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VECTOR QUANTILE REGRESSION: AN OPTIMAL TRANSPORT

APPROACH

G. CARLIER, V. CHERNOZHUKOV, AND A. GALICHON

Abstract. We propose a notion of conditional vector quantile function and a vector

quantile regression. A conditional vector quantile function (CVQF) of a random vector Y ,

taking values in Rd given covariates Z = z, taking values in Rk, is a map u 7→ QY |Z(u, z),

which is monotone, in the sense of being a gradient of a convex function, and such that

given that vector U follows a reference non-atomic distribution FU , for instance uniform

distribution on a unit cube in Rd, the random vector QY |Z(U, z) has the distribution of

Y conditional on Z = z. Moreover, we have a strong representation, Y = QY |Z(U,Z)

almost surely, for some version of U . The vector quantile regression (VQR) is a linear

model for CVQF of Y given Z. Under correct specification, the notion produces strong

representation, Y = β (U)> f(Z), for f(Z) denoting a known set of transformations of Z,

where u 7→ β(u)>f(Z) is a monotone map, the gradient of a convex function, and the

quantile regression coefficients u 7→ β(u) have the interpretations analogous to that of the

standard scalar quantile regression. As f(Z) becomes a richer class of transformations of

Z, the model becomes nonparametric, as in series modelling. A key property of VQR is

the embedding of the classical Monge-Kantorovich’s optimal transportation problem at its

core as a special case. In the classical case, where Y is scalar, VQR reduces to a version

of the classical QR, and CVQF reduces to the scalar conditional quantile function. An

application to multiple Engel curve estimation is considered.
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1. Introduction

Quantile regression provides a very convenient and powerful tool for studying depen-

dence between random variables. The main object of modelling is the conditional quantile

function (CQF) (u, z) 7→ QY |Z(u, z), which describes the u-quantile of the random scalar Y

conditional on a k-dimensional vector of regressors Z taking a value z. Conditional quantile

function naturally leads to a strong representation via relation:

Y = QY |Z(U,Z), U | Z ∼ U(0, 1),

where U is the latent unobservable variable, normalized to have a uniform reference dis-

tribution, and is independent of regressors Z. The mapping u 7→ QY |Z(u, Z) is monotone,

namely non-decreasing, almost surely.

Quantile regression (QR) is a means of modelling the conditional quantile function. A

leading approach is linear in parameters, namely, it assumes that there exists a known Rp-
valued vector f(Z), containing transformations of Z, and a (p × 1 vector-valued) map of

regression coefficients u 7→ β(u) such that

QY |Z (u | z) = β (u)> f(z),

for all z in the support of Z and for all quantile indices u in (0, 1). This representation

highlights the vital ability of QR to capture differentiated effects of the explanatory variable

Z on various conditional quantiles of the dependent variable Y (e.g., impact of prenatal

smoking on infant birthweights). QR has found a large number of applications; see references

in Koenker ([17])’s monograph. The model is flexible in the sense that, even if the model is

not correctly specified, by using more and more suitable terms f(Z) we can approximate the

true CQF arbitrarily well. Moreover, coefficients u 7→ β(u) can be estimated via tractable

linear programming method ([19]).

The principal contribution of this paper is to extend these ideas to the cases of vector-

valued Y , taking values in Rd. Specifically, a vector conditional quantile function (CVQF)

of a random vector Y , taking values in Rd given the covariates Z, taking values in Rk, is

a map (u, z) 7→ QY |Z(u, z), which is monotone with respect to u, in the sense of being a

gradient of a convex function, which implies that

(QY |Z(u, z)−QY |Z(u, z))>(u− u) ≥ 0 for all u, u ∈ (0, 1)d, z ∈ Z, (1.1)

and such that the following strong representation holds with probability 1:

Y = QY |Z(U,Z), U | Z ∼ U(0, 1)d, (1.2)

where U is latent random vector uniformly distributed on (0, 1)d. We can also use other

non-atomic reference distributions FU on Rd, for example, the standard normal distribution
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instead of uniform distribution (as we can in the canonical, scalar quantile regression case).

We show that this map exists and is unique under mild conditions, as a consequence of

Brenier’s polar factorization theorem. This notion relies on a particular, yet very important,

notion of monotonicity (1.1) for maps Rd → Rd, which we adopt here.

We define vector quantile regression (VQR) as a model of CVQF, particularly a linear

model. Specifically, under correct specification, our linear model takes the form:

QY |X(u | z) = β(u)>f(z),

where u 7→ β(u)>f(z) is a monotone map, in the sense of being a gradient of convex

function; and u 7→ β(u) is a map of regression coefficients from (0, 1)d to the set of p × d
matrices with real entries. This model is a natural analog of the classical QR for the scalar

case. In particular, under correct specification, we have the strong representation

Y = β(U)>f(Z), U | Z ∼ U(0, 1)d, (1.3)

where U is uniformly distributed on (0, 1)d conditional on Z. (Other reference distributions

could also be easily permitted.)

We provide a linear program for computing u 7→ β(u) in population and finite samples.

We shall stress that this formulation offers a number of useful properties. In particular,

the linear programming problem admits a general formulation that embeds the optimal

transportation problem of Monge-Kantorovich-Brenier, establishing a useful conceptual link

to an important area of optimization and functional analysis (see, e.g. [33], [34]).

Our paper also connects to a number of interesting proposals for performing multivariate

quantile regressions, which focus on inheriting certain (though not all) features of univariate

quantile regression– for example, minimizing an asymmetric loss, ordering ideas, monotonic-

ity, equivariance or other related properties, see, for example, some key proposals (including

some for the non-regression case) in [6], [22], [31], [15], [23], [2], which are contrasted to

our proposal in more details below. Note that it is not possible to reproduce all ”desirable

properties” of scalar quantile regression in higher dimensions, so various proposals focus on

achieving different sets of properties. Our proposal is quite different from all of the excellent

aforementioned proposals in that it targets to simultaneously reproduce two fundamentally

different properties of quantile regression in higher dimensions – namely the deterministic

coupling property (1.3) and the monotonicity property (1.1). This is the reason we deliber-

ately don’t use adjective “multivariate” in naming our method. By using a different name

we emphasize the major differences of our method’s goals from those of the other proposals.

This also makes it clear that our work is complementary to other works in this direction.

We discuss other connections as we present our main results.
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1.1. Plan of the paper. We organize the rest of the paper as follows. In Section 2, we

introduce and develop the properties of CVQF. In Section 3, we introduce and develop

the properties of VQR as well its linear programming implementation. In Section 4, we

provide computational details of the discretized form of the linear programming formulation,

which is useful for practice and computation of VQR with finite samples. In Section 5,

we implement VQR in an empirical example, providing the testing ground for these new

concepts. We provide proofs of all formal results of the paper in the Appendix.

2. Conditional Vector Quantile Function

2.1. Conditional Vector Quantiles as Gradients of Convex Functions. We consider

a random vector (Y,Z) defined on a complete probability space (Ω1,A1,P1). The random

vector Y takes values in Rd. The random vector Z is a vector covariate, taking values

in Rk. Denote by FY Z the joint distribution function of (Y, Z), by FY |Z the (regular)

conditional distribution function of Y given Z, and by FZ the distribution function Z.

We also consider random vectors V defined on a complete probability space (Ω0,A0,P0),

which are required to have a fixed reference distribution function FU . Let (Ω,A,P) be

the a suitably enriched complete probability space that can carry all vectors (Y, Z) and

V with distributions FY Z and FU , respectively, as well as the independent (from all other

variables) standard uniform random variable on the unit interval. Formally, this product

space takes the form (Ω,A,P) = (Ω0,A0,P0) × (S1,A1,P1) × ((0, 1), B(0, 1),Leb), where

((0, 1), B(0, 1),Leb) is the canonical probability space, consisting of the unit segment of the

real line equipped with Borel sets and the Lebesgue measure. The symbols Y, Z, U , YZ,

UZ denote the support of FY , FZ , FU , FY Z , FUZ , and Yz denotes the support of FY |Z(·|z).
We denote by ‖.‖ the Euclidian norm of Rd.

