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Abstract

An algorithm for computing Dynamic Nash Equilibria (DNE) in an extended ver-

sion of Kiyotaki and Wright (1989) (hereafter KW) is proposed. The algorithm com-

putes the equilibrium pro�le of (pure) strategies and the evolution of the distribution

of three types of assets across three types of individuals.

It has two features that together make it applicable in a wide range of macroeco-

nomic experiments: (i) it works for any feasible initial distribution of assets; (ii) it

allows for multiple switches of trading strategies along the transitional dynamics.

The algorithm is used to study the relationship between liquidity, production, and

inequality in income and in welfare, in economies where assets fetch di¤erent returns

and agents have heterogeneous skills and preferences.

One experiment shows a case of reversal of fortune. An economy endowed with a

low-return asset takes over a similar economy endowed with a high-return asset because,

in the former economy, a group of agents abandon a rent-seeking trading behavior and

increase their income by trading and producing more intensively. A second experiment

shows that a reduction of market frictions leads both to higher income and lower

inequality. Other experiments evaluate the propagation mechanism of shocks that hit

the assets� returns.

A key result is that trade and liquidity tend to squeeze income inequality.
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1 Introduction

A method for computing dynamic equilibria in a model with genuine heterogenous agents

that trade in decentralized markets, as exempli�ed in Kiyotaki and Wright (1989) (hereafter

KW), is proposed. Although the original KWmodel has been enriched and simpli�ed in many

ways (see Lagos et al., 2014) the implications of its dynamics with respect to the movement

of aggregate variables, such as consumption, assets, production, and income inequality, have

not been investigated.

Most of the dynamic general equilibrium theory is based on the idea that individuals

trade their goods and services in centralized markets. By assuming that agents trade with

each other, the KW types of models o¤er an alternative view of how macroeconomic phe-

nomena emerge from individual interactions. A prominent feature of this approach is that

the links between the behavior of the macroeconomic series and micro-level decisions are

more articulated than in Walrasian models.

Performing macroeconomic experiments in decentralized market economies has been elu-

sive, especially when agents are allowed to carry assets over time. The main di¢culty is that

the evolution of the assets and the trajectories of trading decisions are intertwined and multi-

dimensional. This paper demonstrates that dynamic equilibria can be obtained numerically,

despite the fact that agents always trade with each other and that their optimal decisions

incorporate information on future distribution of traded assets. It complements the work of

Molico (2006), and Molico and Chiu (2010, 2011) who studied macroeconomic aggregates

in decentralized settings combining analytic and computational methods. Although similar

in spirit, the present study emphasizes the role of the liquidity of real assets1 rather than

that of �at money, and deals with the evolution over time of the distribution of wealth in

transitional dynamics rather than in the steady state.

The proposed algorithm computes the evolution of the distribution of assets and the

pro�le of trading strategies in separate steps, according to an iterative guess procedure. One

important feature of the algorithm is that it does not require any ad-hoc assumptions on the

agents� ability to process or access to information: agents are rational, forward-looking, with

full knowledge of the distribution of assets and of the trading strategies of other individuals.2

The main result is that, despite the lack of competitive markets, equilibria can be computed

1There is growing consensus that real assets play an important role in facilitating trade (see section 10

of Lagos et al. (2014) and citations therein).
2Matsuyama et al. (1993), Wright (1995), Luo (1999) and Sethi (1999) search for equilibria in a similar

environment using evolutionary dynamics. Marimon et al. (1990) and Basç¬ (1999) explore how arti�cially-

intelligent agents can learn to play equilibrium in the model. Brown (1996) and Du¤y and Ochs (1999),

Du¤y (2001), and Du¤y and Ochs (2002) in a number of laboratory experiments, ask the extent to which

agents adopt "speculative" strategies when the theory indicates these should prevail.
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in all interesting parametrizations of the economy.

