0 > v∗0,r=0

0 for v0 ≤ v∗0,r=0

8



2.2.2 Entry stage

Listing-level payoffs. Let πb(n, f, v0) be the expected listing-level bidder surplus in

an auction with n− 1 competing bidders, fee structure f , when the seller has a value

of v0 (unknown to bidders, to be taken an expectation of), πb(n, f, 0)and πs(n, f, v0)

the expected listing-level seller surplus in such an auction. I slightly abuse notation

to let πb(n, f, 0) denote expected bidder surplus in a listing without a reserve price.

Conditioning on Z is omitted, and flat fees and opportunity cost are ascribed to the

entry stage.

πb(n, f, v0) =
1

n
E[V(n:n) −max(V(n−1:n), r̃)|V(n:n) ≥ r̃][1− FV(n:n)

(r̃)] (3)

=

∫ v̄

r̃

vn −max(r̃,

∫ vn

v

vn−1dFVn−1:n|Vn:n=vn(vn−1))dFVn:n(vn)

πs(n, f, v0) =

(
E[max(

V(n−1:n)

1 + cB
, r)|V(n:n) ≥ r̃](1− cS)− v0

)
[1− FV(n:n)

(r̃)] (4)

=

[
max(r,

1

1 + cB

∫ v̄

v

vn−1dFVn−1:n|Vn:n≥r̃(vn−1))(1− cS)− v0

]
[1− FV(n:n)

(r̃)]

FVn:n(vn) =

∫ vn

v

nFV (x)n−1fV (x)dx (5)

FVn−1:n|Vn:n=vn(vn−1) =

∫ vn

v

(n− 1)FV (y)n−2fV (y)

FV (vn)n−1
dy (6)

The entry equilibrium relies on the following properties:

Lemma 3. Bidder listing-level expected surplus πb(n, f, v0) decreases in n and v0.

Seller listing-level expected surplus πs(n, f, v0) increases in n and decreases in v0.

In line with empirical patterns in my data and motivated by listing inspection

cost, bidders enter the platform randomly (before learning their valuation). Sellers

on the other hand own the product and therefore know their value for it before

they decide to list. Sellers’ expected surplus decreases in v0, so they adopt the pure

strategy to enter only if their valuation is below a threshold value that in equilibrium

makes the marginal seller indifferent between entering and staying out given that his

opponents adopt the same threshold strategy. I denote the sellers’ entry strategy by

that threshold (v∗0).6

6Unless it is optimal for all sellers on the platform to set no reserve, the seller who is indifferent
between entering and staying out will set a positive reserve price: v0 ≤ v0,r=0 ≤ v∗0 ≤ v̄0. I restrict
attention to the case where all these inequalities are strict.
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Proposition 1. The entry stage of the game results in a unique equilibrium for any

fee structure. It is characterized by: i) a bidder entry probability for positive reserve

price auctions and ii) a seller entry threshold, (p∗r>0(f, v∗0(f)), v∗0(f)), and iii) a bidder

entry probability for no reserve price auctions, p∗r=0(f).

I first show that any candidate seller entry threshold (v̄0) maps to an equilibrium

p∗(f, v̄0)r>0, and then I use that mapping to solve for v∗0(f). It turns out that because

p∗(f, v̄0)r>0 is strictly decreasing in v̄0, sellers are strategic substitutes and the entry

game reduces to a single agent discrete choice problem.

Expected surplus from entering for NB
r>0 potential bidders is the listing-level sur-

plus πb(n, f, v0) in expectation over seller-values V0 and over the number of competing

bidders they face in that listing. They only consider sellers that enter and set a pos-

itive reserve price, e.g. as E[πb(n, f, v0)|V0 ∈ [v0,r=0, v̄0]]. With v0,r=0 structural, I

use FV0|Z,v0,r=0 to denote the left-censored distribution of potential seller valuations,

∀v0 ∈ [v0,r=0, v̄0]:

FV0|Z,v0,r=0(v0) =
FV0|Z(v0)− FV0|Z(v0, r = 0)

FV0|Z(v0, r = 0)
, (7)

The number of competing bidders follows a compound Binomial distribution. From

the perspective of a bidder who enters the platform, fN,r>0(n; p, v̄0) combines uncer-

tainty about: 1) the stochastic number of positive-reserve price listings Tr>0 (with

realization t) given entry threshold v̄0, and 2) how many of NB
r>0 − 1 competing bid-

ders end up in his listing when they enter the platform with probability p and sort

uniformly over available listings:

fN,r>0(n; p, v̄0) =
NS∑
t=0

(
NB
r>0 − 1

n

)
(
p

t
)n(1− p

t
)N

B
r>0−1−n (8)(

NS

t

)
FV0|Z,v0,r=0(v̄0)t(1− FV0|Z,v0,r=0(v̄0))N

S−t

Combined with entry and opportunity cost, Πb(f, v̄0; p) denotes potential bidders’

expected surplus from entering the platform:
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Πb(f, v̄0; p) =

NB
r>0−1∑
n=0

E[πb(n+ 1, f, v0)|V0 ∈ [v0,r=0, v̄0]]fN,r>0(n; p, v̄0)− eB − eoB,r>0

(9)

Lemma 4. For any candidate seller entry threshold v̄0, a unique equilibrium bid-

der entry probability solves potential bidders’ zero profit condition in positive reserve

auctions:

p∗r>0(f, v̄0) ≡ argp∈(0,1){Πb(f, v̄0; p) = 0} (10)

Proof. Listing-level surplus πb(n, f, v0) strictly decreases in n (Lemma 3) and

fN,r>0(n; p, v̄0) increases in p, so a unique p solves Πb(f, v̄0; p) = 0 for any v̄0.

The above statement being conditional on the type (and therefore the expected

number) of sellers on a platform, uniqueness of the bidder entry probability aligns

with previous results in auctions with bidder entry such as Levin and Smith (1994).

Central for my analysis of the two-sided entry equilibrium is the following, more

striking, result.

Lemma 5. At the equilibrium p∗r>0(f, v̄0), fN,r>0(n; p∗r>0, v̄0) decreases in the first-

order stochastic dominance sense in v̄0.

Proof. Candidate seller entry threshold v̄0 affects Πb(f, v̄0; p) in two ways; through

the expected number of listings and the distribution of reserve prices in those listings.

Supposing that the distribution of reserve prices would stay constant, then expected

listing-level surplus would not be affected by a higher v̄0 so that p∗r>0(f, v̄0) would

adjust to keep the equilibrium distribution number of bidders per listing constant.

However, higher v̄0 draws in sellers with higher v0 that set higher reserve prices

(Lemma 2), resulting in lower πb(n, f, v0) (Lemma 3). The zero profit condition in

(10) therefore dictates that the equilibrium distribution fN,r>0(n; p∗r>0, v̄0) places more

weight on a lower number of bidders per listing for higher v̄0.

By the same reasoning, any factor that does not affect listing-level expected sur-

plus πb(n, f, v0) won’t affect the equilibrium distribution of number of bidders per

listing. This holds true for example for populations sizes NB
r>0 and NS, which is

useful for the large population approximation that follows.
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Seller entry. Expected surplus from entering the platform for NS potential sellers

involves: 1) their listing-level expected surplus, and 2) an expectation over the number

of bidders per listing, NB,r>0, given v̄0 and bidders’ equilibrium best-response to

this threshold. Let Πs(f, v0; p∗r>0(f, v̄0), v̄0) denote expected surplus for a seller with

valuation v0 when NS − 1 competing sellers enter the platform if and only if their

valuation is less than threshold v̄0:7

Πs(f, v0; p∗r>0(f, v̄0), v̄0) =

NB
r>0∑
n=0

πs(n, f, v0)fN,r>0(n; p∗r>0(f, v̄0), v̄0)− eS − eoS (11)

Lemma 6. A unique equilibrium seller entry threshold solves the marginal seller’s

zero profit condition:

v∗0(f) ≡ argv̄0s.t.FV0|Z(v̄0)∈(0,1){Πs(f, v̄0; p∗r>0(f, v̄0), v̄0) = 0} (12)

with p∗r>0(f, v̄0) solving (10).

Proof. The proof requires three parts. First, sellers have a unique best response for

any competing v̄0, because Πs(f, v0; p∗r>0(f, v̄0), v̄0) strictly decreases in their own v0.

Second, given that 1) p∗r>0(f, v̄0) is strictly decreasing in v̄0, and 2) entry of competing

sellers does not affect seller surplus in other ways, the best response function is strictly

decreasing in competing sellers entry threshold. Third, symmetry then delivers a

unique equilibrium threshold, v∗0(f), that is the fixed point in seller value space solving

equation 12 i.e., making the marginal seller indifferent between entering and staying

out.

This shows that Lemma 5 is key to accounting for seller entry in the auction

platform.8 In auctions without a reserve price there is no two-sidedness.

Lemma 7. A unique equilibrium bidder entry probability (p∗r=0(f)) solves potential

bidders’ zero profit condition in no-reserve price auctions.

7Using fN,r>0(n; p∗r>0(.) avoids introducing additional notation to capture that sellers care about
that distribution of competing bidders +1. This distinction is irrelevant in the large-NB

r>0 approx-
imation as the two distributions are identical by the environmental equivalence property of the
Poisson distribution (Myerson (1998)).

8More generally: any platform model that results in fN,r>0(n; p∗r>0, v̄0) FOSD decreasing in
v̄0 delivers a unique equilibrium seller entry threshold. One could for instance allow for seller
competition insofar as equilibrium reserve prices still FOSD increase in v̄0.
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Large population approximation. The remainder of this section discusses an

approximation of the entry equilibrium that is adopted for empirical tractability.

Another benefit is that it relaxes the requirement that players know population sizes

NB
r=0, NB

r>0, and NS.

Assumption. The population of potential bidders is large relative to the number of

bidders on the platform: (NB
r>0, N

B
r=0)→∞ and (p∗r>0, p

∗
r=0)→ 0.

The equilibrium Poisson mean number of bidders per listing is endogenous to the

fee structure and in positive reserve auctions also depends on seller selection. Listings

with no reserve price are structurally more attractive to bidders than those with a

reserve price, increasing bidder entry into those auctions so λ∗r>0(f, v∗0) > λ∗r=0(f).

Proposition 2. For any fee structure f , the entry equilibrium of the auction platform

game subject to the large population approximation is characterized by the triple of

(v∗0(f), λ∗r>0(f, v∗0(f)), λ∗r=0(f)) that uniquely solve zero profit conditions of potential

bidders and the marginal seller.

Lemma 8. For r ∈ {r = 0, r > 0}, with with large NB
r and small p∗r, the number of

bidders per listing has a probability mass function approximated by:

fNr(k;λr) =
exp(−λr)λkr

k!
, ∀k ∈ Z+, with: λr =

NB
r p
∗
r

Tr
(13)

3 Wine auction data

What is commonly termed “fine, rare, and vintage wine” is sold at auction in sec-

ondary markets, run by online wine platforms as well as brick-and-mortar auction

houses. Auction data for the empirical analysis in this paper comes from online auc-

tion platform: www.Bidforwine.co.uk (BW). It offers a marketplace for buyers and

sellers to trade, akin to the eBay consumer-to-consumer format. The presence of

outside platforms is captured in the model by the opportunity cost of trading on

BW, and therefore the analysis is of a partial equilibrium nature where it is implicitly

assumed that other platforms do not react to changes in the fee structure of BW.For

successful sales, sellers receive payment from the winning bidder, ship the wine, and

are invoiced for the amount of seller commission, listing fee and reserve price fee due.

For these seller-managed lots and during the time period covered in the data, BW

13



Table 1: Fee structure wine auction data

Notation Amount / rate Conditional on sale

Bidders:
buyer premium cB 0 X
Entry fee eB £0

Opportunity cost of time eoB,r=0, e
o
B,r>0 estimated (”listing inspection cost”)

Sellers: On part transaction price:
Seller commission cS 0.102 ≤ £200 X

0.09 £200.01- £1500 X
0.0792 £1500.01- £2500 X
0.066 ≥ £2500.01 X

Listing fee eS £1.75
Reserve price fees eR £0.75

Opportunity cost of time eoS estimated

Incl. 20% VAT. Opportunity cost fall outside platform fee structure f = {cB , eB , cS , eS , eR}.

Table 2: Descriptive statistics

N Mean St. Dev. Min Median Max

Transaction price 3,487 140.56 239.94 1.00 82.50 6,000.00
Is sold 3,487 0.64 0.48 0 1 1
Number bottles 3,487 3.70 4.22 1 2 72
Price per bottle if sold 2,230 74.84 124.52 0.50 35.00 2,200.00
Number of bidders 3,487 3.10 2.52 0 3 13
Has reserve price 3,487 0.67 0.47 0 1 1

charges no buyer premium and maintains a seller commission on a sliding scale be-

tween 8.5-5.5 percent of the sale price (see Table 1). Upfront charges to sellers are: a

1.75 pounds listing fee, a 0.50 pounds minimum bid fee (optional, if increased), and

a 0.25 pounds reserve price fee (optional, if set).