We assume that the following condition holds:

(N) FU has a density fU with respect to the Lebesgue measure on Rd with a convex

support set U .

The distribution FU describes a reference distribution for a vector of latent variables U ,

taking values in Rd, that we would like to link to Y via a strong representation of the form

mentioned in the introduction. This vector will be one of many random vectors V having

a distribution function FU , but there will only be one V = U , in the sense specified below,

that will provide the required strong representation. The leading cases for the reference

distribution FU include:

• the standard uniform distribution on the unit d-dimensional cube, U(0, 1)d,
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• the standard normal distribution N(0, Id) over Rd, or

• any other reference distribution on Rd, e.g., uniform on a ball.

Our goal here is to create a deterministic mapping that transforms a random vector U

with distribution FU into Y such that Y conditional on Z has the conditional distribution

FY |Z . Such a map that pushes forward a probability distribution of interest onto another

one is called a transport between these distributions. That is, we want to have a strong

representation property like (1.2) that we stated in the introduction. Moreover, we would

like this transform to have a monotonicity property, as in the scalar case. Specifically,

in the vector case we require this transform to be a gradient of a convex function, which

is a plausible generalization of monotonicity from the scalar case. Indeed, in the scalar

case the requirement that the transform is the gradient of a convex map reduces to the

requirement that the transform is non-decreasing. We shall refer to the resulting transform

as the conditional vector quantile function (CVQF). The following theorem shows that such

map exists and is uniquely determined by the stated requirements.

Theorem 2.1 (CVQF as Conditional Brenier Maps). Suppose condition (N) holds.

(i) There exists a measurable map (u, z) 7→ QY |Z(u, z) from UZ to Rd, such that for each

z in Z, the map u 7→ QY |Z(u, z) is the unique (FU -almost everywhere) gradient of convex

function such that, whenever V ∼ FU , the random vector QY |Z(V, z) has the distribution

function FY |Z(·, z), that is,

FY |Z(y, z) =

∫
1{QY |Z(u, z) ≤ y}FU (du), for all y ∈ Rd. (2.1)

(ii) Moreover, there exists a random variable V such that P-almost surely

Y = QY |Z(U,Z), and U | Z ∼ FU . (2.2)

The theorem is our first main result that we announced in the introduction. It should be

noted that the theorem does not require Y to have an absolutely continuous distribution,

it holds for discrete and mixed outcome variables; only the reference distribution for the

latent variable U is assumed to be absolutely continuous. It is also noteworthy that in the

classical case of Y and U being scalars we recover the classical conditional quantile function

as well as the strong representation formula based on this function ([28], [17]). Regarding

the proof, the first assertion of the theorem is a consequence of fundamental results due to

McCann ([24]) (as, e.g, stated in [33], Theorem 2.32) who in turn refined the fundamental

results of [3]. These results were obtained in the case without conditioning. The second

assertion is a consequence of Dudley-Philipp ([12]) result on abstract couplings in Polish

spaces.
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Remark 2.1 (Monotonicity). The transform (u, z) 7→ (QY |Z(u, z), z) has the following

monotonicity property:

(QY |Z(u, z)−QY |Z(u, z))>(u− u) ≥ 0 ∀u, u ∈ U ,∀z ∈ Z. (2.3)

Remark 2.2 (Uniqueness). In part (i) of the theorem, u 7→ QY |Z(u, z) is equal to a

gradient of some convex function u 7→ ϕ(u, z) for FU -almost every value of u ∈ U and it

is unique in the sense that any other map with the same properties will agree with it FU -

almost everywhere. In general, the gradient u 7→ ∇uϕ(u, z) exists FU -almost everywhere,

and the set of points Ue where it does not is negligible. Hence the map u 7→ QY |Z(u, z) is

still definable at each ue ∈ Ue from the gradient values ϕ(u, z) on u ∈ U\Ue, by defining it at

each ue as a smallest-norm element of {v ∈ Rd : ∃uk ∈ U \Ue : uk → ue,∇uϕ(uk, z)→ v}.

Let us assume further that the following condition holds:

(C) For each z ∈ Z, the distribution FY |Z(·, z) admits a density fY |Z(·, z) with respect

to the Lebesgue measure on Rd.

Under this condition we can recover U uniquely in the following sense:

Theorem 2.2 (Inverse Conditional Vector Quantiles or Conditional Ranks). Sup-

pose conditions (N) and (C) holds.

Then there exists a measurable map (y, z) 7→ Q−1Y |Z(y, z), mapping YZ to Rd, such that

for each z in Z, the map y 7→ Q−1Y |Z(y, z) is the inverse of u 7→ QY |Z(u, z) in the sense that:

Q−1Y |Z(QY |Z(u, z), z) = u,

for almost all u under FU . Furthermore, we can construct U in (2.2) as follows,

U = Q−1Y |Z(Y,Z), and U | Z ∼ FU . (2.4)

Remark 2.3 (Vector Conditional Rank Function). The mapping y 7→ Q−1Y |Z(y, z), which

maps Y ⊂ Rd to Rd, is the conditional rank function. When d = 1, it coincides with the

conditional distribution function, but when d > 1 it does not. The ranking interpretation

stems from the fact than when we set FU = U(0, 1)d, vector Q−1Y |Z (Y, Z) ∈ [0, 1]d measures

the centrality of observation Y for each of the dimensions, conditional on Z.

It is also of interest to state a further implication, which occurs under (N) and (C), on the

link between the transportation map QY |Z and its derivatives on one side, and the densities

fU and fY |Z on the other side. This link is a nonlinear second order partial differential

equation called a (conditional) Monge-Ampère equation.
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Corollary 2.1 (Conditional Monge-Ampère Equations). Assume that conditions (N)

and (C) hold and, further, that the map u 7→ QY |Z(u, z) is continuously differentiable and

injective for each z ∈ Z. Under this condition, the following conditional forward Monge-

Ampère equation holds for all (u, z) ∈ UZ :

fU (u) = fY |Z(QY |Z(u, z), z)det[DuQY |Z(u, z)] =

∫
δ(u−Q−1

Y |Z(y, z))fY |Z(y, z)dy, (2.5)

where δ is the Dirac delta function in Rd and Du = ∂/∂u>. Reversing the roles of U and

Y , we also have the following conditional backward Monge-Ampère equation holds for all

(u, z) ∈ YZ:

fY |Z(y, z) = fU (Q−1
Y |Z(y, z))det[DyQ

−1
Y |Z(y, z)] =

∫
δ(y −QY |Z(u, z))fU (u)du. (2.6)

The latter expression is useful for linking the conditional density function to the condi-

tional vector quantile function. Equations (2.5) and (2.6) are partial differential equations

of the Monge-Ampère type, carrying an additional index z ∈ Z. These equations could be

used directly to solve for conditional vector quantiles given conditional densities. In the

next section we describe a variational approach to recovering conditional vector quantiles.

2.2. Conditional Vector Quantiles as Optimal Transport. Under additional moment

assumptions, the CVQF can be characterized and even defined as solutions to a regres-

sion version of the Monge-Kantorovich-Brenier’s optimal transportation problem or, equiv-

alently, a conditional correlation maximization problem.

We assume that the following conditions hold:

(M) The second moment of Y and the second moment of U are finite:∫ ∫
‖y‖2FY Z(dy, dz) <∞ and

∫
‖u‖2FU (du) <∞.