The algorithm builds directly on the concept of (open loop) Nash equilibrium. The

computational task is to calculate the law of motion for the distribution of di¤erent types of

assets, across heterogenous individuals, and to determine the best response of each individual.

Because the focus is on pure strategies3 and goods are not divisible, there is a �nite number

of choices and the distribution of assets is discrete.4 Therefore, at each point in time, the

state of the economy and agents� choices are represented by a �nite-dimensional vector.

A key methodological insight is that optimal trading strategies can be determined by in-

tegrating backward in time the value functions (in di¤erences), starting from a neighborhood

of the steady state. The information about the potential gains in deviating from the prede-

termined pro�le of strategies is then used in the following iteration when a new time-pattern

of the wealth distribution is calculated. In particular, each round of the iterative scheme

consists of two steps. In a �rst step, given the initial state of the economy, a time-pattern of

the asset distribution is derived from the outcome of decentralized meetings. In the second

step, the algorithm veri�es whether any agent has an incentive to deviate from such pro�le

of strategies. The algorithm is able to uncover patterns in which one or more types of agents

switch trading strategies.

Because the algorithm works for any feasible initial state, it gives ample freedom in

designing macroeconomic experiments whose results are interesting on their own. A �rst

experiment parallels the development of two similar economies that di¤er only for the rate of

return of one type of assets. Starting from the same initial position, the high-return economy

is taken over by the other economy. The reversal occurs because in the low-return economy a

group of agents abandon a rent-seeking trading behavior, and instead prefer to increase their

income by trading and producing more intensively. A second experiment reveals that an

amelioration of market frictions leads to a more equitable distribution of income, as assets

become more liquid. Additional experiments put at the center stage of the analysis the

heterogeneity of skills and assets in interpreting the propagation mechanism of shocks that

hit the returns of assets.

A common theme of all experiments is the relationship between income and welfare

inequality and liquidity. There are two main reasons for inequality: (i) assets fetch di¤erent

returns but every individual is allowed to carry only one type of asset at a time; (ii) assets

3For a discussion of mixed strategies in a similar environment see Kehoe et al. (1993) and Renero (1998).

4The KW dynamics are not directly comparable to the ones generated in Trejos and Wright (1995), where

the key evolving variable is the value of �at money, nor to the ones based on Lagos and Wright (2005) where

the dynamics are only over two periods. They are also quite di¤erent from those in Boldrin, Kiyotaki, and

Wright (1993) where the only state variable is the share of the population engaged in production or in trade

activity but there are no storable assets.
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di¤er in their degree of liquidity. Although individuals have equal opportunities in accessing

the decentralized market, the odds that a match leads to the maximum gain (which comes

by acquiring the consumption goods) varies both across individuals and across time. One

question that will be explored then is how liquidity can squeeze or magnify inequality. A

general pattern that emerges is that when a shock induces some agents to play speculative

strategies, income inequality shrinks because more frequent market interactions tend to

correct inequality due to the variance of returns.

The rest of the paper is organized as follows. The next section brie�y describes the eco-

nomic environment, illustrates the evolution of the distribution of inventories under a given

pro�le of strategies, and de�nes the best response functions of three types of representative

agents. The section that follows, studies the properties of the dynamical system and details

the numerical algorithm. Section (4) de�nes macroeconomic indicators. Section (5) proposes

four macroeconomic experiments (two more are in the Appendix): One illustrates a case of

fortune reversal between two economies. A second one follows the responses to a shock that

improves the matching rate. A third experiment studies the �uctuations in liquidity and

production caused by a shock to one of the assets� rates of return. The last experiment deals

with multiple switches. Section (6) summarizes the results and suggests further applications

of the algorithm.

2 The Model Economy

There are only minor di¤erences with respect to the decentralized economy described in

KW: time is continuous; the ranking on the returns across assets is allowed to change; and

agents are not necessarily equally distributed across types. A brief description follows. The

economy is populated by three types of individuals, denoted by 1; 2; and 3. There is a

large number of agents of each type, Ni, for i = 1; 2; 3. The overall size of the population

is N . The fraction of each type is �i = Ni=N . People live forever. An agent of type i

derives utility exclusively from consuming good i and can produce only good i + 1 (mod.