Items are sold through an English auction mechanism with proxy bidding. 9 A

soft closing rule extends the end time of the auction by two minutes whenever a bid is

placed in the final two minutes of the auction. Therefore, there is no opportunity for

a bid sniping strategy (bidding in the last few seconds, potentially aided by sniping

9Bidders submit a maximum bid and the algorithm places bids to keep the current price one
increment above the second-highest bid. When the highest bid is less than one increment above the
second highest bid, the transaction price remains the second highest bid. This is different from the
rule at eBay, where the standing price in that case would increase to the highest bid. Engelberg and
Williams (2009), Hickman (2010) and Hickman et al. (2017) assess implications of this alternative
bidding rule.
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software) on the BW platform.10 The combination of proxy bidding with a soft closing

rule suggests that the data is well approximated by the second-price sealed bid model.

I construct a dataset of wine auctions by web-scraping all open auctions on BW

at 30-minute intervals between January 2017 and May 2018. At these intervals, I

observe most of what bidders observe as well and this resulted in a wealth of data.

Observed wine characteristics Z include the type of wine, grape, vintage, region of

origin, delivery and payment information, returns, seller feedback, and the seller’s

description. Summary statistics are reported in Table 2. Only a quarter of listings

is created by a seller with feedback, pointing to the consumer-to-consumer nature of

the platform. Furthermore, in the 7% of auctions on which bidders left feedback their

identities are observed and this data confirms the non-professional setting: 58 percent

of winning bidders that left feedback has only won an auction (and left feedback on it)

once or twice over the entire 15 months period. The sample includes 3, 487 auctions

after excluding auctions that are consigned, sell spirits, or sell multiple lots at once.

While there is a significant range in sale prices, 84 percent of all sales in the sample do

not exceed the 200 pounds over which sellers pay a higher marginal seller commission.

I focus on these auctions (the “main sample”), and estimate the model separately for

“high-value” auctions with transaction prices between 200 and 1500 pounds to assess

heterogeneity of fee impacts and the role of such high-end listings for the platform’s

profitability.

The repetitive recording of bids for ongoing auctions was necessary to approximate

the reserve price distribution. When the seller sets a reserve price without making it

public in the form of a minimum bid amount, the notifications “reserve not met” or

“reserve almost met” accompany any standing price that does not exceed the reserve.

I approximate the reserve price as the average between the highest standing price for

which the reserve price is not met and the lowest for which it is met.11 While only 26

percent of listings has an increased minimum bid amount, 44 percent has a (secret)

reserve price, and 3 percent has both. The use of secret reserve prices in auction

platforms remains a puzzle in the empirical auction literature and solving that puzzle

10See Ockenfels and Roth (2006) on strategic behaviour in auctions with these two types of closing
rules and Hasker and Sickles (2010) and Bajari and Hortaçsu (2004) for an overview of various
explanations for bid sniping evaluated in the literature.

11If all bids would be recorded in real time, this approximation would be accurate up to half a
bidding increment due to the proxy bidding system. The appendix shows that also the 30-minute
scraping interval results in a good approximation of the reserve price distribution.
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is beyond the scope of this paper.12 In the rest of this paper I group them together

and refer to the “reserve price” as the maximum of: the minimum bid amount and

the approximated secret reserve price. Of larger consequence is the choice made by

a third of sellers to refrain from setting any form of reserve. This is observable to

bidders by a “no reserve price” button - even before they enter the listing. This is

captured in my model by allowing equilibrium number of bidder distributions to differ

between these two types of listings.

3.1 Why listing inspection and seller selection matter

A key difference between my secondary market for vintage wines and retail wines

is that the former is sold by individual collectors, who sometimes keep the bottles

for decades either in temperature-controlled warehouses or in private cellars. Sellers

arguably know how much the wine is worth to them and they have their own idiosyn-

cratic value (taste) for it.13 This is true for idiosyncratic goods more generally, and

hence an idiosyncratic good auction platform needs to consider how changing the fee

structure affects both the number and the type of sellers that enter. Moreover, my

equilibrium results show how this feeds back on how attractive the platform is for

potential bidders given that lower-value sellers set lower reserve prices.14

Listing inspection cost arise in this context because all offered wines are different.

This has to do with why there is a flourishing secondary market in the first place. The

paramount influence of weather and harvesting conditions results in some vintages

outperforming others in terms of quality.15 Older wines can be valuable as increased

scarcity of these star vintages drives up prices, given that fewer of them remain

uncorked over time. Moreover, certain high-tannin wines such as red Bordeaux age

well and are thought to reach their full potential only after many years. But the

commodities are also perishable so that humidity and temperature control are key

to deliver this potential quality. As such, assessing the wine’s idiosyncratic storage

12See e.g. Jehiel and Lamy (2015) and Hasker and Sickles (2010).
13The fact that sellers appear to value their items shows up in the data by the fact that they set

binding reserve prices, with 54 percent of those not selling, and don’t appear to relist unsold items
(at least not without changing the listing title; Table 3).

14I believe Ellison et al. (2004) first hypothesize that seller selection was likely a main driver for
why auction sites of Amazon and Yahoo! struggled in some countries: their zero listing fees attracted
non-serious sellers with high reserve prices, shunning bidders.

15Ashenfelter et al. (1995) predict with surprising accuracy the value of high-end Bordeaux using
weather data from their growing and harvesting seasons.
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Table 3: Evidence for thin markets (percentiles)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Times product is listed, per 4 weeks: 1 1 1 1 1 2 2 3 6 37
Times product is listed, total 15 months: 1 3 8 16 28 37 68 148 215 223
Times title occurs, total 15 months: 1 1 1 1 1 1 1 1 2 17

Product: (region x wine type x vintage decade), e.g. a red Bordeaux from the 1980s, corresponding to high-level filters.

Table 4: Evidence for non-selective bidder entry

Product & market (PM) specification:
(1) (2) (3) (4) (5) (6) (7)

Bidders / listing 10.010 10.724 10.715 10.639 10.676 10.054 8.803
(0.666) (0.612) (0.618) (0.614) (0.627) (0.691) (0.718)

Bidders / PM -0.014 0.031 0.008 0.049 0.011 -0.065 0.331
(0.076) (0.026) (0.035) (0.050) (0.103) (0.218) (0.201)

Adj. R2 0.362 0.237 0.291 0.267 0.315 0.362 0.344
Standard errors in parenthesis. All OLS regressions have 900 observations (main sample, no reserve) and include product fixed effects.
PM specifications: (1) market = fixed 4 week intervals, product = region x type x decade (as in Table 3), markets in (2)-(7) rolling 2
day window around end-time listing, products in (2) all wine, (3) type (e.g. red), (4) region (e.g. Bordeaux), (5) region x type, (6)

region x type x vintage, (7) subregion (e.g. Margaux) x type x vintage.

conditions, provenance, ullage and other indicators of wine quality, make it costly

for bidders to bid in every auction they enter.16 Moreover, listing pages contain too

many descriptors to summarize in the usual landing page excerpts.17 I next document

four empirical patterns related to the idiosyncratic nature of the goods and inherent

listing inspection, motivating the model in 2.1.

First, the data reveals a strikingly low number of comparable listings. Even with

coarse product-market specifications, I find that for 50 percent of listings this is the

only one of that product offered in that market and for another 20 percent there

are only two of these products available (see Table 3).18 Half of the products have

been listed only 28 times during the full 15 months spanning my data, conditional on

16Ullage describes the unfilled space in a container; in wine auctions it refers to visible oxidation.
A “Base of Neck” fill level is better than “Top Shoulder” in Bordeaux-style bottles. Burgundy-style
bottles have a metric classification (see appendix).

17Idiosyncratic goods/services like second hand cars, freelance jobs, or bulky shipments likely
involve costly listing inspection, in contrast (arguably) to auctions for Kindle e-readers, iPads, CD’s,
CPU’s, and compact camera’s featuring in previous auction platform studies.

18All listings are active for at most 31 days, and most of them for 5, 7 or 10, so I conservatively
use a 4 week interval to define a market. The BW site has filters for high level characteristics.
Correspondingly, let the three main high level filters i) region of origin, ii) vintage decade and iii)
wine type define a product. A 1980s red Bordeaux and a non-vintage Champagne are distinct
products by that definition.
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having been offered at least once. An implication of the model with listing inspection

cost is that the option value of bidding in a certain auction is zero so there are also

no dynamic incentives. The almost non-existence of repeat listings reported in Table

3 supports this as well.

Second, I cannot reject that the data is generated by a process in which bidders

learn their values after they enter the listing. In a selective bidder entry model,

valuations are FOSD lower when additional bidders enter the platform, because the

marginal bidder has a lower valuation.19 The relevant comparison in my model is

between markets with more and less total listings of a certain product. For example,

with products defined as above, a month with more listings of non-vintage Champagne

should attract more bidders for that type of wine. Reported patterns in Table 4 are

consistent with non-selective bidder enter: while an extra bidder in an auction is

associated with a transaction price that is about 9-11 pounds higher, having more

total bidders / a larger market does not affect the winning bid.20 Results control for

product fixed effects and are estimated in no-reserve auctions in the main sample, and

are consistent also for alternative product specifications and narrowing the market to

all listings ending within two-days of each other.

Third, listings turn out to be independent of each other even when they have

similar end times and products. The presence of more competing listings does not

affect average i) number of bidders per listing, ii) number of bids per bidder, iii)

transaction prices and iv) reserve prices. Results control for product fixed effects and

are robust to a host of different product / market specifications (see footnote Table

5).The coefficient on competing listings is in 68 out of 72 regressions statistically

insignificant even at the 10 percent level. Again, costly listing inspection disable a

cross-bidding strategy and generate a zero option value. The fact that reserve prices

are not affected by competing listings is intuitive since most of them are kept secret.

As bidders cannot select on what they cannot observe, there is no motive for sellers

to compete on that margin. Overall, the fact that transaction prices do not decrease

with the number of competing listings points to the absence of a “business stealing”

effect and is also consistent with bidders entering and bidding in one listing at a

time. In other words: sellers retain their monopoly position. Again, this sets the

19Not observing the pool of potential bidders precludes me from testing selection on obsevables
directly, as done in e.g. Roberts and Sweeting (2013).

20Regressions are informative for mean effects; results remain when comparing nonparametric
Kernel-estimated price distributions of above- vs. below-median total bidders.
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Table 5: Evidence for independent listings

Dependent var : bidders / listing bids / bidder hammer price reserve price

coef. s.e. coef. s.e. coef. s.e. coef. s.e.

Product: any wine
30 days -0.001 (0.0004) 0.00002 (0.0001) -0.0001 (0.019) 0.016 (0.029)
7 days -0.001 (0.001) -0.0002 (0.0003) 0.008 (0.056) -0.067 (0.101)
2 days -0.003 (0.001) 0.0003 (0.0004) 0.062 (0.086) -0.156 (0.181)
Product: type (red)
30 days -0.004 (0.003) 0.001 (0.001) 0.155 (0.142) 0.265 (0.236)
7 days -0.001 (0.006) 0.002 (0.002) 0.376 (0.357) -0.336 (0.740)
2 days -0.020 (0.009) 0.006 (0.003) 0.171 (0.496) -0.525 (1.065)
Product: region (Bordeaux)
30 days -0.001 (0.001) 0.00004 (0.0002) 0.012 (0.043) 0.074 (0.072)
7 days -0.0003 (0.002) -0.0002 (0.001) 0.084 (0.131) -0.060 (0.256)
2 days -0.003 (0.003) 0.001 (0.001) 0.167 (0.195) -0.375 (0.396)
Product: region x type
30 days -0.003 (0.004) 0.001 (0.001) 0.228 (0.206) -0.024 (0.347)
7 days 0.011 (0.010) 0.004 (0.003) 1.134 (0.561) -0.532 (1.096)
2 days -0.019 (0.016) 0.007 (0.004) 0.905 (0.819) -1.994 (1.501)
Product: region x type x vintage
30 days -0.012 (0.013) 0.001 (0.003) -0.561 (0.627) -0.938 (0.899)
7 days -0.006 (0.034) 0.005 (0.007) -0.465 (1.597) -1.371 (2.198)
2 days -0.061 (0.052) 0.004 (0.009) -0.938 (2.113) -0.669 (2.745)
Product: subregion (Margaux) x type x vintage
30 days -0.009 (0.008) 0.001 (0.002) 0.433 (0.372) -0.303 (0.565)
7 days 0.003 (0.019) 0.003 (0.005) 1.914 (0.941) -1.677 (1.658)
2 days -0.034 (0.026) 0.007 (0.006) 0.775 (1.143) -3.026 (1.908)
Observations 1,150 2,898 2,230 2,337
Sample 0 reserve all sold lots sold lots

Results from 72 separate OLS regressions of how the number of competing listings affects the four outcome variables (columns).
Competing listings defined as offering the same product in the same market, using 6 different product definitions (6 horizontal blocks)

and a market being all listings ending within a 30 day, 7 day, or 2 day rolling window of the listing of interest.

idiosyncratic good auction platform apart from previously studied settings where the

presence of a thick market for similar items result in strategies that generate different

reduced form statistics.21

21See e.g. Peters and Severinov (1997) and Anwar et al. (2006) for the competing seller model,
and Newberry (2015) for the thinning of bidders per listing.
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Figure 1: Feedback effects consistent with model predictions
Based on no-reserve auctions. A product is (region x type x vintage) and markets are 4 week intervals. Plotting the residual total

bidders (a) and bidders per listing (b) after controlling for product fixed effects (FE).

