Matching in Closed-Form: Equilibrium, identification, and comparative statics

Abstract : This paper provides closed-form formulas for a multidimensional two-sided matching problem with transferable utility and heterogeneity in tastes. When the matching surplus is quadratic, the marginal distributions of the characteristics are normal, and when the heterogeneity in tastes is of the continuous logit type, as in Choo and Siow (2006), we show that the optimal matching distribution is also jointly normal and can be computed in closed form from the model primitives. Conversely, the quadratic surplus function can be identified from the optimal matching distribution, also in closed-form. The analytical formulas make it computationally easy to solve problems with even a very large number of matches and allow for quantitative predictions about the evolution of the solution as the technology and the characteristics of the matching populations change.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-01169654
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : lundi 29 juin 2015 - 23:31:35
Dernière modification le : jeudi 12 avril 2018 - 01:47:18
Document(s) archivé(s) le : mardi 25 avril 2017 - 20:04:59

Fichier

matching-in-closed-form.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Raicho Bolijov, Alfred Galichon. Matching in Closed-Form: Equilibrium, identification, and comparative statics. 2014. 〈hal-01169654〉

Partager

Métriques

Consultations de la notice

354

Téléchargements de fichiers

351