3). Production takes place immediately after consumption. Agent i�s5 instantaneous utility

from consumption and the disutility of producing good i + 1 are denoted by Ui and Di,

respectively, and their di¤erence is ui = Ui � Di. There is a capacity constraint. At each

instant of time an individual can hold only one unit of some storable good i that o¤ers an

instantaneous return ri, measured in units of utility (the terms good, commodity, inventory,

and asset will be used interchangeably). The return of good i is the same for all agents of

5When no confusion arises, I will use the loose language of calling an agent of type i simply as agent or

individual i.
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any type. The discount rate is denoted by � > 0.

A pair of agents is randomly and uniformly chosen from the population to meet for a

possible trade. After a pair is formed, the waiting time for the next pair to be called is

governed by a Poisson process with intensity �. This implies that the probability that an

agent is called for a (�rst) match before time t is 1 � e��t. A meeting does not necessarily
mean that the two parties trade. A bilateral trade occurs if and only if it is mutually

agreeable. If both agents want what the other has, they swap goods. Otherwise, they part

company and keep the same good in the inventory as they wait for the next call. Agent

i always accepts good i. Furthermore, because agent i consumes his consumption good

immediately upon reception, she never carries good i. Therefore, agent i always enters the

market either with one unit of good i+ 1, or with one unit of good i+ 2.

The proportion of type i agents that hold good j at time t is denoted by pi;j(t). Then,

the vector ~p(t) = fpi;j(t)g for i = 1; 2; 3 and j = 1; 2; 3 describes the state of the economy
at time t (from now on, it is understood that i and j go from 1 to 3). But since pi;i(t) = 0,

pi;i+1(t) + pi;i+2(t) = �i: (1)

for any t > 0, the state of the economy can be represented in a more parsimonious way by

p(t) = fp1;2(t); p2;3(t); p3;1(t)g. To simplify the notation, sometimes pi;i+1becomes pi. An
individual i has only to decide whether to exchange his production good for the other type

of good. Agent i�s choice in favor of indirect trade is denoted with � i(t) = 1 and against it

with � i(t) = 0. Agent i has to select a time path � i(t) that maximizes her expected stream

of present and future net utility, given other agents� paths of strategies, �(t) = [�1(t), �2(t),

�3(t)], and p(t), for any t > 0.

2.1 Distribution of Inventories and Value Functions

For a given pro�le of strategies �(t), the evolution in the stock of good i+ 1 held by agents

of type i is given by6

_pi;i+1 = �fpi;i+2[pi+1;i(1� �i+1) + pi+2;i + pi+2;i+1(1� �i)]� pi;i+1[pi+1;i+2�i]g: (2)

The terms inside the brackets before the minus sign calculate the probability that a type i

agent is called for a match while holding good i+ 2, and ends up in the position of carrying

good i+1. Such an event materializes either because of barter or because the agent leaves the

meeting with good i; consumes it, and then immediately produces good i+1. The following

expression accounts for the probability that an agent of type i who holds good i+1 ends up

6Du¢e and Sun (2012) show that in a similar matching environment frequency coincides with probability.

See in particular their Theorem 1.
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with good i + 2. The behavior of pi;i+2 is derived through (1). The ensemble of the system

that describes the evolution of the inventories� distribution is denoted by F (p(t)).