3.2 Feedback effects are consistent with model predictions

This auction platform data can also be evaluated in terms of its indirect network

effects.22 Such effects arise mechanically in auction platforms from the mere fact

that transaction prices are endogenous to the number of bidders per listing. As

bidders sort over available listings, a platform with more listings is more attractive

to potential bidders c.p., and vice versa. This generates a positive feedback effect,

observed from the positive correlation between the number of total bidders and the

availability of listings after controlling for product fixed effects in Figure 1 a. An

equilibrium prediction from a model in which (reserve) prices are unaffected by the

number of listings, as shown in the theory section, is that the mean number of bidders

per listing is independent of the number of listings (Figure 1 b). Given that the fee

structure is fixed in the data, additional listings are not associated with higher cost

sellers populating the platform. Network effects are such that bidders enter to the

point of keeping the mean number of bidders per listing constant (Table 5).

22Indirect network effects describe that a product is more valuable to a group of users when it is
more widely adopted by another group, see Katz and Shapiro (1985) and Rochet and Tirole (2006).
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4 Nonparametric identification

Model primitives are: the conditional valuation distributions FV0|Z,v0,r=0 (defined in

(7)) and FV |Z, and opportunity costs (eoS, eor>0, eor=0). Endogenous observables are:

the number of actual bidders (A), the second-highest bid (B), and the reserve price

(R). Exogenous observables are denoted by X and include: f , Z, NS, NB
r>0, and

NB
r=0.23

Proposition 3. Given exogenous observables X and endogenous observables

(A,B,R), the idiosyncratic-good auction platform model M in 2.1 identifies

[FV |Z, e
o
S, e

o
B,r>0, e

o
B,r=0] and identifies FV0|Z,v0,r=0 right-truncated at v∗0(f).

Athey and Haile (2002, Theorem 1) prove identification of FV |Z in an English

auction model that places identical restrictions on this distribution up to the presence

of binding reserve prices. Observing the empirical distribution FB in auctions without

a reserve price, an event that is known, completes the proof.

Given that FV |Z is identified, the reserve price identifies the seller’s valuation in

that listing. Re-arranging the equilibrium reserve price strategy:

v0 = (1− cS)

(
r −

1− FV |Z(r(1 + cB))

(1 + cB)fV |Z(r(1 + cB))

)
≡ r, (14)

The distribution of r, FR, identifies the distribution of valuations among sellers who

enter and set a positive reserve price, point-wise ∀v ∈ [v0,r=0, v
∗
0(f)]:24

FR(v) =
FV0|Z,v0,r=0(v)

FV0|Z,v0,r=0(v∗0(f))
(15)

Without identifying variation in v∗0(f) and unless v∗0(f) = v̄0, the population dis-

tribution FV0|Z,v0,r=0(v) is not identified on the part of its support exceeding v∗0(f).

However, nonparametric identification of the right-truncated distribution of poten-

tial seller valuations is sufficient for any counterfactual that reduces expected seller

23These positive identification results go through with the large population assumption when
(NB

r>0, NB
r=0, NS) are unobserved. This is because: i) fN,r=0(; p∗r=0(f)) is identified from observables

in auctions without a reserve price, ii) fN,r>0(; p∗r>0(f, v∗0), v∗0(f)) is identified from variation in the
number of actual bidders in auctions with a positive reserve price (for any reserve price that delivers
variation in A), iii) the expectations over values of Nr>0 in (9) and Nr=0 in (31) are then over an
infinite support, and iv) the results don’t rely on population sizes otherwise.

24Elyakime et al. (1994) also identify seller cost with a first order condition using the secret reserve
price in first price auctions (in which case, r∗ = v0).
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surplus. In my data this is the relevant part of the support because limiting entry of

non-serious sellers attracts sufficient additional bidders to each listing to outweigh a

reduction in sales from excluded listings.

Opportunity cost are identified from the three zero profit conditions ((10), (15),

and (33) evaluated at equilibrium values). I show this in the appendix.

5 Estimation method

I parameterize the latent value distributions and estimate bidder (θb) and seller (θs)

parameters, allowing me on the seller side to extrapolate beyond the support on

which FV0|Z,v0,r=0 is identified. However, the fact that the entry equilibrium depends

on these structural parameters complicates estimation. A second issue stems from

the equilibrium seller entry threshold being the solution to a fixed point problem

that itself depends on a threshold-crossing problem on the bidder side, making full

maximum likelihood estimation (computationally) infeasible. To address these issues,

I adopt a multi-step estimation method:

1. Controlling for auction heterogeneity Z to obtain homogenized values.

2. Estimating θb by maximum likelihood using homogenized bids.

3. Estimating θs by maximum concentrated likelihood using homogenized reserves

and a consistent estimate of the seller entry equilibrium.

4. Solving for the entry equilibrium given estimated parameters.25

5. Re-estimating seller parameters at the updated entry equilibrium.

My algorithm resembles solutions to solving parameters involving fixed point char-

acterizations in the estimation of games. Indeed, the seller entry problem resembles

the discrete choice programming problem central to that literature. The rest of this

section provides further details including on the estimation of opportunity cost and

the entry process.

25Steps 4 and 5 are taken because small sample estimation error from steps 1 and 2 affect the
concentrated likelihood estimator of θs in step 3, which involves the sample maximum of noisy
implied seller values.
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Estimating bidder and seller values. Potential bidder and seller valuations

are taken to satisfy the following log-linear single-index structure:

ln(V ) = g(Z) + U , ln(V0) = g(Z) + U0 (16)

with ln the natural logarithm and (U,U0,Z) mutually independent. The common

g(Z) term is interpreted as “quality”, capturing the importance of provenance, ul-

lage, the expected quality of wines from different vintages or regions, and delivery

conditions.26 On top of that, values are based on an idiosyncratic “taste” compo-

nent and are non-negative. By additivity of the idiosyncratic taste component, for

all bidders i: Vi = g(Z) + Ui so that also: V(n−1:n) = g(Z) + U(n−1:n). Quality is

then estimated by regressing the transaction price on auction characteristics, using

only data from auctions without a reserve price and with more than one bidder in

which the transaction price equals the second-highest valuation.27 Residuals from

this regression (plus the intercept) are the homogenized second-highest bids, Ûn−1:n,

used for estimation of θb in (17). U0 is the basis for estimation of θs in (20).

Both U and U0 in (16) are assumed to be normally distributed.28 The mean

and standard deviation of U , (µb, σb ∈ θb), are estimated by maximum likelihood

estimation in auctions with a zero reserve price, mapping tightly with the identifying

equation.

Let T , Tr0 and Tr>0 denote the set of listings, listings with a zero reserve price, and

listings with a positive reserve. Let h(bt|nt, zt, f ; θb) denote the density of transaction

prices given the number of bidders nt, zt and f . For zero reserve auctions it is the

probability that the homogenized second-highest bid bt is the second-highest among

nt draws from FV |Z. Hence ∀t ∈ Tr0:

h(bt|nt, zt, f ; θb) = nt(nt − 1)FV |Z(bt; θb)
nt−2[1− FV |Z(bt; θb)]fV |Z(bt; θb) (17)

26It is for instance is commonly accepted that the 1961 Bordeaux vintage is better than most
others due to favourable weather conditions.

27This homogenization step stems from Haile et al. (2003) and is used often in the analysis of
ascending auctions, e.g. in Bajari and Hortaçsu (2003) and Freyberger and Larsen (2017).

28The lognormal distribution is commonly used to analyze bidding data (e.g. Paarsch (1992),
Laffont et al. (1995), Haile (2001), Hong and Shum (2002)). Results go through with the loglogistic
distribution, but its heavier tails deliver a worse fit.
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Bidder parameters are estimated by maximizing the log likelihood function:

L(θb; {nt, zt, bt, rt}t∈Tr0 , f) =
∑
t∈Tr0

ln((h(bt|nt, zt, f ; θb))) (18)

θ̂b = arg maxL(θb; {nt, zt, bt, rt}t∈Tr0 , f)

The equilibrium mapping of reserves to values exploited for identification (14) is the

basis for recovering a sample of implied seller values, ∀t ∈ Tr>0:

û0,t = ln

(
(1− cS)

(
rt −

1− FV |Z(ln(r̃t)− ˆg(zt); θ̂b)

(1 + cB)fV |Z(ln(r̃t)− ˆg(zt); θ̂b)

))
− ˆg(zt), (19)

with r̃t = rt(1 + cB) denoting the buyer premium-adjusted reserve price and û0,t the

homogenized idiosyncratic part of the implied seller value in auction t. The sample

maximum of implied residual seller valuations, υ̂T = max({û0,t}t∈Tr>0), is a consistent

estimator of the seller entry threshold. Intuitively, sellers with higher residual value

draws than v∗0(f) will never list so υ̂T − v∗0(f, θb, θs) is always negative (at population

values of θb, θs, and g(Z)) and the more sellers that do list the larger the probability

that the marginal seller has a valuation equal to the threshold.29

Let h(rt|zt, f, v∗0(f, θb, θs), θ̂b; θs) denote the density of rt given the true seller equi-

librium threshold, which follows from equation (15):

h(rt|zt, f, v∗0(f, θs, θb), θ̂b; θs) =
fV0|Z,v0,r=0(û0,t; θs)

FV0|Z,v0,r=0(v∗0(f, θs, θb); θs)
, (20)

for rt ∈ [r∗(v0,r=0, f), r∗(v∗0(f, θs, θb), f)], and 0 otherwise. A complication is that

the support of reserve prices (and implied û0,t) observed in the data depends on θs

through its effect on v∗0(f, θs, θb), so that standard regularity conditions demonstrating

consistency and asymptotic normality of the maximum likelihood estimate of θs don’t

apply. I therefore estimate initial seller parameters by maximizing a concentrated

29A more precise statement, with continuous FV0|Z, is that the probability increases that the
marginal seller has a valuation within a fixed small interval around the threshold.
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likelihood with υ̂T in place of v∗0(f, θs, θb):
30

L(θs; {û0,t, zt}t∈Tr>0 , f, υ̂T , θ̂b) =
∑
t∈Tr>0

ln(h(rt|zt, f, υ̂T , θ̂b; θs)) (21)

θ̂s
0

= arg maxL(θs; {û0,t, zt}t∈Tr>0 , f, υ̂T , θ̂b) (22)

This addresses the support problem as the first order condition of the concentrated

likelihood with respect to (µs, σs ∈ θs) does not depend on υ̂T . However, the fact

that û0,t depends on estimated θ̂b and ˆg(Z) makes it likely that in finite samples υ̂T

is biased. In particular, because it is the maximum of a noisily estimated sample of

homogenized idiosyncratic seller valuations it likely an overestimate of the true v∗0(f).

Relatedly, it introduces the possibility that the largest values of û0,t incorporate the

highest bias.31

In steps 4 and 5, I therefore solving the entry game and re-estimate seller pa-

rameters with the new threshold, v∗0(f, θ̂s
0
, θ̂b), incorporated in (22).32The appendix

provides computational details, including about numerical approximation of the entry

equilibrium, and provides Monte Carlo results that one update is sufficient to correct

for the noisy first stage. The final estimated seller parameters are denoted by θ̂s.

Estimating entry parameters. The mean number of bidders in no reserve

auctions is a consistent estimate of λ∗r=0:

λ̂∗r=0 =
1

|Tr=0|
∑
t∈Tr=0

nt (23)

A consistent estimate of λ∗r>0 maximizes the likelihood of transaction prices (bt) and

number of actual bidders (at), in positive reserve auctions and given estimated bidder

values. The joint density of bt, at if the number of potential bidders per listing (nt)

would be known, ∀t ∈ Tr>0:

30Donald and Paarsch (1993, Footnote 4) suggest this for a support problem in first-price auctions.
31Monte Carlo simulations confirm that the initial standard devation σb overestimates the truth

as the sample of implied seller values appears more disperse.
32Iterating on steps 3-5 until convergence would be in line with the NPL estimator in Aguirre-

gabiria and Mira (2002). Roberts and Sweeting (2010) are the first to apply this algorithm to the
auction literature to study auctions with selective bidder entry. Pesendorfer and Schmidt-Dengler
(2010), Kasahara and Shimotsu (2012) and Egesdal et al. (2015) provide conditions under which
NPL does (not) converge to the true equilibrium. A best-response stable equilibrium is a sufficient
condition for the algorithm to converge and this is certainly guaranteed by my game reducing to a
single agent discrete choice problem with unique equilibrium (Proposition 1).
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h(bt, at|nt, rt, zt, f, θ̂b) = {FV |Z(r̃t; θ̂b)
nt}I{at = 0} (24)

{ntFV |Z(r̃t; θ̂b)
nt−1[1− FV |Z(r̃t; θ̂b)]}I{at = 1}

{
(

nt
nt − at

)
FV |Z(r̃t; θ̂b)

nt−at [1− FV |Z(r̃t; θ̂b)]
at

at(at − 1)FV |Z(b̃t; θ̂b)
at−2[1− FV |Z(b̃t; θ̂b)]fV |Z(b̃t; θ̂b)}I{at ≥ 2}

The first line covers the probability that all nt bidders draw a value below the reserve

price, the second line the probability that one out of nt draw a value exceeding r̃

while the others don’t (in which case bt = rt with certainty), and the final two lines

capture the probability that at out of nt draw a valuation exceeding the reserve and

that the second-highest out of them draws a valuation equal to b̃t = bt(1 + cB).

