Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Vector Quantile Regression

Abstract : We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in ℝd given covariates Z=z, taking values in ℝk, is a map u↦QY∣Z(u,z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distribution FU, for instance uniform distribution on a unit cube in ℝd, the random vector QY∣Z(U,z) has the distribution of Y conditional on Z=z. Moreover, we have a strong representation, Y=QY∣Z(U,Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation, Y=β(U)⊤f(Z), for f(Z) denoting a known set of transformations of Z, where u↦β(u)⊤f(Z) is a monotone map, the gradient of a convex function, and the quantile regression coefficients u↦β(u) have the interpretations analogous to that of the standard scalar quantile regression. As f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge-Kantorovich's optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. Several applications to diverse problems such as multiple Engel curve estimation, and measurement of financial risk, are considered.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download

https://hal-sciencespo.archives-ouvertes.fr/hal-01169653
Contributor : Spire Sciences Po Institutional Repository Connect in order to contact the contributor
Submitted on : Monday, June 29, 2015 - 11:31:14 PM
Last modification on : Tuesday, January 18, 2022 - 3:24:10 PM
Long-term archiving on: : Tuesday, April 25, 2017 - 8:00:57 PM

File

vector-quantile-regression.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Guillaume Carlier, Victor Chernozhukov, Alfred Galichon. Vector Quantile Regression. 2015. ⟨hal-01169653⟩

Share

Metrics

Record views

199

Files downloads

645