Consider now a representative agent of type i that has to compute her best pro�le of

strategies, given a pattern of inventories p(t) and a pattern of strategies for other agents

�(t) � including those of her own type. Let Vi;j(t) be value function when carrying good j

at time t. When j = i+ 1, we have that

Vi;i+1(t) = max
f� i(s)gs�t

Z 1

t

�e��(s�t)fe�r(s�t)([pi;i+2� i(1� �i) + pi+1;i+2� i]Vi;i+2+ (3)

+ [1� pi;i+2� i(1� �i)� pi+1;i+2� i]Vi;i+1 + [pi+1;i + pi+2;i�i+2]ui)+

+
1� e�(s�t)r

r
ri+1gds;

where the term �e��(s�t)ds measures the probability that an agent of type i is called to form

a match for the �rst time after time t in the time interval (s; s + ds). The term after the

discount factor is the probability that this agent goes through indirect trading � in which

case, she is left with Vi;i+2 as continuation value. Else, she ends up with good i + 1 either

because no trade takes place or because she acquired her consumption good � an event that

occurs with probability pi+1;i + pi+2;i�i+2 � and then produces good i + 1. The last term

is the return for holding the asset i + 1 from time t to time s. An additional equation for

Vi;i+2(t), reported in the Appendix, completes the description of the optimization problem.

Let �i(s) � Vi;i+1(s) � Vi;i+2(s), and let ~� i(s;�(s);p(s)) denote the optimal (or best)
response pro�le of strategies of representative agent i to other players� strategies �(s) along

the pattern of inventories p(s) for s > t. Then, it must be that

~� i(s;�(s);p(s)) =

(

1 if �i(s) < 0

0 otherwise.
(4)

for any s � t. Hence, the way the problem has been formulated corresponds to a Markov

decision process in which the representative agent optimizes over a sequence of functions

~� i(t) that allows the ex-post decision on indirect trading to vary with the current state of

the inventory distribution, and the pattern of strategies of other agents.

2.2 Dynamic Nash Equilibrium

Given an initial distribution of inventories p(0) = p0, a Dynamic Nash Equilibrium (DNE)

is a path of strategies ��(t) together with a distribution of inventories p�(t) such that for all

t > 0:

i. p�(t) and ��(t) satisfy the dynamics equations (2) with the initial condition p�(0) = p0,

and subject to the constraint (1);
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ii. For all t > 0, every agent maximizes his or her expected utility given the pro�le

strategies of the rest of the population;

iii ~� i(t;�
�(t);p�(t)) = ��i (t) for all t > 0.

It is the objective of the next section to explain how to compute a DNE.

The coming section outlines an algorithm that searches for the equilibrium strategies ��(t)

and for the distribution of assets p�(t). The following section will then use it to compute

aggregate time series along the transitional dynamics, and to study the impulse responses

to shocks that a¤ect the matching rate, and asset returns.

3 The Algorithm

An informal description of the algorithm is followed by a more formal presentation. Then

an alternative algorithm is discussed. The algorithm builds directly on the concept of open-

loop Nash equilibrium with many players as in Fudenberg and Levine (1988).7 The idea is

to obtain an equilibrium such that, given the actions of all other players, no player can make

any gain by changing her action. The law of motion of the endogenous multi-dimensional

state variable of the economy, p(t), is a function of the pro�le of strategies �(t), also a

multi-dimensional object, that can change over time in discrete steps. The value functions

Vi;j are the criteria that agents follow to decide their optimal patterns of strategies. These

can be obtained analytically on the steady state, but are di¢cult to determine analytically

for non steady state equilibria. The algorithm computes the Nash equilibrium policies, and

the distribution of assets iteratively. It uses two properties of the system. First, for any

interesting pro�le of strategies, the state variable, p(t), converges towards a �xed point

(which is not necessarily an Nash equilibrium). Second, along a given pattern of p(t), the

numerical value functions converge to their theoretical values when integrated backward in