Without observing nt, a feasible specification takes the expectation over realizations

of random variable N ∼ Pois(λ∗r>0). This is the basis of the likelihood function that

λ̂∗r>0 maximizes, ∀t ∈ Tr0:

g(bt, at|rt, zt, f, θ̂b;λ∗r>0) =
∞∑

nt=at

h(bt, at|k, rt, zt, f, θ̂b)fN |N≥A(k;λ∗r>0) (25)

L(λ∗r>0; {bt, at, rtzt}t∈Tr>0 , f, θ̂b) =
∑
t∈Tr>0

ln(g(bt, at|rt, zt, f, θ̂b;λ∗r>0)) (26)

λ̂∗r>0 = arg maxL(λ∗r>0; {bt, at, rt, zt}t∈Tr>0 , f, θ̂b) (27)

Bidder opportunity cost êoB,r>0 and êoB,r=0 are estimated as the values that equal

expected surplus from entering, estimated by computing the values in equations (9)

and (31) at the estimated (θ̂b, θ̂s, λ̂
∗
r>0, λ̂∗r=0). As the seller opportunity cost are

identified off only one data point (the expected surplus of the marginal seller) I

instead estimate êoS as the average between êoB,r>0 and êoB,r=0. The equilibrium seller

entry threshold is calculated as the value that makes the marginal seller indifferent,

i.e. by solving equation (12) at the estimated parameters.
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6 Estimation results

Estimates from the homogenization step show that the (sign of) coefficients for various

key variables are as expected. Prices are higher for bottles sold in a case of 6 or 12,

and conditional on this case effect the price is lower the more bottles are included in

the lot. Bottles stored in specialized temperature-controlled warehouses and special

format bottles (e.g. magnums) are more attractive. All fill levels that are not the

best deliver (weakly) lower prices. The full set of coefficients is provided in the

appendix, and are insightful about the relative attractiveness of a host of regions,

grapes, shipping options, etc.

It is important to point out that the rich set of auction observables obtained

through web scraping explains a remarkably large share of total price variation: the

adjusted R-squared is 0.530 for the main sample and 0.855 for the smaller high-value

sample. This compares favorably even with how much price variation can be explained

by observables in auction data with more homogeneous goods.33 It is especially

encouraging given the notorious difficulty to address unobserved heterogeneity in

English auctions (Hernández et al. (2019)).34

The estimated population distribution of seller valuations is more dispersed than

that of bidders but the distribution of bidder values (at least) second-order stochas-

tically dominates the distribution of values among sellers on the platform who set a

positive reserve price (see Table 6).35 Auction characteristics explain the majority of

price variation in the sample, but there is significant variation in the idiosyncratic

tastes for the fine wine offered on the platform. For example, at the median esti-

mated quality (−0.33) the mean bidder value is estimated to be 26 pounds and the

33Bodoh-Creed et al. (2019) explain 42% of price variation for Amazon Kindles with a more elab-
orate set of controls obtained with machine learning techniques (Hernández et al. (2019)). Bodoh-
Creed et al. (2019) state that the 0-15% of variation with simple OLS regressions is representative
of low predictive power in the literature, and they manage to increase the fit to on average 48% with
random forest estimation and machine learning techniques.

34Hernández et al. (2019) require exogenous variation in bidder participation, as do Aradillas-
López et al. (2013) to obtain narrow bounds on expected surpluses. In Roberts (2013), homogeneous
sellers and bidders observe the characteristic unobserved to the econometrician, which is recovered
from variation in reserve prices. Freyberger and Larsen (2017) have heterogeneous sellers but require
two bid order statistics to apply a deconvolution.

35Estimation of θs excludes the 4.17 (0.22 in high-value sample) percent of sellers for which û0,t
is estimated to be negative. This could be driven by: i) a portion of sellers setting reserve prices
below optimal, ii) small-sample estimation bias stemming from first-stage estimates, or potentially
iii) approximation error in the reserve price.
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Table 6: Estimation results

Idiosyncratic values main high-value Entry equilibrium main high-value

Bidders (θb)
µb

3.1736 5.376

Bidders per listing
λ∗r>0

3.835 4.651
(0.029) (0.034 ) (0.007) (0.033)

σb
0.903 0.564

λ∗r=0

5.238 7.271
(0.001) (0.022) (0.004) (0.011)

Sellers (θs)
µs

4.175 5.957
Seller entry probability

0.811 0.828
(0.084) (0.093) (0.002) (0.003)

σs
1.491 0.741

Opportunity cost

eoS
4.991 13.848

(0.165) (0.022) (0.165) (0.642)

eoB,r>0

4.782 13.285
(0.159) (0.641)

eoB,r=0

5.200 14.412
(0.171) (0.661)

Standard errors are obtained with 250 bootstrap repetitions (including homogenization stage).

(a) Bidder valuations (b) Seller valuations (c) Second-highest bids

(d) Reserve prices (e) Bidders per listing (f) Commission index

Figure 2: Model fit / validation
Plotting: (a) FV |Z(; θ̂b) vs empirical CDFm n = 2, ..., 8 bidders (no reserve), (b) FV0|Z,v0,r=0

(; θ̂b) vs empirical CDF (positive

reserve), (c) second-highest bid, predicted (incl. estimated quality) and observed, (d) reserve price, predicted (inc. estimated quality)

and observed, (e) PMF bidders per listing, predicted (given Poisson λ̂∗r=0, no reserve), and (f) contour plot of counterfactual v∗0 (grey
tones) and commission indices (thick orange lines), shares of baseline values.

interquartile range 9-32 pounds. Sellers are estimated to have an average value of 20

pounds for that item, with an interquartile range of 9-31 pounds. Real gains from
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trade come from some bidders drawing a much higher value, with the 95th percentile

of estimated bidder values at 75 pounds and the same statistic for sellers at 45 pounds.

Estimated taste distributions have a higher mean but lower dispersion in high-value

listings.

Setting no reserve price attracts on average 1.6 additional bidders into a listing.

It also makes intuitive sense that this participation differential is larger in the high-

value sample; the probability of being the sole entrant and winning the more expensive

bottle for the 1 pound opening bid contributes more to expected surplus. Estimated

opportunity cost are also significantly different; roughly three times as high in the

high-value sample. But relative to the second-highest bid, estimated opportunity

cost are higher in the main sample: 6 - 7 percent, versus 4 percent in the high-value

sample. Estimates do in both cases correspond to the idea that listing inspection cost

are significant in this idiosyncratic goods environment.

Fit and validation. The model fits the data well, also when looking at cuts of

the data not targeted in estimation. Figure 2 illustrates. Plot (a) and (b) show

how nonparametric idiosincratic value distributions of bidders and sellers relate to

the estimated parametric distributions. Plots (c) and (d) include draws of estimated

quality and number of bidders to simulate second-highest bids and reserve prices.

Both are in expectation over the number of bidders per listing, and plot (d) includes

out-of-sample predictions of quality that is estimated in auctions without a reserve.

As another measure of model fit I compute the mean absolute deviation between

observed and predicted second-highest bids separately for n = {2, 3, .., 10} bidders:

mean absolute deviations are between 0.042-0.997 and there is no clear pattern by

number of bidders. A two-sample Kolmogorov-Smirnov test cannot reject the null that

observed and predicted reserve prices are drawn from the same population distribution

(p-value 0.448).

Plot (e) displays the remarkable fit of the assumed Poisson distribution with the

estimated λ∗r=0 to the observed Binomial number of bidder distribution. A chi-square

goodness of fit test fails to reject thatN is generated by a Poisson distribution (p-value

0.146). It is of particular interest that the data does not reveal any overdispersion

relative to the Poisson distribution.36

36That would point to an entry process in which bidders enter significantly more numerously into
auctions with certain characteristics - conditional on the reserve price button. Preferences for high-
level characteristics (filters) may vary across the population of potential bidders, but a model with
uniform sorting over listings captures the first order effects of entry behavior in the BW data.
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Plot (f) confirms centrality of the commission index. In theory, outcomes are

independent of the allocation of total commissions to buyers and sellers as long as

commission index cB+cS
1+cB

remains constant (Ginsburgh et al. (2010)). In other words,

only the commission index and flat fees should matter for the platform revenue-

maximization problem. The plot shows how computed counterfactual equilibrium v∗0

levels line up perfectly with the commission-index level lines in orange.37 Reducing

the commission index by half increases the seller entry threshold by about 5 percent

and doubling the commission index leads approximately to a 10 percent reduction in

the threshold.

Another source of model validation comes from comparing êoB,r=0 with êoB,r>0.

While they are allowed to be different, there is no reason to suspect that it is signif-

icantly more time-intensive to inspect listings with or without a reserve price if the

reserve price does itself not reveal any information about the quality of the item. In-

deed, the 95 percent confidence intervals of êoB,r=0 and êoB,r>0 overlap, in both the main

and high-value sample. Recall that êoB,r=0 and êoB,r>0 are computed in two different

cuts of the data as the values that justify Nr=0 ∼Pois(λ̂r=0) and Nr>0 ∼Pois(λ̂r>0)

using two very different estimation methods. Hence the fact that they are statisti-

cally insignificant as they should be confirms that the parsimonious model provides

a plausible description of bidder behavior and payoffs on this platform.

Robustness analysis. Table 7 shows that results are robust to alternative em-

pirical choices. The table presents the fit of the homogenization step, equilibrium

parameters and opportunity cost with standard errors from 250 bootstrap replica-

tions. Only the estimated opportunity cost turn out slightly higher in the fourth

robustness check.

In (1), I test robustness to the parametric specification by assuming that (U,U0)

are logistically distributed. Although entry results are similar, the heavier-tailed

logistic distribution has a worse fit and it can even be rejected at the 5% level that

the resulting simulated reserve price distribution is identical to the observed one.

In (2), I use text mining techniques to control for additional listing information

in the homogenization step. Specifically, I load all textual descriptions (generated by

the seller), create a corpus, remove punctuation, stopwords, and numbers, and adopt

37First, equilibrium values of v∗0 are computed at a grid of all 30 commission combinations from
cB = {−0.2,−0.1, 0, 0.1, 0.2} and cS = {−0.2, 0.1, 0, 0.1, 0.2, 0.4} and interpolated on a finer grid of
41x41. Displayed values are normalised by baseline values, and are estimated in the main sample.
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Table 7: Robustness analysis

(1) (2) (3) (4)
Adj. R2 0.530 (0.001) 0.550 (0.001) 0.542 (0.001) 0.530 (0.001)
λ∗r>0 3.791 (0.007) 3.837 (0.007) 3.771 (0.006) 4.288 (0.007)
λ∗r=0 5.260 (0.004) 5.260 (0.004) 5.452 (0.004) 5.260 (0.004)
FV0|Z(v∗0) 0.872 (0.002) 0.834 (0.002) 0.808 (0.002) 0.835 (0.002)
eoS 6.341 (0.149) 5.979 (0.157) 5.251 (0.132) 7.042 (0.125)
eoB,r>0 6.183 (0.145) 5.814 (0.153) 5.160 (0.128) 6.462 (0.115)
eoB,r=0 6.499 (0.153) 6.145 (0.161) 5.341 (0.136) 7.621 (0.136)

Results from four robustness exercises described in main text. Standard errors from 250 bootstrap repetitions in parenthesis.
Estimated using data from the main sample.

stemming. I then generate dummy variables for the presence of words associated

with four important types of descriptors related to provenance, storage conditions,

delivery conditions, and expert opinion. I also add the total number of words in the

description, and the number of words squared. Furthermore, I add feedback data:

whether the seller has received feedback from previous transactions, whether he has

any ratings, the number of ratings, the share of the ratings being neutral, and the

share being positive. This text mining exercise only marginally improves the adj. R2

from 0.53 to 0.55, underlining the richness of the original set of controls.

In (3), I estimate the model for auctions with red wine only, representing 65 per-

cent of all auctions in the main sample. Results show that latent value distributions

and entry processes are not very different from other types of wine, and therefore

that the model is not misspecified along this dimension.

In (4), I adopt a different reserve price approximation that imputes unobserved

secret reserve prices in unsold auctions with a linear combination of its two near-

est neighbour values, after first ranking listings based on their estimated quality. I

also replace approximated reserve prices for which the highest bid exceeds the 95th

percentile.

7 Counterfactuals

I next use model estimates to address two key indeterminacy’s of two-sided markets.

First, how should the platform allocate fees between different platform users? Second,

how do increases in fees affect users on both sides? I first highlight the added value
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a) No entry b) No bidder entry c) No seller entry

Figure 3: Ignoring seller entry significantly biases results

of modelling endogenous seller entry.

Addressing seller entry. Accounting for endogenous seller entry is new to the

structural auction literature, and Figure 3 confirms its importance empirically. I

simulate a 10 percentage point increase in the seller commission. Impacts are theo-

retically ambiguous: reserve prices are driven up for sellers already on the platform,

but the higher-commission platform will be populated with lower-value sellers setting

lower reserves. Because only the former direct price effect is present when shutting

off entry altogether (panel a), one would severely overpredict the increase in reserve

prices, as shown. Panel b illustrates a second take-away: seller entry reduces by

less when not letting bidder entry adjust optimally. It turns out that reserve prices

increase so that in the full equilibrium the number of bidders per listing decreases.

