Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Matching in Closed-Form: Equilibrium, identification, and comparative statics

Abstract : This paper provides closed-form formulas for a multidimensional two-sided matching problem with transferable utility and heterogeneity in tastes. When the matching surplus is quadratic, the marginal distributions of the characteristics are normal, and when the heterogeneity in tastes is of the continuous logit type, as in Choo and Siow (2006), we show that the optimal matching distribution is also jointly normal and can be computed in closed form from the model primitives. Conversely, the quadratic surplus function can be identified from the optimal matching distribution, also in closed-form. The analytical formulas make it computationally easy to solve problems with even a very large number of matches and allow for quantitative predictions about the evolution of the solution as the technology and the characteristics of the matching populations change.
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : lundi 29 juin 2015 - 23:31:35
Dernière modification le : jeudi 5 mars 2020 - 18:30:17
Document(s) archivé(s) le : mardi 25 avril 2017 - 20:04:59


Fichiers produits par l'(les) auteur(s)




Raicho Bolijov, Alfred Galichon. Matching in Closed-Form: Equilibrium, identification, and comparative statics. 2014. ⟨hal-01169654⟩



Consultations de la notice


Téléchargements de fichiers