7The design of the algorithm is quite di¤erent from others used in the macroeconomic literature. The

main concern of the one proposed by Krussel and Smith (1998) is to �nd a parsimonious way of conveying

the essential information of the state of the economy to agents. They assume that agents are boundedly

rational in their perceptions of how the state variables evolves over time but are sophisticated enough so

that the errors that they make because they are not fully rational become negligible. The objective of the

algorithm in Marimon et al. (1998) is to understand under which conditions arti�cial agents operating in

a KW economy follow a prede�ned classi�er system can select the �speculative� equilibrium. The present

algorithm is conceptually close to the one proposed by Pakes and McGuire (1994, 2000), in that it searches

for a policy function in a dynamic environment. But the domain of applications and the type of issues that

the algorithm solves are di¤erent. In particular, the challenge for Pakes and McGuire (1994, 2000) (as much

as for Krussel and Smith, 1998) is to deal with the high-dimensionality of the state variable. In the present

work, the main challenge is �nding the initial point of the value functions associated to a particular state of

the economy.
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time. It is then possible to verify whether the value function of a representative agent along

a speci�c trajectory p(t) is consistent with the pro�le of strategies that are used to obtain

such a trajectory p(t). The term consistency means that no agent has an incentive to deviate

at any point in time from the designated pro�le of strategies. The algorithm generates a

sequence of rounds that seeks convergence towards an open-loop Nash equilibrium for p(t)

and �(t).

After a brief description of the two properties, the steps of the iterative procedure will

be detailed.

3.1 Convergence to Stationary Distributions

Eq. (2) says that the system of the distribution of assets is given by (the time index is

dropped):

_p1;2 = �fp1;3[p2;1(1� �2) + p3;1 + p3;2(1� �1)]� p1;2p2;3�1g; (5)

_p2;3 = �fp2;1[p3;2(1� �3) + p1;2 + p1;3(1� �2)]� p2;3p3;1�2g; (6)

_p3;1 = �fp3;2[p1;3(1� �1) + p2;3 + p2;1(1� �3)]� p3;1p1;2�3g: (7)

Proposition 1. For seven out of eight time-constant pro�les of strategies, p(t) converges

to a stationary distribution, from any initial position.8

Proof. See Appendix

Next, the question of which of the stationary distributions is a Nash equilibrium is ex-

plored. Because the answer depends crucially on the relative size of the three groups of

agents, the attention is restricted to an economy in which agents are uniformly distributed.

To prove that a given steady state distribution is a NE, one needs to verify that the sign

of �i is consistent with the pro�le of strategies assumed for that particular steady state

distribution.

Proposition 2. When the population is equally split across the three types, the following

six steady state Nash Equilibria (NE) exist:

8For the pro�le of strategies (1,1,1), proving that p(t) converges to a �xed point is more challenging. But

such pro�le of strategy happens not to be a steady state Nash equilibrium (see Proposition 2).
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Strategies Assets Distribution Strategies Assets Distribution

(0,1,0) 1
3
[1; 1

2
; 1] (1,1,0) 1

3
[a; b; 1]

(1,0,0) 1
3
[1
2
; 1; 1] (1,0,1) 1

3
[b; 1; a]

(0,0,1) 1
3
[1; 1; 1

2
] (0,1,1) 1

3
[1; a; b]

where a = 1
2

p
2 and b =

p
2� 1. In some cases a pair of NE coexist.

Proof. See Technical Appendix.

Table (1) details which of these equilibria exists under every return con�guration.

3.2 Reverse Integration

This section examines the dynamic properties of the value functions of the representative

agent i. These properties are important because they will be used by the algorithm to verify

whether a particular distribution of assets and of strategies is an open-loop Nash equilibrium.

According to (4), what matters for representative i�s decision is only the sign of �i. After

some algebra, one obtains that

_�i = (��i + r)�i + !i; (8)

where �i � pi;i+2� i(1��i)+pi+1;i+2� i+pi+1;i(1��i+1)+pi+2;i+(pi;i+1�i+pi+2;i+1)(1�� i) > 0
and !i � ��[pi+1;i�i+1 � pi+2;i(1� �i+2)]ui + (ri+2 � ri+1).
For a given pattern of �i the solution of�i can be obtained numerically by integrating (8)

backward in time,9 starting from a neighborhood of the steady state ��
i , where this satis�es

(��i + �)�
�
i + !i = 0.