This would make the platform even less attractive to sellers: a feedback effect that

explains the additional decrease in seller entry. Finally, a model that ignores only

seller entry (panel c) would fail to capture the counterbalancing effect of attracting

more serious sellers. The omission exaggerates by more than 300% the reduction in

the number of bidders and the sale probability.

Increasing platform profitability. All fee changes generate a crucial trade-off

between the volume of sales and platform revenue. Higher listing fees, for example,

make it less attractive for sellers to enter and the lower number of listings depresses

the sales volume. I therefore consider the problem of maximizing current volume-

constrained fee revenues.38 Figure 4 displays contour plots of estimated counterfactual

38In any scenario where the volume of sales affects future revenues, through word of mouth or
brand awareness, a forward-looking platform will include this outcome in their objective function.
Such scenario’s are consistent with a model of network growth with myopic users who can terminate
their participation at no cost, as in Evans and Schmalensee (2010).
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(a) (b) (c)

Figure 4: Platform revenue at counterfactual fees

Contour plots of revenue relative to baseline platform revenue. The red line indicates current sales volume; fee
combinations to the south west increase volume. Grey bars indicate baseline fee levels.

platform revenues.39 When altering just the commission levels, the platform cannot

increase its revenues without reducing volume unless it is willing to charge a negative

buyer commission (plot a).It is striking that the platform can increase its revenues

by more than 60 percent without reducing the sales volume by charging a negative

buyer commission and finance that by increasing the seller commission. Plot b shows

that platform demand is relatively inelastic with respect to the listing fee.40 Platform

revenues can increase by more than 20 percent when pairing a higher listing fee with

a lower seller commission. Simulations in plot c combine these results for a range of

counterfactual buyer commissions.

Table 8 provides further insight into profit strategies. Simulated fee structures in-

crease volume by 2-3% and increase revenues by 13-35%. In the first column, platform

profitability increases primarily through increasing the commission index. Transac-

tion prices increase despite the selection of more serious sellers, and the platform

keeps a larger share of it. In the second column switching from seller commission

to listing fee boosts profitability, improving the share of (higher-return) high-value

listings. This is especially attractive for a platform that wants to position itself on

the high-end of the market. The last column combines a modest bidder discount and

39The game is estimated for all fee combinations on coarse grids (cL = {0, 1.75, 5, 10, 15} and (cB ,
cS) = {−0.2,−0.1, 0, 0.1, 0.2}) and interpolated on finer grids. Results are expressed as changes with
respect to baseline levels and are computed in homogenized value space, including both the main
and high-value samples.

40The average transaction price in the data is about 140 pounds so increasing the listing fee
from 1.75 to 10 pounds should deliver effects in the same order of magnitude of changing the seller
commission from about 0.01 to 0.07.
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Table 8: Effects of specific fee changes

Counterfactual (cB, cS, cL) (−0.1, 0.22, 1.75) (0, 0.05, 10) (−0.03, 0.08, 6.75)
Commission index cB+cS

1+cB
0.136 0.05 0.052

(percentage change w.r.t. baseline:)

Platform revenue 34.914 13.986 12.901
Volume 3.072 2.912 2.440
Transaction price (avg) 4.254 -8.710 -5.614
Share high value listings -1.983 14.617 6.014
Share high value revenues -28.455 4.007 -7.574
Seller entry prob (main) -4.637 -18.296 -10.362
Number bidders (high) -1.756 11.565 6.613

Baseline fee values: (cB = 0, cS = {0.102 (main),0.09 (high)}, cL = 1.75), commission index = {0.102 (main),0.09 (high)}.

Table 9: Antitrust damages

cS + 5%, main cS + 5%, high cB + 5%, main cB + 5%, high
(percentage change w.r.t. baseline:)

Total seller surplus -16.863 -11.764 -16.456 -9.487
Total winning bidder surplus -6.215 -7.087 -5.927 -5.890
Surplus per seller -12.602 -13.683 -10.996 -13.069
Surplus per winning bidder -1.209 -0.762 -0.475 -0.956
Heterogeneous impacts on sellers:
Q25 seller on platform (at baseline) -4.352 -12.072 -2.805 -9.997
Median seller on platform (at baseline) -8.405 -18.003 -6.103 -15.358
Q75 seller on platform (at baseline) -14.082 -29.747 -11.892 -24.545
Marginal seller counterfactual -36.650 -73.922 -34.151 -74.166

small seller commission decrease with a small listing fee increase. The seller entry

probability decreases less than in column 2. This dampens the feedback effect on

bidder entry and lowers the share of profits from high-value listings by 8%.

Antitrust damages and heterogeneous impacts. In Table 9 I compute hy-

pothetical antitrust damages (not tripled) from increasing either buyer or seller com-

mission by 5 percentage points. Results debunk two paradigms previously applied to

assess the impacts of commissions, both in relation to the Sotheby’s and Christie’s

commission fixing case that resulted in a settlement of 512 million dollars that mostly

went to winning bidders. Its litigation makes clear that damages are awarded pro-

rata, which would in the table correspond to a 5% damage to sellers in columns 1 and

2 and a 5% damage to buyers in columns 3 and 4. Estimated damages instead fall
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mostly on sellers in both instances, and decrease by more than twice these amounts.41

The fact that also winning bidders are affected breaks with the so-called one-sided

market perspective on this issue: the idea that in a world without entry and fully in-

elastic sellers, winning bidders should not be affected.42 Instead, expected surplus of

winning bidders as a group drops by 6 (7) percent after the buyer (seller) commission

increase. Also the surplus per winning bidder decreases because the additional bid-

ders per listing reduce the spacing between the highest two order statistics; an effect

that would clearly be overlooked when ignoring the two-sidedness of the platform.

The highly non-linear damages to sellers also stand out. The seller who is marginal

in the higher commission counterfactual must have a lower surplus than at baseline,

because he is inframarginal there. By the same reasoning, the seller who was marginal

at baseline is not affected because he was indifferent between entering and staying out.

In general the most serious, lowest-value sellers are affected the least but those that

were almost marginal at baseline experience an enormous 34 (37) percent reduction

in their expected surplus from the five percent increase in buyer (seller) commission.

The inter-quartile range of seller damages is in the main sample between 4-14 percent

(seller commission increase) and 3-12 percent (buyer commission increase). Per-seller

damages are about two to three times as large in the more high-end listings.

8 Conclusions and discussion

The main contribution of this paper is to merge two important literatures with the

goal to provide a tight quantitative assessment of the impacts of auction platform

fees. I have presented, solved, and estimated the first structural auction model that

accounts for seller selection. I have also shown that the model’s parsimonious set of

assumptions combined with basic English auction data renders its model primitives

point identified. For the distribution of potential seller valuations this holds on the

support of values for sellers on the platform and therefore for relevant counterfactuals

that make seller entry less attractive. In this type of platform, restricting entry of

less serious sellers is beneficial as it makes the platform more attractive to bidders.

It is precisely this sort of network effect generated through bidder-seller interactions

41The court ruling can be found here on Casetext. It states that “[an expert witness] admits that
there is no supply and demand elasticity evidence from which any conclusion might be drawn about
where the ultimate economic incidence of the alleged conspiracy fell.”

42See Ashenfelter and Graddy (2005), Marks (2009), McAfee (1993)
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that complicate the analysis of fee impacts. Hence, besides bringing a two-sided

market perspective to the empirical auction literature I also show how to trace fees

through the auction game to justify the network effects central to the two-sided market

literature.

I have described several testable implications of the model. For data to be con-

sistent with it, it needs to be generated from an environment with significant listing

inspection cost, such as in other auctions with idiosyncratic goods. The resulting

independence of listings is key to solve the two-sided entry equilibrium: it means that

the equilibrium mean number of bidders per listing is only affected by the type and

not the number of listings. As such, the independent listing property and a large

population assumption bring the tractability to my model that stationarity restric-

tions bring to dynamic (auction) models. It would clearly be interesting to extend

my framework in future work to add a (dynamic) search dimension (as in Backus and

Lewis (2019) and Bodoh-Creed et al. (forthcoming)), to include the overlapping open

nature of listings in which bidders choose where to bid (as in Hendricks and Sorensen

(2018)), and to consider seller competition (as in Anwar et al. (2006)) for markets

where this is relevant.

Network effects in this market can be harnessed to improve platform profitability.

I estimate that platform revenues can increase by 60 percent when combining a bid-

der discount with higher seller fees or by 20 percent when combining a lower seller

commission with a higher listing fee.43 Antitrust damages from increasing commis-

sions fall mostly on sellers, are more than twice as large as in a simple model without

network effects, and heterogeneous. Competition authorities and courts recognize

the importance of network effects in two-sided markets, but the difficulty to quantify

user interactions has been a practical bottleneck.44 My auction platform model with

two-sided entry provides sufficient structure to allow such a case to be evaluated.

43A negative commission is consistent with the idea that businesses in two-sided markets should
subsidize the side that contributes most to profits, even charging below marginal cost. See e.g.,
Rochet and Tirole (2003, 2006), Wright (2004), Armstrong (2006), Rysman (2007), Evans and
Schmalensee (2013) Rysman and Wright (2002). I am not aware of any auction platform with
negative fees, but eBay uses temporary discount coupons.

44See e.g. Bomse and Westrich (2005), Tracer (2011), Evans and Schmalensee (2013). In (this
eBay case, discussed here), sellers were denied a class action suit due to the absence of a method
to quantify damages in the presence of network effects. A decisive move towards the need for
structural platform models came with the landmark 2018 Ohio vs Amex Supreme Court decision,
which requires plaintiffs (merchants) to provide evidence that anti-steering rules negatively impact
consumers as well. The decision can be found here.
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References to (1) - (27) are to equations in the main text of the article.

Supplement: Omitted proofs

Optimal reserve price

Proof Lemma 2. For brevity I omit conditioning on characteristics Z, and define hat

and check notation as: x̂ = x(1 + cB) and x̌ = x
1+cB

. Let R denote expected revenue

for a seller with valuation v0 when setting reserve price r in an auction with n bidders:

R = v0FV (r̂)n + (1− cS)rnFV (r̂)n−1[1− FV (r̂)]+ (28)

T (1− cS)

∫ v̄

r̂

x̌n(n− 1)FV (x)n−2[1− FV (x)]fV (x)dx

The three terms in the above equation for R cover three cases: i) no sale takes place,

ii) a sale takes place but the second-highest bid is less than the reserve price and iii)

the sale takes place and the second-highest bid exceeds the reserve. Maximizing R

with respect to r:

∂R

∂r
= v0nFV (r̂)n−1fV (r̂)(1 + cB) + (1− cS)nFV (r̂)n−1[1− FV (r̂)] (29)

+(1− cS)rn(n− 1)FV (r̂)n−2fV (r̂)(1 + cB)[1− FV (r̂)]

−(1− cS)rnFV (r̂)n−1fV (r̂)(1 + cB)

−(1− cS)rn(n− 1)FV (r̂)n−2[1− FV (r̂)]fV (r̂)(1 + cB)

The second and last line cancel out. Re-arranging delivers the optimal reserve price

r∗(v0, f) which solves:

r∗(v0, f) ≡ {r =
v0

1− cS
+

1− FV (r(1 + cB))

(1 + cB)fV (r(1 + cB))
} (30)

r∗(v0, f) is unique ∀(v0, f) given the IFR property of FV , increasing in v0, and inde-

pendent of n.

Listing-level properties
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Proof Lemma 3. ∂πb(n,f,v0)
∂n

< 0 because FV |Z satisfies the increasing failure rate (IFR)

property. Li (2005) prove that a monotonically nondecreasing failure rate implies

decreasing spacings so that E[V(n+1:n+1) − V(n:n+1)] − E[V(n:n) − V(n−1:n)] ≤ 0. This

holds without a reserve price or fees and since both are independent of n, and the

inequality is strict in the IFR case. For v0 ≤ v0,r=0 sellers set a zero reserve price

so πb(n, f, v0) = πb(n, f, 0) is independent of v0, and otherwise πb(n,f,v0)
v0

≤ 0 since

the optimal reserve increases in v0 (Lemma 2). On the seller side, ∂πs(n,f,v0)
∂n

> 0 as

r∗(v0, f) is independent of n (Lemma 2) and FV(n:n)
is stochastically increasing in n.

It is clear from (4) that ∂πs(n,f,v0)
∂v0

≤ 0 and intuitively: higher seller values reduce

gains from trade.

Bidder entry equilibrium in auctions with zero reserve price

Proof Lemma 7. NB
r=0 potential bidders only form an expectation over the number of

competing bidders in their listing if all enter with probability p, using its compound

Binomial distribution, fN,r=0(n; p). From the perspective of a bidder who enters

the platform, fN,r=0(n; p) combines uncertainty about: 1) the stochastic number of

listings T (with realization t) given screening value v0,r=0, and 2) how many of NB
r=0−1

competing bidders end up in his listing when they enter the platform with probability

p and sort uniformly over available listings with zero reserve. Combined with entry

and opportunity cost, Πb,r=0(f ; p) denotes the expected surplus from entering the

platform for these potential bidders:

Πb,r=0(f ; p) =

NB
r=0−1∑
n=0

πb(n, f, 0)fNr=0(n; p)− eB − eoB,r=0 (31)

fN,r=0(n; p) =
NS∑
t=0

(
NB
r=0 − 1

n

)
(
p

t
)n(1− p

t
)N

B
r=0−1−n× (32)(

NS

t

)
FV0|Z(v0,r=0)t(1− FV0|Z(v0,r=0))N

S−t

In equilibrium, NB
r=0 potential bidders are indifferent between staying out and entering

the platform:

p∗r=0(f) ≡ p ∈ (0, 1){Πb,r=0(f ; p) = 0} (33)
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Uniqueness follows from Πb,r=0(f ; p) strictly decreasing in p for any fee structure that

induces non-trivial entry (p ∈ (0, 1)).