We consider the following optimal transportation problem with conditional independence

constraints:

min
V
{E‖Y − V ‖2 : V | Z ∼ FU}, (2.7)

where the minimum is taken over all random vectors V defined on the probability space

(Ω,F ,P). Note that the value of objective is the Wasserstein distance between Y and V

subject to V | Z ∼ FU . Under condition (M) we will see that a solution exists and is given

by V = U constructed in the previous section.

The problem (2.7) is the conditional version of the classical Monge - Kantorovich problem

with Brenier’s quadratic costs, which was solved by Brenier in considerable generality in the

unconditional case. In the unconditional case, the canonical Monge problem is to transport
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a pile of coal with mass distributed across production locations from FU into a pile of coal

with mass distributed across consumption locations from FY , and it can be rewritten in

terms of random variables V and Y . We are seeking to match Y with a version of V

that is closest in mean squared sense subject to V having a prescribed distribution. Our

conditional version above (2.7) imposes the additional conditional independence constraint

V | Z ∼ FU .

The problem above is equivalent to covariance maximization problem subject to the

prescribed conditional independence and distribution constraints:

max
V
{E(V >Y ) : V | Z ∼ FU}, (2.8)

where the maximum is taken over all random vectors V defined on the probability space

(Ω,F ,P). This type of problem will be convenient for us, as it most directly connects

to convex analysis and leads to a convenient dual program. This form also connects to

unconditional multivariate quantile maps defined in [13], who employed them for purposes

of risk analysis; our definition given in the previous section is more satisfactory, because it

does not require any moment conditions, as follows from the results of [24].

The dual program to (2.8) can be stated as:

min(ψ,ϕ) E(ϕ(V,Z) + ψ(Y,Z)) : ϕ(u, z) + ψ(y, z) ≥ u>y
for all (z, y, u) ∈ Z × R2d,

(2.9)

where V is any vector such that V | Z ∼ FU , and minimization is performed over Borel

maps (y, z) 7→ ψ(y, z) from Z × Rd to R ∪ {+∞} and (u, z) 7→ ϕ(z, u) from Z × Rd to

R ∪ {+∞}, where y 7→ ψ(y, z) and u 7→ ϕ(u, z) are lower-semicontinuous for each value

z ∈ Z.

Theorem 2.3 (Conditional Vector Quantiles as Optimal Transport). Suppose con-

ditions (N), (C), and (M) hold.

(i) There exists a pair of maps (u, z) 7→ ϕ(u, z) and (y, z) 7→ ψ(y, z) = ϕ∗(y, z), each

mapping from Rd × Z to R, that solve the problem (2.9). For each z ∈ Z, the maps

u 7→ ϕ(u, z) and y 7→ ϕ∗(y, z) are convex and are Legendre transforms of each other:

ϕ(u, z) = sup
y∈Rd

{u>y − ϕ∗(y, z)}, ϕ∗(y, z) = sup
u∈Rd

{u>y − ϕ(u, z)},

for all (u, z) ∈ UZ and (y, z) ∈ YZ.

(iii) We can take the gradient (u, z) 7→ ∇uϕ(u, z) of (u, z) 7→ ϕ(u, z) as the conditional

vector quantile function, namely, for each z ∈ Z, QY |Z(u, z) = ∇uϕ(u, z) for almost every

value u under FU .
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(iv) We can take the gradient (y, z) 7→ ∇yϕ∗(y, z) of (y, z) 7→ ϕ∗(y, z) as the conditional

inverse vector quantile function or conditional rank function, namely, for each z ∈ Z,

Q−1Y |Z(y, z) = ∇yϕ(z, y) for almost every value y under FY |Z(·, z).

(v) The vector U = Q−1Y |Z(Y,Z) is a solution to the primal problem (2.8) and is unique

in the sense that any other solution U∗ obeys U∗ = U almost surely under P. The primal

(2.8) and dual (2.9) have the same value.

(vi) The maps u 7→ ∇uϕ(u, z) and y 7→ ∇ϕ∗y(y, z) are inverses of each other: for each

z ∈ Z, and for almost every u under FU and almost every y under FY |Z(·, z)

∇yϕ∗(∇uϕ(u, z), z) = u, ∇uϕ(∇yϕ∗(y, z), z) = y.

Remark 2.4. There are many maps Q : UZ → Y such that if V ∼ FU , then Q (V, z) ∼
FY |Z=z. Any of these maps define a transport from FU to FY |Z=z. Our choice is to take the

optimal transport, in the sense that it minimizes the Wasserstein distance E‖Q (V,Z)−V ‖2

among such maps. This has several benefits: (i) the optimal transport is unique as soon as

FU is absolutely continuous, as noted in Remark 2.2 and (ii) this object is easily computable

through a linear programming problem. Note that the classical, scalar quantile map is the

optimal transport from FU to FY in this sense, so oue notion indeed extends the classical

notion of a quantile.

Remark 2.5. Unlike in the scalar case, we cannot compute QY |Z (u, z) at a given point u

without computing the whole map u→ QY |Z (u, z). This highlights the fact that CVQF is

not a local concept with respect to values of the rank u.

Theorem 2.3 provides a number of analytical properties, formalizing the variational inter-

pretation of conditional vector quantiles, providing the potential functions (u, z) 7→ ϕ(u, z)

and (y, z) 7→ ϕ∗(y, z), which are mutual Legendre transforms, and whose gradients are

the conditional vector quantile functions and its inverse, the conditional vector rank func-

tion. This problem is a conditional generalization of the fundamental results by Brenier as

presented in [33], Theorem 2.12.

Example 2.1 (Conditional Normal Vector Quantiles). Here we consider the normal

conditional vector quantiles. Consider the case where

Y | Z ∼ N(µ(Z),Ω(Z)).

Here z 7→ µ(z) is the conditional mean function and z 7→ Ω(z) is a conditional variance

function such that Ω(z) > 0 (in the sense of positive definite matrices) for each z ∈ Z with
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E‖Ω(Z)‖ + E‖µ(Z)‖2 < ∞. The reference distribution is given by U | Z ∼ N(0, I). Then

we have the following conditional vector quantile model:

Y = µ(Z) + Ω1/2(Z)U,

U = Ω−1/2(Z)(Y − µ(Z)).

Here we have the following conditional potential functions

ϕ(u, z) = µ(z)>u+
1

2
u>Ω1/2(z)u,

ψ(y, z) =
1

2
(y − µ(z))>Ω−1/2(z)(y − µ(z)),

and the following conditional vector quantile and rank functions:

QY |Z(u, z) = ∇uϕ(u, z) = µ(z) + Ω1/2(z)u,

Q−1Y |Z(y, z) = ∇yψ(y, z) = Ω−1/2(z)(y − µ(z)).

It follows from Theorem 2.3 that V = U solves the covariance maximization problem (2.8).

This example is special in the sense that the conditional vector quantile and rank functions

are linear in u and y, respectively.

2.3. Interpretations of vector rank U . We can provide the following interpretations of

U :

1) As multivariate rank. An interesting interpretation of U is as a multivariate rank.

In the univariate case, [17], Ch. 1.3 and 3.5, interprets U as a continuous notion of rank

in the setting of quantile regression. The rank has a reference distribution FU , which is

typically chosen to be uniform on (0, 1), but other reference distributions could be used

as well. The concept of vector quantile allows us to assign a continuous rank to each of

the dimensions, and the vector quantile mapping is monotone with respect to the rank in

the sense of being the gradient of a convex function. As a result, U can be interpreted as

a multivariate rank for Y , as we are trying to map the distribution of U to a prescribed

distribution FY at minimal distortion, as seen in (2.7).

2) As a reference outcome for defining quantile treatment effects. Another

motivation is related to the classical definition of quantile treatment effects introduced by

[26], and further developed by [10], [17], and others. Suppose we define U as an outcome

for an untreated population; for this we simply set the reference distribution FU to the

distribution of outcome in the untreated population. Suppose Z is the indicator of the

receiving a treatment (Z = 0 means no treatment). Then we can represent outcome Y =
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QY |Z (U,Z) as the multivariate health outcome conditional on Z. If Z = 0, then the outcome

is distributed as QY |Z (U, 0) = U . If Z = 1, then the outcome is distributed as QY |Z (U, 1).