10

It is important to recognize that the distribution of inventories p(t) and the value func-

tions in di¤erences �i(t) could be studied together as a whole system. In particular, it is

possible to generate equilibrium trajectories by simply applying the principle of backward

induction as long as the pro�le of strategies of the population are kept consistent with the

sign of�i(t) at each point in time. The problem with this procedure is that it is hard to build

a trajectory that goes through a designated point in the space of the assets� distribution. In

models with unidimensional state variable, backward induction works well� at least when

9The mechanism is illustrated in a �gure contained in the Technical Appendix.
10See Technical Appendix for details. This technique has been used in di¤erent contexts. Gear and

Kevredikis (2008) explains how it can be applied in more general situations. Pakes and McGuire (1994) and

Pakes and McGuire (2000), develop a reverse integration algorithm for industrial organizations� problems. In

the context of growth models, Brunner and Strulik (2000) explains the construction of manifolds by means

of backward integration.
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Table 1: Steady State Equilibria, Strategies, and Money

Returns F S Assets (F) Assets (S) M (F) M (S)

Panel A

R1 r3 < r2 < r1 (0,1,0) (1,1,0) 1
3
[1; 1

2
; 1] 1

3
[a; b; 1] 1 1,3

R2 r2 < r1 < r3 (1,0,0) (1,0,1) 1
3
[1
2
; 1; 1] 1

3
[b; 1; a] 3 2,3

R3 r1 < r3 < r2 (0,0,1) (0,1,1) 1
3
[1; 1; 1

2
] 1

3
[1; a; b] 2 1,2

Panel B

R4 r2 < r3 < r1 (1,1,0) (1,0,1) 1
3
[a; b; 1] 1

3
[b; 1; a] 1, 3 2, 3

R5 r3 < r1 < r2 (0,1,1) (1,1,0) 1
3
[1; a; b] 1

3
[a; b; 1] 1, 2 1, 3

R6 r1 < r2 < r3 (1,0,1) (0,1,1) 1
3
[b; 1; a] 1

3
[1; a; b] 3, 2 1, 2

- Note: a = 1
2

p
2 and b =

p
2�1. The F and S columns contain the triplet (�1; �2;�3) that describes

the fundamental and the speculative steady state strategy, respectively. The following two columns

are the assets� stationary distributions: [p1;2; p2;3; p3;1]. The last two columns indicate which asset is

traded indirectly � or acts as �money�� in the fundamental and speculative equilibrium, respectively.

In rows R1 through R3 the equilibria are unique; only one type of agent plays speculative strategies

in the S equilibrium. In the R4-R6 rows the two equilibria may coexist; two types of agents play

speculative strategies in the S equilibrium.

the dynamics are not cyclical or chaotic � because it can be stopped when the state variable

reaches a desired level. But as the dimension of the manifold expands, guiding the system

towards a particular point on the state space (that is on the initial condition) becomes a

hurdle. In fact, if the system has Liapunov exponents of a di¤erent order of magnitudes,

some regions of the manifold cannot even be reached. Conversely, the method proposed here

gives total control on the initial condition, a feature that turns out to be essential for most

interesting macroeconomic experiments.

3.3 Contraction Iteration on the Pro�le of Strategies

The algorithm sets up an iteration on the pro�le of strategies �(t) and on the distribution

of assets p(t). The value function Vi;j(t) of the representative agents i holding good j

serves as device to update the guess on the pro�le of strategies, and to determine when the

10



algorithm has converged. Since only pure strategies are considered,11 a representative agent

i has a binary choice at each point in time. The algorithm seeks for the convergence of the

representative agent i�s best response, ~� i(t;�(t);p0), to the pro�le followed by the rest of

individuals of her type �i(t). When the representative individual i does not have an interest

in deviating from a strategy that coincides with that followed by the rest of type i agents, a

Dynamic Nash Equilibrium is found. The algorithm works as follows.