Poisson decomposition property for number of bidders per listing

Proof Lemma 8. The proof concerns the statement that when NB potential bidders

enter a platform with T listings with probability p, the distribution of the number of

bidders per listing is approximately Poisson with mean NBp
T

. Let M denote the total

number of bidders on the platform, distributed Binomial(NBp,NBp(1 − p)). The

limiting distribution of M when the population of potential bidders NB → ∞ and

associated p → 0 s.t. NBp remains constant is Poisson(λ = NBp). Bidders on the

platform get uniformly allocated over T listings, entering each listing with probability

q = 1
T

. Due to the stochastic number of bidders on the platform, the probability that

m bidders get allocated in listing t and n enter into other listings also includes the

probability that m+ n bidders enter the platform.

fNt,N−t(m,n) =
exp(−λ)λ(m+n)

(m+ n)!

(m+ n)!

m!n!
(q)m(1− q)(n) (34)

This joint distribution function can be manipulated to conclude that:

fNt(m) =
∞∑
n=0

exp(−λq)(λq)m

m!

exp(−λ(1− q))(λ(1− q))n

n!
=

exp(−λq)(λq)m

m!

This is referred to as the decomposition property of the Poisson distribution, e.g. in

Myerson (1998), and novel here is that it does not require M to be independent of

T . The t subscript is dropped from fNt as the distribution is identical for all listings

t = {1, .., T}.
Binomial decomposition property. Alternatively, we can show that N ∼
Binom(NB p

T
, NB p

T
(1 − p

T
)) and apply the large sample approximation afterwards.

Including the expectation over the number of bidders on the platform, M , the prob-

46



ability mass function of the number of bidders per listing, ∀n ∈ Z≥:

P [N = n] =
NB∑
m=0

P [N = n|m]P [M = m]︸ ︷︷ ︸
EM [P [N=n|m]]

= (35)

NB∑
m=0

(
NB

m

)
pm(1− p)NB−m

(
m

n

)
1

T

n

(1− 1

T
)m−n

and 0 otherwise. I use the law of iterated expectations (E[N ] = EM [E[N |m]]) and

iterated variance (V ar(N) = EM [V ar(N |M = m) + V ar(EM [N |M = m])):

EM [V ar(N |M = m)] = EM [m
1

T
(1− 1

T
)] = (NB)p

1

T
(1− 1

T
) (36)

= NBp
1

T
− (NB)p(

1

T
)2

V ar(EM [N |M = m]) = V ar(
M

T
) = (

1

T
)2V ar(M) = (

1

T
)2NBp(1− p) (37)

= −(
1

T
)2NBp2 + (

1

T
)2NBp

Re-arranging shows that the mean and variance of N are:

E[N ] = EM [
m

T
] =

E[M ]

T
=
NBp

T
(38)

V ar(N) = NB p

T
(1− p

T
) (39)

This proves that the large population assumption, and success probability of entering

in listing t (for any t ∈ {1, .., T}) equal to p
T

, means that fN is approximately Poisson

with mean NBp
T

.

Identification of opportunity cost

Proof. In auctions with a zero reserve price the number of bidders is not

truncated; observables from those auctions render the equilibrium distribution

fNr=0(; p∗r=0(f, v∗0), v∗0(f)) identified. Πb,r>0(f, v∗0(f); p∗r>0(f, v∗0(f))) is strictly decreas-

ing in the last remaining unobservable, opportunity cost eoB,r>0, which is identified as

the value that solves (10). Similarly, the surplus for a marginal seller must by equi-
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librium play and the zero profit condition in (12) correspond to opportunity cost eoS.

With v∗0(f) identified as the largest observed (14) and Πs(f, v
∗
0; p∗(f, v∗0(f)), v∗0(f)) is

strictly decreasing in eoS, eoS is identified as the value that solves (15). Finally, eoB,r=0

is identified as the value that solves (33), with Πb,r=0(f ; p∗r=0(f)) strictly decreasing

in eoB,r=0.
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Supplement: Additional tables and figures

Figure 5: Ullage classification and interpretation
Source: Christie’s. Numbers refer to auction house Christie’s interpretation of the fill levels, which are for Bordeaux-style bottles: 1)
Into Neck: level of young wines. Exceptionally good in wines over 10 years old. 2) Bottom Neck: perfectly good for any age of wine.

Outstandingly good for a wine of 20 years in bottle, or longer. 3) Very Top-Shoulder. 4) Top-Shoulder. Normal for any claret 15 years
or older. 5) Upper-Shoulder: slight natural reduction through the easing of the cork and evaporation through the cork and capsule.
Usually no problem. Acceptable for any wine over 20 years old. Exceptional for pre-1950 wines. 6) Mid-Shoulder: probably some

weakening of the cork and some risk. Not abnormal for wines 30/40 years of age. 7) Mid-Low-Shoulder: some risk. 8) Low-Shoulder:
risky and usually only accepted for sale if wine or label exceptionally rare or interesting. For Burgundy-style bottles where the slope

of the shoulder is impractical to describe such levels, whenever appropriate [due to the age of the wine] the level is measured in
centimetres. The condition and drinkability of Burgundy is less affected by ullage than Bordeaux. For example, a 5 to 7 cm. ullage in

a 30 year old Burgundy can be considered normal or good for its age.
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Figure 6: Listing page example: Nuits St George Les Boudouts, Domaine Leroy
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Table 10: Results of homogenization
(main sample)

Dep. var: log transaction price Estimate Std. error

Intercept 3.6489 0.19609
Number bottles -0.21539 0.017116
Case of 6 0.27556 0.095747
Case of 12 1.4731 0.19992
Stored in warehouse 0.50618 0.21052
Special format bottle 0.22868 0.068221
Duty estimate -0.025728 0.0089444
VAT estimate 0.0084091 0.0061728
Fill level:
Low Shoulder (LS) or worse -0.36428 0.19026
Mid Shoulder (HS) -0.42731 0.15924
High Shoulder (HS) -0.39359 0.1475
Missing 0.011749 0.054735
Top Shoulder (TS) -0.40094 0.13587
Very Top Shoulder (VTS) -0.13936 0.11603
Base of Neck (BN) -0.21467 0.068404
Delivery, payment, insurance:
Delivers to UK 0.066067 0.04426
Returns accepted -0.14013 0.15147
Can collect 0.027191 0.043785
Can ONLY collect -0.23677 0.11006
Payment by bank 0.33601 0.089092
Payment by paypal -0.032981 0.0447
Payment by cheque -0.13909 0.046535
Payment in cash -0.087927 0.11286
Ships with Royal Mail 0.024636 0.049909
Ships with Parcelforce -0.15524 0.046403
Ships fast 0.44448 0.065755
Insurance included 0.098217 0.040632
Lowest shipping cost quote 0.0068978 0.0040808
Percentage range quotes -0.92277 0.094298
Percentage range quotes, squared 0.36073 0.047906
Type:
Red 0.24706 0.078636
Sparkling 0.42272 0.12286
Assorted 0.25613 0.097468
Fortified 0.086496 0.14033
Rose 0.060914 0.33319
Grape:
Bordeaux Blend 0.15323 0.065532
Sangiovese 0.34799 0.10675
Corvina -0.026913 0.23762
Other -0.088319 0.09856
Riesling -0.0080086 0.19827
Chardonnay 0.20738 0.11688
Nebbiolo 0.2534 0.1455
Cabernet Sauvignon 0.16329 0.16683
Malbec -0.18969 0.38099
Tempranillo 0.33364 0.20931
Pinot Noir -0.0099559 0.10682
Syrah 0.21314 0.15054
Syrah/Shiraz 0.24614 0.10732
Port Blend 0.74413 0.24307
Rhone Blend 0.033721 0.12254
Semillon-Sauvignon Blanc Blend 0.63091 0.25825
Merlot -0.33742 0.19263
Champagne Blend 0.67258 0.22837
Barbera -0.36743 0.30878
Region:
Bordeaux -0.044787 0.08825
Tuscany -0.22131 0.11748
Rhone 0.093169 0.10645
Champagne 0.31475 0.14194
Provence -0.27554 0.2493
Veneto -0.20353 0.18023
Alsace -0.036888 0.1951
Rioja -0.18305 0.18384
France 0.15407 0.095296
Other -0.0013572 0.11399
Piedmont/Lombardy -0.24297 0.13518
South Australia -0.19426 0.1239
Douro -0.1946 0.20116
Mendoza -0.28441 0.34971
Bekaa Valley 0.25667 0.36982
Scotland 0.38223 0.26569
Oporto -0.062656 0.20725
Assorted 0.25194 0.10205
Australia -0.22322 0.12596

Region (continued):
United States 0.050704 0.20414
Cognac 0.82644 0.30492
Spain -0.26405 0.27147
California 0.15564 0.1613
Portugal 0.26479 0.20461
Loire -0.60529 0.27191
Cuba 0.039369 0.3486
Italy -0.17386 0.15408
Oregon -0.54988 0.26392
South Africa -0.43236 0.34435
Ribera del Duero -0.2138 0.34008
Islay 0.83556 0.47675
South West France 0.32013 0.48487
Vintage:
1964 0.35223 0.19983
2013 -0.59117 0.13696
2009 -0.27027 0.10769
2011 -0.19276 0.13778
2014 -0.70132 0.12713
2012 -0.34879 0.12422
1999 -0.19369 0.13045
1998 -0.20165 0.12028
2001 -0.15094 0.1287
1995 0.046022 0.11528
2006 -0.35597 0.12054
1983 -0.21256 0.14926
1963 0.73722 0.2395
2010 -0.30494 0.10972
2007 -0.17486 0.12049
1982 0.26524 0.18063
2008 -0.39046 0.1245
2005 -0.12856 0.11457
2004 -0.30579 0.1197
2003 -0.37819 0.12416
2015 -0.63448 0.13769
1996 -0.22807 0.12462
1961 0.15099 0.23279
1975 -0.29674 0.18456
1973 -0.87209 0.228
1991 -0.0085375 0.21126
1980 -0.20726 0.27126
1989 -0.11813 0.18799
1990 0.12206 0.1759
2002 -0.12586 0.13153
1966 0.43358 0.20951
1997 -0.013324 0.14033
1977 0.17451 0.23742
1988 -0.042258 0.18272
1970 0.12446 0.16848
1979 0.26572 0.23932
1994 -0.35023 0.1688
1986 0.067719 0.16992
1985 0.23406 0.15225
1969 0.13819 0.21797
1981 0.21658 0.1784
1993 0.084064 0.20527
1978 0.19208 0.23107
1976 -1.0092 0.2703
1992 0.37019 0.30722
2016 -0.57635 0.27587
Vintage missing -0.47621 0.098779
Other popular vintage 0.34867 0.1283
Month:
Market 2 -0.054348 0.087349
Market 3 -0.16098 0.085564
Market 4 -0.17332 0.086001
Market 5 -0.039102 0.087946
Market 6 -0.18727 0.11413
Market 7 -0.12831 0.092929
Market 8 -0.22309 0.088613
Market 9 -0.15772 0.098956
Market 10 -0.015821 0.088427
Market 11 -0.20739 0.088167
Observations 2007

Adj. R2 0.52954

Regressions of log per-bottle transaction price on variables in main
sample, using only auctions with at least two bids.

