Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

RTextTools: A Supervised Learning Package for Text Classification

Abstract : Social scientists have long hand-labeled texts to create datasets useful for studying topics from congressional policymaking to media reporting. Many social scientists have begun to incorporate machine learning into their toolkits. RTextTools was designed to make machine learning accessible by providing a start-to-finish product in less than 10 steps. After installing RTextTools, the initial step is to generate a document term matrix. Second, a container object is created, which holds all the objects needed for further analysis. Third, users can use up to nine algorithms to train their data. Fourth, the data are classified. Fifth, the classification is summarized. Sixth, functions are available for performance evaluation. Seventh, ensemble agreement is conducted. Eighth, users can cross-validate their data. Finally, users write their data to a spreadsheet, allowing for further manual coding if required.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-02186524
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : mercredi 17 juillet 2019 - 12:30:46
Dernière modification le : vendredi 2 juillet 2021 - 13:59:53

Fichier

collingwood-jurka-boydstun-eta...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Timothy P. Jurka, Loren Collingwood, Amber E. Boydstun, Emiliano Grossman, van Atteveldt Wouter. RTextTools: A Supervised Learning Package for Text Classification. RJournal, 2013, 5 (1), pp.6 - 12. ⟨hal-02186524⟩

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

186