Step 1. The distribution of inventories F (p(t)) is integrated forward in time starting

from some p0, under a guess �
(0)(t). The integration is stopped at some time T large enough

so that jF (p(T ))j < 10�6. An obvious initial guess is �(0)(t) = �ss, where �ss is the steady
state Nash pro�le of strategies. (For some s > �s with �s su¢ciently large, one can expect

that ~� i(s) = �
(0)
i (s) for s > �s). Let p

(0)(t) be the inventory solution under such a guess.

Step 2. The algorithm computes the best response of a representative agent i, on the

trajectory p(0)(t). His �i is computed integrating (8) backward in time, starting from the

initial condition (�i(�
ss;p(0)(T )), p(0)(T )).12 At the end of this step, one obtains a trajectory

�(0)(t), and, more importantly, the corresponding best response ~�
(0)
i (t) of the representative

agent i.

Step 3. The consistency between �
(0)
i (t) and ~�

(0)
i (t) is veri�ed. If these are di¤erent,

~�
(0)
i (t) becomes the new guess on the next round, namely �

(1)
i (t) = ~�

(0)
i (t), and the procedure

restarts from step one. The method allows the pro�le of strategies to change at any point

in time.

The iteration is repeated until convergence between �
(n+1)
i (t) and ~�

(n)
i (t) is achieved, or

until a maximum number of iterations is reached. If the iteration converges to a �xed point,

say p�(t) and ��(t), then p�(t) and ��(t) are the distribution of assets and the trading

strategies, respectively, of a Markov-perfect Nash equilibrium. The procedure checks that at

such �xed point the value function of any agent is at its maximum value, given the action

of the rest of the agents.

3.4 Issues with Convergence, Uniqueness, and Alternative Algo-

rithms

In some instances, after a fast convergence between �
(n+1)
i (t) and ~�

(n)
i (t), the algorithm

gets stuck on a cycle that goes back and forth between two close points. This problem is

usually �xed by reducing the size of the time step (the hypothesis being that the theoretical

11Kehoe et al. (1993) build cyclycal equilibria in a similar environment under sets of parameters that do

not admit pure strategies equilibria.
12�i(�

ss
;pss) could also be used as initial point. In principle on �i(�

ss
;pss) the system stays still, but

if computed numerically, there is always a small machine error which allows the integration to start. In the

experiments the di¤erence � in norm � between the two points is smaller than 10�5 when jF (p(t)j < 10�6.
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switch in strategies falls between t and t + 1). In all experiments that started with a time

invariant initial guess for the pro�le of strategies that corresponds to one of the Nash steady

states, convergence was always obtained in less than ten iterations. The greater the gap

between the initial guess and the steady state Nash strategies, the more it would take the

algorithm to converge and, in some cases, it would fail to do so. For example, if for a

given set of parameters a unique Nash steady state equilibrium of the type (1,1,0) exists,

convergence may not occur with an initial guess (0,0,1). One may speculate that, sometimes,

the iteration does not converge because the system may exhibit dynamics that the algorithm

is not designed to capture, such as chaotic dynamics. Although such a possibility cannot be

ruled out, in absence of indications that the model could in fact produce unusual behavior,

I estimated that it is not convenient to expand the algorithm to pick up trajectories other

then those converging to canonical �xed points. The algorithm delivers, however, multiple

dynamic equilibria. In fact, if two steady states coexist (Table 1, Panel B), the economy can

evolve towards either of the two, possibly following a common path for a while.

I conclude by mentioning a variation of the current algorithm. The iteration of the current

algorithm is achieved on the entire path of distribution of strategies, allowing therefore any

number of switches by any type of agents. In environments where only one switch is feasible

or interesting to investigate, an algorithm that seeks convergence over �the waiting time�

before a type of agents changes her current trading strategies could do just as well. With

such an alternative algorithm, in each round of the iteration there would be a forward

integration of the assets distribution under a guess on the switching time, followed by a

backward integration of the value functions of the representative agent i. At the end of

the round, one would obtain the optimal switching time for the representative agent i � her

reaction function � that forms the basis for the next guess.