51



Table 11: Results of homogenization
(high value sample)

Dep. var: log transaction price Estimate Std. error

Intercept 5.7925 0.34162
Number bottles -0.12083 0.01139
Case of 6 -0.88077 0.10499
case of 12 -0.51377 0.13094
Stored in warehouse -0.70492 0.24753
Special format bottle 0.39337 0.14462
Duty estimate 0.022627 0.0097216
VAT estimate -0.0027369 0.0036909
Fill level:
Into Neck (IN) 0.08217 0.089802
Base of Neck (BN) 0.1123 0.15042
Mid Shoulder (HS) 0.18239 0.23427
Top Shoulder (TS) 0.34727 0.35965
Very Top Shoulder (VTS) 0.042979 0.17697
High Shoulder (HS) 0.25889 0.26226
Low Shoulder (LS) or worse -0.048324 0.3404
Delivery, payment, insurance:
Delivers to UK -0.29311 0.095925
Returns accepted 0.0015449 0.16383
Can collect 0.036081 0.086119
Can ONLY collect -0.54616 0.19581
Payment by bank -0.14579 0.21141
Payment by paypal -0.091967 0.083221
Payment by cheque -0.091064 0.077945
Payment in cash 0.014711 0.22493
Ships with Royal Mail -0.051519 0.099403
Ships with Parcelforce -0.21799 0.1203
Ships fast 0.12408 0.12868
Insurance included -0.13281 0.075941
Lowest shipping cost quote 0.0054736 0.0038868
Percentage range quotes -0.19224 0.32051
Percentage range quotes, squared 0.063746 0.15017
Type:
White -0.039941 0.21617
Red 0.1905 0.13473
Assorted 0.33678 0.1343
Fortified 0.56809 0.28406
Grape:
Bordeaux Blend 0.010528 0.11638
Syrah/Shiraz -0.123 0.18673
Cabernet Sauvignon 0.32178 0.30605
Sangiovese -0.22487 0.27601
Syrah -0.032936 0.31557
Chardonnay 0.21846 0.27169
Tempranillo -0.41538 0.65032
Nebbiolo 0.40275 0.5309
Other -0.59911 0.36187
Pinot Noir 0.39317 0.19672
Port Blend 0.29561 0.66451
Merlot -0.093398 0.26387
Rhone Blend 0.3362 0.33175
Semillon-Sauvignon Blanc Blend -0.11619 0.35124
Champagne Blend 0.1699 0.24306
Riesling -0.21634 0.56662
Region:
Rhone -0.1459 0.25233
Bordeaux -0.14137 0.13464
France 0.0054448 0.12934
Champagne 0.10748 0.16731
Other -0.13379 0.23745
South Australia -0.0069858 0.22838
United States -1.4027 0.4864
Tuscany -0.40708 0.24436
Spain -0.77954 0.47496
Scotland -0.061112 0.52083
Burgundy -0.35163 0.20952
Ribera del Duero -0.34928 0.48916
California -0.46525 0.25565
Piedmont/Lombardy -0.76687 0.4857
Portugal -0.23714 0.26529
Douro -0.53114 0.47793
Australia -0.24895 0.31107
Italy -0.67266 0.45919
Veneto -0.43384 0.491

Region (continued):
Alsace 0.25049 0.65342
Islay -0.65913 0.53229
Cognac -1.3445 0.53178
Oporto -0.35557 0.59298
Vintage:
2009 -0.059636 0.19672
1999 0.30734 0.20153
1996 -0.041475 0.20991
1986 0.097436 0.23419
2005 0.1363 0.19871
1976 -0.028595 0.25309
1982 0.46675 0.23726
2002 0.011413 0.25866
1981 0.31165 0.30081
1985 0.24947 0.22771
1998 0.15312 0.19379
1995 0.31252 0.21454
2001 0.19748 0.30892
2010 0.13697 0.20042
2007 -0.24049 0.30297
1975 -0.20677 0.26616
2000 0.65534 0.2074
1989 0.3476 0.22377
2012 0.23304 0.24246
2011 0.37465 0.24834
1983 -0.036473 0.31617
1990 0.64865 0.22429
2014 -0.033155 0.2426
1997 0.12923 0.28177
2015 -0.1195 0.27636
2008 0.31954 0.24658
1977 0.33872 0.31823
2004 0.12084 0.22781
1966 0.15243 0.25341
1994 -0.10505 0.3257
1963 -0.87918 0.49647
1991 0.48368 0.35426
1969 -0.76683 0.55347
1992 -0.16277 0.26588
2003 0.1359 0.24603
1973 -0.48898 0.39621
1988 0.20438 0.23558
1978 0.23451 0.49574
2013 0.14936 0.31352
1993 -0.20021 0.3537
2016 -0.049026 0.51039
1970 0.14985 0.38704
1979 0.17072 0.37018
1980 -0.092695 0.47559
1964 -0.45269 0.47773
1961 0.22537 0.52924
Vintage missing -0.017064 0.20925
Other popular vintage 0.14334 0.21091
Market 3 -0.07077 0.097536
Market 4 -0.00067518 0.1131
Market 5 0.21096 0.11463
Market 1 0.016734 0.14292
Market 6 -0.12201 0.17249
Market 7 -0.044597 0.12882
Market 8 0.13271 0.10568
Market 9 0.026294 0.15164
Market 10 0.027939 0.11969
Market 11 -0.17592 0.13437
Observations 390

Adj. R2 0.85545

Regressions of log per-bottle transaction price on variables in high
value sample, using only auctions with at least two bids.
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Supplement: Reserve price approximation

Reserve prices are approximated as the average between the highest standing price

for which the reserve price is not met and the lowest for which it is met. If all bids

would be recorded in real time, this approximation would be accurate up to half a

bidding increment due to the proxy bidding system. But to relieve traffic pressure

on the site I only track bids on 30-minute intervals. The reserve price approximation

could be more than half a bidding increment off if the bids are not placed at regular

intervals. As a compromise with constant high website traffic a separate dataset is

collected that accesses open listings at 30-second intervals for the duration of two

weeks, to test the reserve price approximation in the main sample.

My estimation method requires that the estimated distribution of reserve prices

is consistent for its population counterpart. Equality of the distribution of approx-

imated reserve prices in the main sample and the distribution of (approximated)

reserve prices in the smaller high frequency sample is tested with a two sample non-

parametric Kolmogorov-Smirnov test. To account for different listing compositions

the empirical reserve price distributions are right-truncated at the 90th percentile of

the high frequency reserve price sample. The null hypothesis is that the two right

truncated reserve price distributions are the same. In particular, letting FH
R and FM

R

respectively denote the empirical distribution of right truncated approximated reserve

prices in the high frequency (H) and main (M) sample, the Kolmogorov-Smirnov test

statistic is defined as:

Dh,m = sup
x
|FH
R (x)− FM

R (x)|, (40)

with supx the supremum function over x values and h and m respectively denoting

the relevant number of observations in the high frequency and main samples, which

are 330 and 596 (only for sold lots). With Dh,m = 0.059, the null cannot be rejected

at the 5 pervent level (Dh,m > 1.36
√

(h+m
hm

), the p-value = 0.4406). The two empirical

distributions are plotted in Figure 7.
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Figure 7: Testing equality of reserve price distribution and approximation
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Supplement: Entry equilibrium

This supplementary material provides further intuition behind the entry equilibrium.

Different from the main text, I consider the bidder entry equilibrium in positive re-

serve price auctions if the number of listings Tr>0 would be known. Key is that the

equilibrium distribution of the number of bidders per listing is independent of the

number of listings. Hence also in expectation, for the simultaneous entry equilib-

rium presented in the main text, the equilibrium distribution fNr>0(; f, p∗r>0(f, v∗0)) is

independent of the number of listings conditional on selection of sellers.

In what follows, r̃ denotes the optimal reserve price increased with buyer premium,

r̃ = (1 + cB)r∗(v0, f). Before knowing their valuation, the expected bidder surplus in

a listing with n bidders equals:

πb(n, f, r) ≡
1

n
E[V(n:n) −max(V(n−1:n), r̃)|V(n:n) ≥ r̃][1− FV(n:n)

(r̃)], (41)

with the last term denoting the sale probability and the max(.) term the transaction

price including buyer premium. Expected surplus for a seller with valuation v0 in a

listing with n bidders:

πs(n, f, v0) ≡ (E[max(Vn−1:n, r̃)|Vn:n ≥ r̃](1− cS)− v0) [1− FV(n:n)
(r̃)] (42)

Consider a model in which the number of listings Tr>0 would be known to potential

bidders. Let v̄0 denote a candidate seller entry threshold and ΠTr>0

b,r>0(f, v̄0; p) potential

bidders’ expected surplus from entering the platform as a function of their entry

probability p, if they knew the number of listings Tr>0:

ΠT,r>0
b,r>0 (f, v̄0; p) =

NB,r>0−1∑
n=0

E[πb(n+ 1, f, v0)|V0 ∈ [v0,r=0, v̄0]fT,r>0
N,r>0(n; p)− eoB,r>0, (43)

It takes the expectation of πb(n, f, v0) (equation 41 with optimal r as in equation

2) over: i) possible seller values given sellers’ entry threshold and ii) the number of

competing bidders given their entry probability. T r>0 superscripts in ΠT,r>0
b,r>0 (f, v̄0; p)

and fT,r>0
N,r>0(n; p) emphasize that they relate to the thought exercise in which Tr>0 is

known, while the true game’s simultaneous entry requires taking the expectation over

Tr>0 given candidate entry threshold v̄0 and NS. I present this alternative model here
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to show more clearly that, in equilibrium, fT,r>0
Nr>0

is independent of the realization of

Tr>0 which implies that it must also be independent of the expectation over Tr>0.

Bidding in one listing at a time, the entry problem for potential bidders is then

equivalent to one in which they consider entry into a listing (also given that oppor-

tunity cost (listing inspection) eoB,r>0 are associated with each listing). Components

of equation (43) are:

E[πb(n+ 1, f, v0)|V0 ∈ [v0,r=0, v̄0] = (44)∫ v̄0

v0,r=0

πb(n+ 1, f, v0)fV0|V0∈[v0,r=0,v̄0 ](v0)dv0

fT,r>0
N,r>0(n; p) =

(
NB,r>0 − 1

n

)
(
p

T
)n(1− p

T
)N

B,r>0−1−n (45)

where fT,r>0
N,r>0(n; p) denotes the Binomial probability that n out ofNB,r>0−1 competing

potential bidders arrive in the same listing as the potential bidder who considers

entering the platform. Unpacking further, the seller’s v0 matter through its impact

on the reserve price that bidders face, in expectation over all v0’s such that the seller

enters and sets a positive reserve price:

fV0|V0∈[v0,r=0,v̄0](v0) =
fV0≥v0,r=0(v0)

FV0≥v0,r=0(v̄0)
(46)

Only right-truncation at entry threshold v̄0 is made explicit as the screening value

v0,r=0 is taken as given.

πb(n+ 1, f, v0) is strictly decreasing in n (Lemma 3). So the bidder entry problem

is equivalent to the Levin and Smith (1994) entry model, which assumes that expected

bidder surplus decreases in n. The equilibrium bidder entry probability p∗T,r>0 solves

zero profit condition:45

p∗T,r>0(Tr>0, f, v̄0) ≡ argp∈(0,1) ΠT,r>0
b (f, v̄0; p) = 0 (47)

In this equilibrium the number of (competing) bidders per listing follows a Bino-

45p∗T,r>0 is used to distinguish the entry probability from the central one pertaining to the central
case where the number of listings is not known. A no-trade entry equilibrium at p = 0 that trivially
solves (47) always exists and excluding it requires the profit-maximizing platform to set fees such
that entry is profitable for players on both sides and for players not to believe that the other side
enters with zero probability.
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mial distribution with mean (NB,r>0 − 1)p
∗T,r>0

Tr>0
and variance (NB,r>0 − 1)p

∗T,r>0

Tr>0
(1−

p∗T,r>0

Tr>0
).46

A key property is that p∗T,r>0

Tr>0
is independent of Tr>0: bidders only derive positive

surplus from the listing that they are matched to. Tr>0 does not affect E[πb(n +

1, f, v0)|V0 ∈ [v0,r=0, v̄0]. The zero profit condition guarantees that in equilibrium a

change in Tr>0 causes p∗T,r>0 to adjust to keep fT,r>0
Nr>0

constant. The same reasoning

applies when Tr>0 is the stochastic outcome of the simultaneously occuring seller

entry process: the seller entry threshold only affects the equilibrium mean number

of bidders per listing through E[πb(n + 1, f, v0)|V0 ∈ [v0,r=0, v̄0] and not through its

effect on the distribution of Tr>0. This is defined more formally in the main text that

describes the simultaneous-move entry equilibrium.

46See the ”Omitted proofs” section of this appendix. The variance of Nr>0 would be larger when
also taking the expectation over Tr>0 given NS and v̄0.
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Supplement: Numerical approximation

The entry equilibrium is a function of listing-level bidder and seller surplus, which

involve hard to compute (triple) integrals. This section details the numerical approx-

imations relied on for computational feasibility. Z is omitted, estimated bidder and

seller parameters are implicit, and r̃ = (1 + cB)r∗(v0, f). On the bidder side, one

needs to compute πb(n + 1, f, v0) and πs(n, f, v0) defined in (3)-(4) for every consid-

ered v0 and n. Given a candidate v̄0 and number of bidders n, the expected bidder

surplus includes an expectation over realizations of V0 ∈ [v0,r=0, v̄0], introducing a

third integral. The final expectation sums over realizations of the number of bidders

per listing governed by a Poisson distribution fN,r>0(;λ), with max(n) the largest

value considered:

Πb(f, v̄0;λ) =

max(n)−1∑
n=0

[∫ v̄0

v0,r=0

πb(n+ 1, f, v0)
fV0|V0≥v0,r=0(v0)

FV0|V0≥v0,r=0(v̄0)
dv0

]
× (48)

fN,r>0(n;λ)− eB − eoB,r>0

Based on the estimated λ∗r=0 I use max(n) = 15. These computations are then

sufficient to compute the equilibrium bidder entry probability in positive reserve price

auctions given candidate v̄0, as:

λ∗r>0(v̄0) ≡ argλ {Πb(f, v̄0;λ) = 0} (49)

This feeds back into the seller’s expected surplus at candidate v̄0, which also requires

the computation of his listing-level surplus and the expectation over realizations of

the number of bidders:

πs(n, f, v0) =

(
E[max(

V(n−1:n)

1 + cB
, r)|V(n:n) ≥ r̃](1− cS)− v0

)
[1− FV(n:n)

(r̃)] (50)

=

[
max(r,

1

1 + cB

∫ v̄

v

vn−1dFVn−1:n|Vn:n≥r̃(vn−1))(1− cS)− v0

]
[1− FV(n:n)

(r̃)]

Πs(f, v0;λ∗(v̄0)) =

NB
r>0∑
n=0

πs(n, f, v0)fN,r>0(n, λ∗(v̄0))− eS − eoS (51)
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And to compute the complete entry equilibrium, everything above needs to be re-

peated for many candidate v̄0’s:

v∗0 ≡ argv̄0
{Πs(f, v̄0;λ∗(v̄0)) = 0} (52)

Equations (48)-(49) also need to be implemented for auctions with r = 0. As bidder

surplus in those auctions is independent of v0, the computation of λ∗r=0 involves (only)

the double integral of the listing-level surplus calculations that need to be repeated

for n = {0, 1, ..,max(n)}.