The corresponding notion of vector quantile treatment effects is QY |Z(u, 1)−QY |Z(u, 0).

3) As nonlinear latent factors. As it is apparent in the variational formulation (2.7),

the entries of U can also be thought as latent factors, independent of each other and ex-

planatory variables Z and having a prescribed marginal distribution FU , and that best

explain the variation in Y . Therefore, the conditional vector quantile model (2.2) provides

a non-linear latent factor model for Y with factors U solving the matching problem (2.7).

This interpretation suggests that this model may be useful in applications which require

measurement of multidimensional unobserved factors, for example, cognitive ability, persis-

tence, and various other latent propensities; see, for example, [8].

2.4. Overview of Other Notions of Multivariate Quantile. We briefly review other

notions of multivariate quantiles in the statistical literature. We highlight the main con-

trasts with the notion we are using, based on optimal transport. For the sake of clarity of

exposition, we discuss the unconditional case; albeit the comparisons extend naturally to

the regression case.

In [6], the following definition of multivariate quantile function is suggested: for u ∈ Rd,
let

QCY (u) = arg max
y∈Rd

E
[
y>u− ‖y − Y ‖

]
which coincides with the classical notion when d = 1. See also [31]. More generally, [22]

offers the following definition based on M-estimators, still for u ∈ Rd,

QKY (u) = arg max
y∈Rd

E
[
y>u−K (y, Y )

]
for a choice of kernel K assumed to be convex with respect to its first argument. Like our

proposal, these notions of quantile maps are gradients of convex potentials. However, unlike

our proposal, these notions do not provide a transport from a fixed distribution over values

of u to the distribution FY of Y as soon as d > 1.

In [35], a notion of quantile based on the Rosenblatt map is investigated. In the case

d = 2, this quantile is defined for u ∈ [0, 1]2 as

QRY (u1, u2) =
(
QY1 (u1) , QY2|Y1 (u2 | QY1 (u1))

)
where QY1 and QY1|Y2 are the univariate and the conditional univariate quantile map. This

map is a transport of the distribution of U(0, 1)2; however, in this definition, Y1 and Y2 play

sharply assymetric roles, as the second dimension is defined conditional on the first one.
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Unlike ours, this quantile map is not a gradient of convex function. In the Supplementary

Appendix, we provide detailed numeric comparisons of this notion in the context of the

empirical example.

In [15], the authors specify a vector of latent indices u ∈ Bd the unit ball of Rd. For

u ∈ Bd, they define multivariate quantiles as

QHPSY (u) =
{
y ∈ Rd : c>y = a

}
,

where a ∈ R and c ∈ Rd minimize Eρ‖u‖
(
c>Y − a

)
subject to constraint c>u = ‖u‖. In

contrast to ours, their notion of quantile is a set-valued. A closely related construction is

provided by [23] who define the directional quantile associated to the index u ∈ Bd via:

QKMY (u) = Qu>Y/‖u‖ (‖u‖)u/‖u‖,

where Qu>Y/‖u‖ is the univariate quantile function of the random variable u>Y/‖u‖. We

can provide a transport interpretation to this notion of quantiles, but unlike our proposal

this map is not a gradient of convex function.

A notion of quantile based on a partial order � on Rd is proposed in [2]. For an index

u ∈ (0, 1), these authors define

QBWY (u) =
{
y ∈ Rd : Pr (Y � y | C (y)) ≥ 1− u,Pr (Y � y | C (y)) ≥ u

}
where C (y) =

{
y′ ∈ Rd : y � y′ or y′ � y

}
is the set of elements that can be ordered by

� relative to the point y. Unlike our proposal, the index u is scalar and the quantile is

set-valued.

3. Vector Quantile Regression

3.1. Linear Formulation. Here we let X = f(Z) denote a vector of regressors formed as

transformations of Z, such that the first component of X is 1 (intercept term in the model)

and such that conditioning on X is equivalent to conditioning on Z. The dimension of X

is denoted by p and we shall denote X = (1, X−1) with X−1 ∈ Rp−1.

In practice, X would often consist of a constant and some polynomial or spline trans-

formations of Z as well as their interactions. Note that conditioning on X is equivalent to

conditioning on Z if, for example, a component of X contains a one-to-one transform of Z.

Denote by FX the distribution function of X and FUX = FUFX . Let X denote the

support of FX and UX the support of FUX . We define linear vector quantile regression

model (VQRM) as the following linear model of CVQF.
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(L) The following linearity condition holds:

Y = QY |X(U,X) = β0(U)>X, U | X ∼ FU ,

where u 7→ β0(u) is a map from U to the set Mp×d of p × d matrices such that

u 7→ β0(u)>x is a monotone, smooth map, in the sense of being a gradient of a

convex function:

β0(u)>x = ∇uΦx(u), Φx(u) := B0(u)>x, for all (u, x) ∈ UX ,

where u 7→ B0(u) is C1 map from U to Rd, and u 7→ B0(u)>x is a strictly convex

map from U to R.

The parameter β(u) is indexed by the quantile index u ∈ U and is a d×pmatrix of quantile

regression coefficients. Of course in the scalar case, when d = 1, this matrix reduces to a

vector of quantile regression coefficients. This model is a natural analog of the classical

QR for scalar Y where the similar regression representation holds. One example where

condition (L) holds is Example 2.1, describing the conditional normal vector regression. It

is of interest to specify other examples where condition (L) holds or provides a plausible

approximation.

Example 3.1 (Saturated Specification). The regressors X = f(Z) with E‖f(Z)‖2 < ∞
are saturated with respect to Z, if, for any g ∈ L2(FZ) , we have g(Z) = X>αg. In this case

the linear functional form (L) is not a restriction. For p < ∞ this can occur if and only if

Z takes on a finite set of values Z = {z1, . . . , zp}, in which case we can write:

QY |X(u,X) =

p∑
j=1

QY |Z(u, zj)1(Z = zj) =: B0(u)>X,

B0(u) :=


QY |Z(u, z1)

>

...

QY |Z(u, zp)
>

 , X :=


1(Z = z1)

...

1(Z = zp)

 .

Here the problem is equivalent to considering p unconditional vector quantiles in populations

corresponding to Z = z1, . . . , Z = zp.

The rationale for using linear forms is two-fold – one is convenience of estimation and

representation of functions and another one is approximation property. We can approximate

a smooth convex potential by a smooth linear potential, as the following example illustrates

for a particular approximation method.

Example 3.2 (Linear Approximation). Let (u, z) 7→ ϕ(u, z) be of class Ca with a > 1

on the support (u, z) ∈ UZ = [0, 1]d+k. Consider a trigonometric tensor product basis of
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functions {(u, z) 7→ qj(u)fl(z), j ∈ N, l ∈ N} in L2[0, 1]d+k. Then there exists a JL vector

(γjl : j ∈ {1, ..., J}, l ∈ {1, ..., L}) such that the linear map:

(u, z) 7→ ΦJL(u, z) :=
J∑
j=1

L∑
l=1

γjlqj(u)fl(z) =: BL
0 (u)>fL(z),

where BL
0 (u) = (

∑J
j=1 γjlqj(u), l ∈ {1, ..., L}) and fL(z) = (fl(z), l ∈ {1, ..., L}), provides

uniformly consistent approximation of the potential and its derivative:

lim
J,L→∞

sup
(u,z)∈UZ

(
|ϕ(u, z)− ΦJL(u, z)|+ ‖∇uϕ(u, z)−∇uΦJL(u, z)‖

)
= 0.

The approximation property via the sieve-type approach provides a rationale for the

linear (in parameters) specification (1.3). Another approach, based on local polynomial

approximations over a collection of (increasingly smaller) neighborhoods, also provides a

useful rationale for the linear (in parameters) specification, e.g., similarly in spirit to [36].

If the linear specification does not hold exactly we say that the model is misspecified. If the

model is flexible enough, by using a suitable basis or localization, then the approximation

error is small, and we effectively ignore the error when assuming (1.3). However, when con-

structing a sensible estimator we must allow the possibility that the model is misspecified,

which means we can’t really force (1.3) onto data. Our proposal for estimation presented

next does not force (1.3) onto data, but if (1.3) is true in population, then as a result, the

true conditional vector quantile function would be recovered perfectly in population.

3.2. Linear Program for VQR. Our approach to multivariate quantile regression is based

on the multivariate extension of the covariance maximization problem with a mean inde-

pendence constraint:

max
V
{E(V >Y ) : V ∼ FU , E(X | V ) = E(X)}. (3.1)

Note that the constraint condition is a relaxed form of the previous independence condi-

tion.

Remark 3.1. The new condition V ∼ FU , E(X | V ) = E(X) is weaker than V | X ∼ FU ,

but the two conditions coincide if X is saturated relative to Z, as in Example 3.1, in which

case E(g(Z)V ) = EX>αgV = E(X>αg)E(V ) = Eg(Z)EV for every g ∈ L2(FZ). More

generally, this example suggests that the richer X is, the closer the mean independence

condition becomes to the conditional independence.

The relaxed condition is sufficient to guarantee that the solution exists not only when

(L) holds, but more generally when the following quasi-linear assumption holds.
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(QL) We have a quasi-linear representation a.s.

Y = β(Ũ)>X, Ũ ∼ FU , E(X | Ũ) = E(X),

where u 7→ β(u) is a map from U to the set Mp×d of p × d matrices such that

u 7→ β(u)>x is a gradient of convex function for each x ∈ X and a.e. u ∈ U :

β(u)>x = ∇uΦx(u), Φx(u) := B(u)>x,

where u 7→ B(u) is C1 map from U to Rd, and u 7→ B(u)>x is a strictly convex map

from U to R.

This condition allows for a degree of misspecification, which allows for a latent factor

representation where the latent factor obeys the relaxed independence constraints.

Theorem 3.1. Suppose conditions (M), (N) , (C), and (QL) hold.

(i) The random vector Ũ entering the quasi-linear representation (QL) solves (3.1).

(ii) The quasi-linear representation is unique a.s. that is if we also have Y = β(U)>X

with U ∼ FU ,E(X | U) = EX, u 7→ X>β(u) is a gradient of a strictly convex function in

u ∈ U a.s., then U = Ũ and X>β(Ũ) = X>β(Ũ) a.s.

(iii) Under condition (L) and assuming that E(XX>) has full rank, Ũ = U a.s. and U

solves (3.1). Moreover, β0(U) = β(U) a.s.

The last assertion is important – it says that if (L) holds, then the linear program (3.1),

where the independence constraint has been relaxed into a mean independence constraint,

will find the true linear vector quantile regression in the population.

3.3. Dual Program for Linear VQR. As explained in details in the appendix, Pro-

gram (3.1) is an infinite-dimensional linear programming problem whose dual program is:

inf(ψ,b) E(ψ(X,Y )) + Eb(V )>E(X) : ψ(x, y) + b(u)>x ≥ u>y,
∀ (y, x, u) ∈ YXU ,

(3.2)

where V ∼ FU , where the infimum is taken over all continuous functions (y, x) 7→ ψ(y, x),

mapping YX to R and u 7→ b(u) mapping U to R, such that E(ψ(X,Y )) and Eb(V ) are

finite.

Since for fixed b, the smallest ψ which satisfies the pointwise constraint in (3.2) is given

by

ψ(x, y) := sup
u∈U
{u>y − b(u)>x},
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one may equivalently rewrite (3.2) as the minimization over continuous b of∫
sup
u∈U
{u>y −B(u)>x}FY |X(dx, dy) +

∫
b(u)>E(X)FU (du).

By standard arguments (see e.g. [33], section 1.1.7), the infimum over continuous functions

coincides with the one over smooth or simply integrable functions.

Theorem 3.2. Under (M) and (QL), we have that the optimal solution to the dual is given

by functions:

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}, b(u) = B(u).

This result can be recognized as a consequence of strong duality of the linear programming

(e.g. [33]).

3.4. Connecting to Scalar Quantile Regression. We now consider the connection to

the canonical, scalar quantile regression primal problem, where Y is scalar and for each

probability index t, the linear functional form x 7→ x>β(t) is used. [19] define linear

quantile regression as X>β(t) with β(t) solving the minimization problem

β(t) ∈ arg min
β∈Rp

E(ρt(Y −X>β)), (3.3)

where the loss function ρt is given by ρt(z) := tz− + (1− t)z+ with z− and z+ denoting as

usual the negative and positive parts of z. The above formulation makes sense and β(t) is

unique under the following simplified conditions:

(QR) E|Y | <∞, (y, x) 7→ fY |X(y, x) is uniformly continuous, and E(wXX>) is positive-

definite, for w = fY |X(X>β(t), X).

For further use, note that (3.3) can be conveniently rewritten as

min
β∈Rp
{E(Y −X>β)+ + (1− t)EX>β}. (3.4)

[19] showed that this convex program admits as dual formulation:

max{E(AtY ) : At ∈ [0, 1], E(AtX) = (1− t)EX}. (3.5)

An optimal β = β(t) for (3.4) and an optimal rank-score variable At in (3.5) may be taken

to be

At = 1(Y > X>β(t)), (3.6)

and thus the constraint E(AtX) = (1− t)EX reads:

E(1(Y > X>β(t))X) = (1− t)EX. (3.7)

which simply are the first-order conditions for (3.4).
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We say that the specification of quantile regression is quasi-linear if

t 7→ x>β(t) is increasing on (0, 1). (3.8)

Define the rank variable Ũ =
∫ 1
0 Atdt, then under this assumption we have that

At = 1(Ũ > t),

and the first-order conditions imply that for each t ∈ (0, 1)

E1(Ũ ≥ t) = (1− t), E1(Ũ ≥ t)X = (1− t)EX.

The first property implies that Ũ ∼ U(0, 1) and the second property can be easily shown

to imply the mean-independence condition:

E(X | Ũ) = EX.

Thus quantile regression naturally leads to the mean-independence condition and the quasi-

linear latent factor model. This is the reason we used mean-independence condition as

a starting point in formulating the vector quantile regression. Moreover, in both vector

and scalar cases, we have that, when the conditional quantile function is linear (not just

quasi-linear), the quasi-linear representation coincides with the linear representation and Ũ

becomes fully independent of X.

The following result summarizes the connection more formally.

Theorem 3.3 (Connection to Scalar QR). Suppose that (QR) holds.

(i) If (3.8) holds, then for Ũ =
∫ 1
0 Atdt we have the quasi-linear model holding

Y = X>β(Ũ) a.s., Ũ ∼ U(0, 1) and E(X | Ũ) = E(X).

Moreover, Ũ solves the dual problem of correlation maximization problem with a mean

independence constraint:

max{E(V Y ) : V ∼ U(0, 1), E(X | V ) = E(X)}. (3.9)

(ii) The quasi-linear representation above is unique almost surely. That is, if we also have

Y = β(U)>X with U ∼ U(0, 1),E(X | U) = EX, u 7→ X>β(u) is increasing in u ∈ (0, 1)

a.s., then Ũ = U and X>β(Ũ) = X>β(U) a.s.