Computing the entry equilibrium is clearly infeasible without relying on numerical

approximation. I implement the following pseudo-code to compute the entry equilib-

rium, including actual object names to facilitate easy replication with my code.

• Initiating probability vectors for the simulation of bidder and seller values with

importance sampling. Simulate 250 values from Unif(0, 1) and collect in vector

v probs (making sure that 1e−4 and 1 − 1e−4 are lower bounds on extremum

probabilities). Initiate a finer grid v probs fine by sampling 25000 values from

Unif(0, 1) with identical minimum extremum values. Simulate 500 values from

Unif(0, 1) and collect in vector v0 probs fine (making sure that 1e−4 and

1 − 1e−4 are lower bounds on extremum probabilities). Sample a coarser grid

for seller values by drawing without replacement 48 values from v0 probs fine

and add the extremum values, call this vector v0 probs. Set max(n) = 15.

Never change these values.

• Importance sampling of Vn:n and Vn−1:n|Vn:n. Set v̄ = F−V 1(1 − 1e−9; θ̂b) and

v = 0. Code the distributions in (5) and (6). For each n = 1, .., 15,

simulate 250 values from the two distributions. For the highest valua-

tion, solve for F−1
Vn:n(v probs; θ̂b), separately for each n, resulting in matrix

h mat of dimension [250 × 15]. For the second-highest valuation, solve for

F−1
Vn−1:n|Vn:n=vn

(v probs; θ̂b), where for each entry j in v probs vn equals the

jth entry in h mat from the relevant n column. Doing this separately for each

n > 1 results in matrix sh mat of dimension [250 × 15] with the first column

made up of zeros.

• Linear interpolation of h mat and sh mat on finer grid using v probs fine,
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separately for each n column. This results in two matrices of dimension

[25000× 15], h mat fine and sh mat fine.

• Calculating optimal reserve price for grid of v0’s. Importance sampling of V0:

solve for F−1
V0

(v0 probs; θ̂s) and store in vector v0 vec of dimension [50 × 1].

Given also θ̂b, compute optimal r∗(v0 vec) and store in vector r vec.

• Compute listing-level bidder and seller surplus for v0-n combinations. Initiate

matrices of

v0 mat, n mat, and r mat with values of v0 in the first dimension and n in

the second dimension (so n mat and r mat are constant in the first dimension

and v0 mat is constant in the second dimension). These three matrices are of

dimension [50×15]. For each entry, use the pre-calculated matrices h mat fine

and sh mat fine to approximate listing-level surplus with monte carlo simula-

tions, separately for bidders in auctions with positive and no reserve prices (the

latter being a vector) and for sellers in auctions with a positive and with no re-

serve prices (both being matrices). For example, consider a (v0, 2) combination

with v0idx being the index of v0 in the 2nd column of v0 mat. πb(2, f, v0) is

approximated as the mean of the second column of h mat fine including only

all values exceeding r mat(v0idx, 2) × (1 + cB), minus the mean of the same

entries in sh mat fine or minus r mat(v0idx, 2)×(1+cB) if that is higher, and

multiplied by the sale probability (1 − FV (log((1 + cB)r mat(v0idx, 2)); θ̂b)
2),

all divided by two.

• Linear interpolation of listing-level surplus on v0 probs fine. This results in

listing-level surplus matrices of dimensions [25000×15] for bidders in positive re-

serve price auctions (pib posr mat), for sellers in positive reserve price auctions

(pis posr mat), and for sellers in no reserve price auctions (pis nor mat).

For bidders in auctions with no reserve price (pib nor vec) we obtain a vec-

tor of dimension [1 × 15] as their listing-level surplus is independent of the

seller’s value. Also pre-calculate a vector of probabilities that V0 = v0 us-

ing F−1
V0|V0≥v0,r=0

(v0 probs) and interpolate on the finer v0 grid, resulting in

pdf v0 mat.

• Repeat the five previous steps only once for each new θ̂s or fee structure.

With the pre calculated listing-level surplus matrices as functions of v0 and n,

60



the computation of v∗0 as a fixed point problem with a nested threshold-crossing

problem to find λ∗ for each candidate v̄0 is fast and straightforward.

• Coding equation (51) with nested in it equation (49). Make sure that for every

candidate v̄0, the entries of pdf v0 mat that function as weights of the listing-

level bidder surplus (the
fV0|V0≥v0,r=0

(v0)

FV0|V0≥v0,r=0
(v̄0)

in (48)) sum to one. The λ∗(v̄0) in (49)

is obtained as the root of (Πb(f, v̄0;λ))2. I use Matlab’s fzero function with

tolerance levels for the function and parameter of 1e−6. Then I pass (51) to a

non-linear solver to find the fixed point, again using fzero root finding with the

same tolerance levels.

Contraction mapping. Relevant for the NPL-like estimation method, the follow-

ing argumentation shows that v∗0 is characterized by a contraction mapping. Let

Πs(v
j
0, v
−j
0 ) denote the expected surplus for seller with valuation vj0 when entering the

platform and setting a reserve price, with competing sellers’ entry threshold only af-

fecting Πs through its effect on the the equilibrium mean number of bidders λ∗(v−j0 ).

The fee structure and other exogenous inputs are omitted from notation. Let v′0(v−j0 )

denote the seller’s best response to threshold v−j0 ; to enter i.f.f v0 ≤ v′0(v−j0 ). A nec-

essary and sufficient condition for v∗0 being characterized by a contraction mapping is

that there are no other values of v−j0 6= v∗0 that deliver zero surplus for the marginal

seller so that v′0(v−j0 ) = v−j0 . We need to consider three cases:

• Case of v−j0 > v∗0: λ∗(v−j0 ) < λ∗(v∗0) which means that Πs(v
∗
0, v
−j
0 ) < 0. Since Πs

is decreasing in the seller’s vj0, the resulting v′0(v−j0 ) < v−j0 < v∗0. We conclude

that Πs(v
−j
0 , v−j0 ) is not an equilibrium.

• Case of v−j0 < v∗0: λ∗(v−j0 ) > λ∗(v∗0) which means that Πs(v
∗
0, v
−j
0 ) > 0. With Πs

decreasing in the seller’s vj0, the resulting v′0(v−j0 ) > v−j0 > v∗0. Also in this case,

Πs(v
−j
0 , v−j0 ) is not an equilibrium.

• The final case is the unique fixed point in seller value space, where v−j0 = v∗0.

By definition of v∗0, Πs(v
∗
0, v
−j
0 ) = 0 so that v′0(v−j0 ) = v−j0 = v∗0.

This proves that Equation 12 is a contraction mapping.
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Supplement: Monte Carlo simulations

Monte Carlo simulations illustrate that the estimation algorithm recovers the struc-

tural parameters of interest. Auctions are simulated according to the idiosyncratic-

good auction platform model with:

Input parameters: Equilibrium values:

g(Z) = 0.5Z,Z ∼ N (0, 1) FV |Z,v0,r=0(v∗0) = 0.659

U0 ∼ N (5, 2), U ∼ N (4, 1) λ∗r>0 = 5.541

eoB,r>0 = eoB,r=0 = 10, eoS = 5 λ∗r=0 = 8.686

f = {eS = 5, eB = 0, cB = 0, cS = 0.1, eR = 1}
pr0 = 0.10, NS = 6000

Given selected input parameters, 66 percent of the 6000 potential sellers enter the

platform. The marginal seller, or any seller who sets a positive reserve price receives

on average 5.5 bidders in his listing but the mean number of bidders in auctions with

no reserve price is significantly larger at 8.7.

Two elements warrant special attention in this Monte Carlo simulation exercise.

The first is the number of iterations or convergence criteria for the estimation of seller

parameters. This concerns steps 4) and 5) outlined on page 22 in the main text. The

auction platform entry game delivers a best-response stable equilibrium as it reduces

to a single-agent problem, with a unique entry equilibrium. Aguirregabiria and Mira

(2002) show that any number of iterations delivers consistent and asymptotically

normal estimates. But the initial estimate of θs is likely sensitive to small sample

bias as the initial estimate of the seller entry equilibrium is the maximum of the

implied seller valuations. From this perspective, θ̂s may improve when it relies on a

better estimate of v∗0. On the other hand, it is costly to compute the entry equilibrium.

To evaluate this trade-off, I present estimated θ̂s
j

for iterations j = 0 (given initial

sample estimate of v∗0), j = 1, j = 2 (with one and two iterations of solving for

v∗0), and j = J . The latter is the estimate at convergence, with the criteria that the

maximum of differences in estimated means and variances of U0 is less than 1e−2 or

the number of iterations exceeds 25. These are quite loose tolerance levels and the

resulting mean number of iterations is about 3. Tolerance levels for the equilibrium

computations are as presented in Section 8.

The three columns of Table 12 titled “Precise Z” correspond to the above spec-
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ifications. The three columns titled “Noisy Z” specifically account for small-sample

noise from first stage regressions by adding draws from Unif(−1, 1) to observables Z

after simulating values and bids. Results are as expected. The estimation algorithm

performs worse before updating the entry equilibrium on the seller side and more so

in the simulations with additional noise, although all estimates are consistent. The

average point estimate µ̂s before updating so at j = 0 is 4.832 (true µs = 5), while

the point estimate in the simulations without added noise is 4.950. Updating the

equilibrium once and re-estimating θs delivers the desired improvement in the point

estimate. They are now respectively 4.992 and 5.006. A similar improvement is ob-

tained for the estimated σ̂s. The largest improvement indeed results from the first

update and I consider this to be worth the additional computation time associated

with computing the equilibrium once.

The second element to pause at is the fact that seller opportunity cost eoS are

identified off the expected surplus of the marginal seller. Estimating eoS off only one

observation would be problematic. But the level of opportunity cost is only important

to pin down the seller entry probability. It is irrelevant, e.g. a true normalization,

for θs that are identified from the observed distribution of reserve prices. This is

supported by the results in Table 12. Instead of estimating eos, in both sets of sim-

ulations I adopt the completely arbitrary assumption that eos is equal to the average

between estimated eoB,r=0 and êoB,r>0. True seller opportunity cost in the simulated

auctions are only half of the true bidder opportunity cost so this assumption is not

only arbitrary it is also erroraneous. Results show that this does not get in the way

of obtaining correct parameter estimates.

Overall, the simulations show that the estimation algorithm with one iteration

performs well in recovering the true parameters of interest. The gray colored rows in

Table 12 correspond to the single recursion solution adopted in the main text.
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Table 12: Monte Carlo simulations

Precise Z Noisy Z
Iteration j Truth Avg. St.d. M.a.d. Avg. St.d. M.a.d.

Homogenization:
α 0.5 0.495 0.012 0.008 0.495 0.012 0.009
adj. R2 0.406 0.016 0.405 0.015

Bidder side:
µb 4 4.007 0.038 0.026 4.006 0.039 0.025
σb 1 1.001 0.035 0.023 1.005 0.035 0.024

eoB,r>0 10 10.811 0.742 0.787 10.939 0.695 0.933
eoB,r=0 10 10.142 0.666 0.45 10.092 0.637 0.441
λ∗r>0 5.541 5.488 0.162 0.130 5.475 0.169 0.122
λ∗r=0 8.686 8.690 0.148 0.102 8.855 0.146 0.089

Seller side:
µs 0 5 4.950 0.222 0.194 4.832 0.185 0.180

1 5 5.006 0.260 0.213 4.992 0.244 0.198
2 5 5.016 0.272 0.228 5.000 0.257 0.211
J 5 5.067 0.272 0.207 5.060 0.261 0.213

σs 0 2 1.951 0.141 0.113 1.899 0.129 0.093
1 2 1.973 0.155 0.124 1.965 0.149 0.115
2 2 1.980 0.158 0.119 1.968 0.154 0.116
J 2 2.008 0.153 0.114 2.003 0.150 0.115

FV0|Z(v∗0) 0 0.659 0.676 0.053 0.044 0.708 0.046 0.046
1 0.659 0.644 0.057 0.046 0.672 0.051 0.039
2 0.659 0.622 0.066 0.057 0.628 0.064 0.053
J 0.659 0.605 0.067 0.069 0.609 0.067 0.062

Nr. iterations J 2.992 1.232 3.072 1.023

Statistics summarizing two sets of 250 MC simulations, displaying the average (Avg.) parameter estimate, its standard deviation
(Std.) and the median absolute deviation with the true parameter (M.a.d.). In all simulations the seller opportunity cost of time eoS

are assumed arbitrarily (and erroraneously) to be the average between the estimated eoB,r>0 and eoB,r=0 while the true seller

opportunity cost are half of that. Gray rows correspond to the estimation algorithm adopted in the main text, which on the seller side
solves for the entry equilibrium once given initial parameter estimates.
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