(iii) Consequently, if the conditional quantile function is linear, namely QY |X(u) =

X>β0(u), so that Y = X>β0(U), then the latent factors in the quasi-linear and linear spec-

ifications coincide, namely U = Ũ , and so do the model coefficients, namely β0(U) = β(U).
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4. Implementation of Vector Quantile Regression

In order to implement VQR in practice, we employ discretization of the problem, namely

we approximate the distribution FY X of the outcome-regressor vector (X,Y ) and FU of the

vector rank U by discrete distributions ν and µ, respectively. For example, for estimation

purposes we can approximate FY X by an empirical distribution of the sample, and the

distribution FU of U by a finite grid.

Let yi ∈ Rd denote values of outcomes and xi ∈ Rp of regressors for 1 ≤ i ≤ n; we

assume the first component of xi is 1. For estimation purposes, we assume these values are

obtained as a random sample from distribution FY X , and so each observation receives a

point mass νi = 1/n. When we perform computation for theoretical purposes, we can think

of these values as grid points, which are not necessarily obtained as a random sample, and

so each observation receives a point mass νi which does not have to be 1/n. We also set up

a collection of grid points uk, for k = 1, ...,m, for values of the vector rank U , and assign

the probability mass µk to each of the point. For example, if U ∼ U(0, 1)d and we generate

values uk as a random sample or via a uniformly spaced grid of points, then µk = 1/m.

Thus, let Y be the n×d matrix with row vectors y>j and X the n×r matrix of row vectors

x>j ; the first column of this matrix is a vector of ones. Let ν be a n× 1 matrix such that νi

is the probability attached to a value (xi, yi), so that νi ≥ 0 and
∑n

i=1 νi = 1. Let m be the

number of points in the support of µ. Let U be a m× d matrix, where the ith row denoted

by u>i . Let µ be a m× 1 matrix such that µk is the probability weight of uk (hence µi ≥ 0

and
∑

k µk = 1).

We are looking to find an m× n matrix π such that πij is the probability mass attached

to (ui, xj , yj) which maximizes ∑
ij

πijy
>
j ui = Tr(U>πY)

subject to constraint π>1m = ν, where 1m is a m × 1 vector of ones, and subject to

constraints π1n = µ and πX = µν>X.

Hence, the discretized VQR program is given in its primal form by

max
π≥0

Tr
(
U>πY

)
: π>1m = ν [ψ] πX = µν>X [b] , (4.1)

where the square brackets show the associated Lagrange multipliers, and in its dual form

by

min
ψ,b

ψ>ν + ν>Xb>µ : ψ1>m + Xb> ≥ YU>
[
π>
]
, (4.2)
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where ψ is a n× 1 vector, and b is a m× r matrix.

Problems (4.1) and (4.2) are two linear programming problems dual to each other. How-

ever, in order to implement them on standard numerical analysis software such as R or

Matlab coupled with a linear programming software such as Gurobi, we need to convert

matrices into vectors. This is done using the vec operation, which is such that if A is a p×q
matrix, vec(A) is a pq×1 matrix such that vec (A)i+p(j−1) = Aij . The use of the Kronecker

product is also helpful. Recall that if A is a p× q matrix and B is a p′× q′ matrix, then the

Kronecker product A⊗B is the pp′× qq′ matrix such that for all relevant choices of indices

i, j, k, l, (A⊗B)i+p(k−1),j+q(l−1) = AijBkl. The fundamental property linking Kronecker

products and the vec operator is vec
(
BXAT

)
= (A⊗B) vec (X) .

Introduce vecπ = vec (π), the optimization variable of the “vectorized problem”. Note

that the variable vecπ is amn×1 vector. Then we rewrite the objective function, Tr
(
U>πY

)
=

vecπ>vec
(
UY>

)
; as for the constraints, vec

(
1>mπ

)
=
(
In ⊗ 1>m

)
vecπ is a n× 1 vector; and

vec (πX) =
(
X> ⊗ Im

)
vecπ is a mr × 1 vector. Thus we can rewrite the program (4.1) as:

max
vecπ≥0

vec
(
UY>

)>
vecπ :(

In ⊗ 1>m

)
vecπ = vec

(
ν>
)

(
X> ⊗ Im

)
vecπ = vec

(
µν>X

) (4.3)

which is a LP problem with mn variables and mr+n constraints. The constraints
(
In ⊗ 1>m

)
and

(
X> ⊗ Im

)
are very sparse, which can be taken advantage of from a computational point

of view.

5. Empirical Illustration

We demonstrate the use of the approach on a classical application of Quantile Regression

since [20]: Engel’s ([14]) data on household expenditures, including 199 Belgian working-

class households surveyed by Ducpetiaux ([11]), and 36 observations from all over Europe

surveyed by Le Play ([27]). Due to the univariate nature of classical QR, [20] limited their

focus on the regression of food expenditure over total income. But in fact, Engel’s dataset

is richer and classifies household expenses in nine broad categories: 1. Food; 2. Clothing;

3. Housing; 4. Heating and lighting; 5. Tools; 6. Education; 7. Safety; 8. Medical

care; and 9. Services. This allows us to have a multivariate dependent variable. While

we could in principle have d = 9, we focus for illustrative purposes on a two-dimensional

dependent variable (d = 2), and we choose to take Y1 as food expenditure ( category #1)
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and Y2 as housing and domestic fuel expenditure (category #2 plus category #4). We take

X = (X1, X2) with X1 = 1 and X2=total expenditure as an explanatory variable.

5.1. One-dimensional VQR. To begin with, we run a pair of one dimensional VQRs,

where we regress: (i) Y1=food on X=income and a constant (Figure 1, left panel, in green)

and (ii) Y2=housing and fuel on X=income and a constant (Figure 1, right panel, in green).

The curves drawn here are u → x>β(u) for five percentiles of the income x (0%, 25%,

50%, 75%, 100%), and the corresponding probabilistic representations are

Y1 = β1 (U1)
>X and Y2 = β2 (U2)

>X (5.1)

with U1 ∼ U ([0, 1]) and U2 ∼ U ([0, 1]). Here, U1 is interpreted as a propensity to consume

food, while U2 is intepreted as a propensity to consume the housing good. Note that in

general, U1 and U2 are not independent; in other words, the distribution of (U1, U2) differs

from U([0, 1]2). In fact, the distribution of (U1, U2) is called the copula associated to the

conditional distribution of (Y1, Y2) conditional on X.

As explained above, when d = 1, VQR is very closely connected to classical quantile

regression. Hence, in Figure 1, we also draw the classical quantile regression (in red). In

each case, the curves exhibit very little difference between classical quantile regression and

vector quantile regression. Small differences occur, since vector quantile regression in the

scalar case can be shown to impose the fact that map t → At in (3.5) is nonincreasing,

which is not necessarily the case with classical quantile regression under misspecification in

population, or even under specification in sample. As can be seen in Figure 1, the difference,

however, is minimal.

From the plots in Figure 1, it is also apparent that one-dimensional VQR can also suffer

from the “crossing problem,” namely the fact that β(t)>x may not be monotone with respect

to t. Indeed, the fact that t → At is nonincreasing fails to imply the fact that t → β(t)>x

is nondecreasing. There exist procedures to repair the crossing problem, see [7]. However,

we see that the crossing problem is modest in the current example.

Running a pair of one-dimensional Quantile Regressions is interesting, but it does not im-

mediately convey the information about the joint conditional dependence in Y1 and Y2 (given

X). In other words, representations (5.1) are not informative about the joint propensity

to consume food and income. One could also wonder whether food and housing are locally

complements (respectively locally substitute), in the sense that, conditional on income, an

increase in the food consumption is likely to be associated with an increase (respectively a

decrease) in the consumption of the housing good. All these questions can be immediately

answered with higher-dimensional VQR.
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Figure 1. Classical quantile regression (red) and one-dimensional vector

quantile regression (green) with income as explanatory variable and with: (i)

Food expenditure as dependent variable (Left) and (ii) Housing expenditure

as dependent variable (Right). The maps t → β(t)>x are plotted for five

values of income x (quartiles).

5.2. Two dimensional VQR. In contrast, the two-dimensional vector quantile regression

with Y = (Y1, Y2) as a dependent variable yields a representation

Y1 =
∂b

∂u1
(U1, U2)

>X and Y2 =
∂b

∂u2
(U1, U2)

>X (5.2)

where (U1, U2) ∼ ν = U([0, 1]2).

Let us make a series of remarks:

First, U1 and U2 have an interesting interpretation: U1 is a propensity for food expenditure,

while U2 is a propensity for domestic (housing and heating) expenditure. Let us explain this

denomination. If VQR is correctly specified, then Φx (u) = β (u)> x is convex with respect

to u, and Y = ∇uΦX (U), which implies in particular that

∂/∂u1 (∂Φx (u1, u2) /∂u1) = ∂2Φx (u1, u2) /∂u
2
1 ≥ 0.

Hence an increase in u1 keeping u2 constant leads to an increase in y1. Similarly, an increase

in u2 keeping u1 constant leads to an increase in y2.

Second, the quantity U(x, y) = Q−1Y |X(y, x) is a measure of joint propensity of expenditure

Y = y conditional on X = x. This is a way of rescaling the conditional distribution

of Y conditional on X = x into the uniform distribution on [0, 1]2. If VQR is correctly

specified, then (U1, U2) is independent from X, so that U (X,Y ) ∼ FU = U([0, 1]2). In

this case, Pr (U (X,Y ) ≥ u1, U (X,Y ) ≥ u2) = (1− u1) (1− u2) can be obained to detect

“nontypical” values of (y1, y2).
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Third, representation (5.2) may also be used to determine if Y1 and Y2 are local com-

plements or substitutes. Indeed, if VQR is correctly specified and (Y1, Y2) are indepen-

dent conditional on X, then b (u1, u2) = b1 (u1) + b2 (u2), so that the cross derivative

∂2b (u1, u2) /∂u1∂u2 = 0. In this case, (5.2) becomes Y1 = ∂b1
∂u1

(U1)
>X and Y2 = ∂b2

∂u2
(U2)

>X,

which is equivalent to two single-dimensional quantile regressions. In this case, condi-

tional on X, an increase in Y1 is not associated to an increase or a decrease in Y2. On

the contrary, when (Y1, Y2) are no longer independent conditional on X, then the term

∂2b (u1, u2) /∂u1∂u2 is no longer zero. Assume it is positive. In this case, an increase in

the propensity to consume food u1 not only increases the food consumption y1, but also

the housing consumption y2, which we interpret by saying that food and housing are local

complements.

Going back to Engel’s data, in Figure 2, we set x = (1, 883.99), where x2 = 883.99 is

the median value of the total expenditure X2, and we are able to draw the two-dimensional

representations.

The top pane expresses Y1 as a function of U1 and U2, while the bottom pane expresses

Y2 as a function of U1 and U2. The insights of the two-dimensional representation become

apparent. One sees that while Y1 covaries strongly with U1 and Y2 covaries strongly with

U2, there is a significant and negative cross-covariation: Y1 covaries negatively with respect

to U2, while Y2 covaries negatively with U1. The interpretation is that, for a median level

of income, the food and housing goods are local substitutes. This makes intuitive sense,

given that food and housing goods account for a large share of the surveyed households’

expenditures.

Appendix

Appendix A. Proofs for Section 2

A.1. Proof of Theorem 2.1. The first assertion of the theorem is a consequence of the

refined version of Brenier’s theorem given by [24] (as, e.g, stated in [33], Theorem 2.32),

which we apply for each z ∈ Z. In particular, this implies that for each z ∈ Z, the map

u 7→ QY |Z(u, z) is measurable.
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Figure 2. Predicted outcome conditional on total expenditure equal to

median value, that is X2 = 883.99. Top: food expenditure, Bottom: housing

expenditure.

Next we note that (QY |Z(V,Z), Z) is a proper random vector, hence a measurable map

from (Ω,A) to (Rd+k,B(Rd+k)). For any rectangle A×B ⊂ Rd+k:

P((Y,Z) ∈ A×B) =

∫
B

[∫
A
FY |Z(dy, z)

]
FZ(dz) (A.1)

=

∫
B

[∫
1{(QY |Z(u, z) ∈ A}FU (du)

]
dFZ(dz) (A.2)

= P((QY |Z(V,Z), Z) ∈ A×B), (A.3)
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where penultimate equality follows from the previous paragraph. Since measure over rect-

angles uniquely pins down the probability measure on all Borel sets via Caratheodory’s

extension theorem, it follows that the law of (QY |Z(V,Z), Z) is properly defined on all

Borel sets and is equal to that of (Y,Z). The measurability of (u, z) 7→ (QY |Z(u, z), z) fol-

lows from the measurability of conditional probabilities and standard measurable selection

arguments.

To show the second assertion we invoke Dudley-Phillip’s ([12]) coupling result given in

their Lemma 2.11.

Lemma A.1 (Dudley-Phillip’s coupling). Let S and T be Polish spaces and Q a law on

S × T , with marginal law µ on S. Let (Ω,A,P) be a probability space and J a random

variable on Ω with values in S and J ∼ µ. Assume there is a random variable W on Ω,

independent of J , with values in a Polish space R and law ν on R having no atoms. Then

there exists a random variable I on Ω with values in T such that (J, I) ∼ Q.

First we recall that our probability space has the form:

(Ω,A,P) = (Ω0,A0,P0)× (Ω1,A1,P1)× ((0, 1), B(0, 1),Leb),

where (0, 1), B(0, 1),Leb) is the canonical probability space, consisting of the unit segment

of the real line equipped with Borel sets and the Lebesgue measure. We use this canonical

space to carry W , which is independent of any other random variables appearing below,

and which has the uniform distribution on R = [0, 1]. The space R = [0, 1] is Polish and

the distribution of W has no atoms.

Next we apply the lemma to J = (Y,Z) to show existence of I = U , where both J and I

live on the probability space (Ω,A,P) and that obeys the second assertion of the theorem.

The variable J takes values in the Polish space S = Rd×Rk, and the variable I takes values

in the Polish space T = Rd.

Next we describe a law Q on S×T by defining a triple (Y ∗, Z∗, U∗) that lives on a suitable

probability space. We consider a random vector Z∗ with distribution FZ , a random vector

U∗ ∼ FU , independently distributed of Z∗, and Y ∗ = QY |Z(U∗, Z∗) uniquely determined by

the pair (U∗, Z∗), which completely characterizes the law Q of (Y ∗, Z∗, U∗). In particular,

the triple obeys Z∗ ∼ FZ , U∗|Z∗ ∼ FU and Y ∗ | Z∗ = z ∼ FY |Z(·, z). Moreover, the set

{(y∗, z∗, u∗) : ‖y∗ −QY |Z(u, z∗)‖ = 0} ⊂ S × T is assigned probability mass 1 under Q.

By the lemma quoted above, given J , there exists an I = U , such that (J, I) ∼ Q, but

this implies that U |Z ∼ FU and that ‖Y −QY |Z(U,Z)‖ = 0 with probability 1 under P.
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A.2. Proof of Theorem 2.2. We condition on Z = z. By reversing the roles of V and Y ,

we can apply Theorem 2.1 to claim that there exists a map y 7→ Q−1Y |Z(y, z) with the prop-

erties stated in the theorem such that Q−1Y |Z(Y, z) has distribution function FU , conditional

on Z = z. Hence for any test function ξ : Rd → R such that ξ ∈ Cb(Rd) we have∫
ξ(Q−1Y |Z(QY |Z(u, z), z))FU (du) =

∫
ξ(u)FU (du).

This implies that for FU -almost every u, we have Q−1Y |Z(QY |Z(u, z), z) = u. Hence P-almost

surely

Q−1Y |Z(Y,Z) = Q−1Y |Z(QY |Z(U,Z), Z) = U.

Thus we can set U = Q−1Y |Z(Y, Z) P-almost surely in Theorem 2.1.

A.3. Proof of Theorem 2.3. The result follows from [33], Theorem 2.12.

Appendix B. Proofs for Section 3

B.1. Proof of Theorem 3.1. We first establish part(i). We have a.s.

Y = ∇ΦX(Ũ), with ΦX(u) = B(u)>X.

For any V ∼ FU such that E(X|V ) = E(X), and Φ∗x(y) := supv∈U{v>y − Φx(v)}, we have

E[ΦX(V ) + Φ∗X(Y )] = EB(V )>E(X) + EΦ∗X(Y ) := M,

where M depends on V only through FU . We have by Young’s inequality

V >Y ≤ ΦX(V ) + Φ∗X(Y ).

but Y = ∇ΦX(Ũ) a.s. implies that a.s.

Ũ>Y = ΦX(Ũ) + Φ∗X(Y ),

so taking expectations gives

EV >Y ≤M = EŨ>Y, ∀V ∼ FU : E(X|V ) = E(X),

which yields the desired conclusion.

We next establish part(ii). We can argue similarly to above to show that

Y = β(U)>X = ∇ΦX(U), for ΦX(u) = B(u)>X,

and that for Φ
∗
x(y) := supv∈U{v>y − Φx(v)} we have a.s.

Ũ>Y = ΦX(Ũ) + Φ∗X(Y ).
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Using the fact that Ũ ∼ U and the fact that mean-independence gives E(B(Ũ)>X) =

E(B(U)>X) = EB(Ũ)E(X), we have

E(ŨY ) = E(ψ(X,Y ) +B(Ũ)>X) = E(ψ(X,Y ) +B(U)>X) ≥ E(UY )

but reversing the role of U and U , we also have E(UY ) ≤ E(UY ) and then

E(UY ) = E(ψ(X,Y ) +B(U)>X)

so that, thanks to inequality

ψ(x, y) +B(u)>x ≥ u>y, ∀(u, x, y) ∈ UXY,

we have

ψ(X,Y ) +B(U)>X = U
>
Y, a.s. ,

which means that U solves maxu∈U{u>Y − B(u)>X} which, by strict concavity admits Ũ

as unique solution. This proves that Ũ = U and thus a.s. we have (β(Ũ)− β(Ũ))>X = 0.

The part (iii) is a consequence of part (i). Note that by part (ii) we have that Ũ = U a.s.

and (β(U)−β0(U))>X = 0 a.s. Since U and X are independent, we have that, for e1, ..., ep

denoting vectors of the canonical basis in Rp:

0 = E
(
e>j (β(U)− β0(U))>XX>(β(U)− β0(U))ej

)
= E

(
e>j (β(U)− β0(U))>EXX>(β(U)− β0(U))ej

)
≥ mineg(EXX>)E

(
‖(β(U)− β0(U))ej‖2

)
.

Since EXX> has full rank this implies that E‖(β(U) − β0(U))ej‖2 = 0 for each j, which

implies the rest of the claim.

B.2. Proof of Theorem 3.2. We have that any feasible pair (ψ, b) obeys the constraint

ψ(x, y) + b(u)>x ≥ u>y, ∀(y, x, u) ∈ YXU .

Let Ũ ∼ FU : E(X | U) = E(X) be the solution to the primal program. Then for any

feasible pair (ψ, b) we have:

Eψ(X,Y ) + Eb(Ũ)>EX = Eψ(X,Y ) + Eb(Ũ)>X ≥ EY >Ũ .

Moreover, the last inequality holds as equality holds if

ψ(x, y) = sup
u∈U
{u>y −B(u)>x}, b(u) = B(u), (B.1)

which is a feasible pair by (QL). In particular, as noted in the proof of the previous theorem,

we have that

ψ(X,Y ) + b(Ũ)>X = Y >Ũ
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It follows that EY >Ũ is the optimal value and it is attained by the pair (B.1).

B.3. Proof of Theorem 3.3. Obviously At = 1 ⇒ Ũ ≥ t, and Ũ > t ⇒ At = 1. Hence

P(Ũ ≥ t) ≥ P(At = 1) = P(Y > β(t)>X) = (1 − t) and P(Ũ > t) ≤ P(At = 1) = (1 − t)
which proves that Ũ is uniformly distributed and {Ũ > t} coincides with {Ũt = 1} a.s. We

thus have E(X1{Ũ > t}) = E(XAt) = EX(1− t) = EXEAt, with standard approximation

argument we deduce that E(Xf(Ũ)) = EXEf(Ũ) for every f ∈ C([0, 1],R) which means

that E(X | Ũ) = E(X).

As already observed Ũ > t implies that Y > β(t)>X in particular Y ≥ β(Ũ − δ)>X for

δ > 0, letting δ → 0+ and using the a.e. continuity of u 7→ β(u) we get Y ≥ β(Ũ)>X. The

converse inequality is obtained similarly by remaking that Ũ < t implies that Y ≤ β(t)>X.

Let us now prove that Ũ solves (3.9). Take V uniformly distributed and mean-independent

from X and set Vt := 1{V > t}, we then have E(XVt) = 0, E(Vt) = (1 − t) but since At

solves (3.5) we have E(VtY ) ≤ E(AtY ). Observing that V =
∫ 1
0 Vtdt and integrating the

previous inequality with respect to t gives E(V Y ) ≤ E(UY ) so that Ũ solves (3.9).

Next we show part(ii). Let us define for every t ∈ [0, 1] B(t) :=
∫ t
0 β(s)ds. Let us also

define for (x, y) in RN+1:

ψ(x, y) := max
t∈[0,1]

{ty −B(t)>x}

thanks to monotonicity condition, the maximization program above is strictly concave in t

for every y and each x ∈ X. We then note that

Y = β(Ũ)>X = ∇B(Ũ)>X a.s.

exactly is the first-order condition for the above maximization problem when (x, y) =

(X,Y ). In other words, we have

ψ(x, y) +B(t)>x ≥ ty, ∀(t, x, y) ∈ [0, 1]×X × R (B.2)

with an equality holding a.s. for (x, y, t) = (X,Y, Ũ), i.e.

ψ(X,Y ) +B(Ũ)>X = UY, a.s. (B.3)

Using the fact that Ũ ∼ U and the fact that the mean independence gives E(B(Ũ)>X) =

E(b(U)>X) = E(X), we have

E(UY ) = E(ψ(X,Y ) +B(Ũ)>X) = E(ψ(X,Y ) +B(U)>X) ≥ E(UY )

but reversing the role of Ũ and U , we also have E(UY ) ≤ E(UY ) and then

E(UY ) = E(ψ(X,Y ) +B(U)>X)



28 G. CARLIER, V. CHERNOZHUKOV, AND A. GALICHON

so that, thanks to inequality (B.2)

ψ(X,Y ) +B(U)>X = UY, a.s.

which means that U solves maxt∈[0,1]{tY −ϕ(t)−B(t)>X} which, by strict concavity admits

Ũ as unique solution.

Part (iii) is a consequence of Part (ii) and independence of Ũ and X. Note that by part

(ii) we have that Ũ = U a.s. and that (β(U) − β0(U))>X = 0 a.s. Since U and X are

independent, we have that

0 = E
(

(β(Ũ)− β0(U))>XX>(β(U)− β0(U))
)

= E
(

(β(U)− β0(U))>EXX>(β(U)− β0(U))
)

≥ mineg(EXX>)E
(
‖(β(U)− β0(U))‖2

)
.

Since EXX> has full rank this implies that E‖(β(U) − β0(U))‖2 = 0, which implies the

rest of the claim.
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