4 Macroeconomic Indices

The dynamics of the economy will be characterized through the behavior of liquidity, pro-

duction, and inequality of income and welfare. A formal de�nition of these quantities follows.

Liquidity. The model delivers several liquidity indices that are comparable to those

used in empirical macroeconomics. First, the stock of each of the three assets, xi, can be

interpreted as �market thickness� - a measure of how easy it is to �nd an asset on the market.

A second measure of liquidity is the �frequency of trade�, ti, that measures the number

of times good i is traded in a unit of time. The ratio ti
xi
is sometimes called velocity of

circulation. KW proposes also the level of �acceptability� of an asset in a trade, ai =
ti
oi
; as

an index of liquidity, where oi is the frequency with which good i is o¤ered in a period of

time. The variable ai is, by construction, bounded between zero and one. It captures the

12



Table 2: Baseline Parameters

Population Discount Matching Utility Returns

�i � � ui r1 r2 r3
1
3

0.03 1 1 0.21 0.2 or 0.1 0

- Note: When r2 = 0:2 the economy converges to the fundamental equilibrium, whereas when

r2 = 0:1 it converges to the speculative equilibrium. The steady state capital income share is 0.37

and 0.51, for the fundamental and speculative equilibrium, respectively.

probability that an asset is traded, given that someone o¤ers it.13

Production. It is easier to �rst deal with the �ow of consumption. Let cids be the fraction

of agents of type i in the overall population that consumes goods between times s and s+ds.

Then, the rate of consumption for type i individuals is

ci = pi;i+1[pi+1;i + pi+2;i� i+2] + pi;i+2[pi+1;i(1� � i+1) + pi+2;i]:

As production immediately follows consumption, ci, also represents the rate of production

of good i+ 1. Aggregate production is
P

i �ici. In steady state, ci = ci+1. Clearly, the level

of ci is a¤ected by the distribution of skills. If a good is produced by a small fraction of the

population, the economy is trapped in a low-production equilibrium.

Income. Since prices are all set to one, the average �ow of income generated by agents

of type i holding good i+ 1 and i+ 2 is

gi;i+1 = (pi+1;i + pi+2;i�i+2) + ri+1

and

gi;i+2 = (pi+1;i(1� �i+1) + pi+2;i) + ri+2;

respectively. One could view ri+1 and ri+2 as capital income, and the rest as labor income.

National income is
P

i

P

j pi;jgi;j.

Inequality. Income and welfare inequality are computed with a Gini coe¢cient that

measures the area comprised between a 45� line and the Lorenz curve. The population is

split into six income groups according to gi;j, and into six welfare groups on the basis of the

value functions Vi;j.

5 Experiments

This section proposes four experiments on economies of the type listed Panel A of Table

(1), which are characterized by a unique steady state equilibrium. Because the focus is

13The Technical Appendix details how ti, xi, and oi are formally derived.
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Figure 1: Reversal of Fortune
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- Note: For parameters see Table (2). The top-left plot is a partial view of the evolution of the

assets� distribution of two similar economies that share the same initial condition. The economy

with r2 = 0:1 (0.2) converges to the speculative (fundamental) Nash equilibrium. The curves of

the remaining plots are ratios or di¤erences of the speculative economy�s time series relative to the

ones of the fundamental economy. The numbers inside the three right plots identify the type of

asset traded.
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on inequality that arises from changes in liquidity, the utility ui is normalized to 1 for all

individuals.

The �rst experiment illustrates a case of reversal between two economies that di¤er only

for the level of the rate of return on one of the assets. Starting from the same initial dis-

tribution of assets, a similar set of strategies is adopted for a while in the two economies.

At the beginning of the transition, the national income is larger in the economy endowed

with the high-yield asset. Over time, however, trade intensi�es relatively more in the econ-

omy endowed with the low-yield asset. As a result, its production expands more rapidly

and national income surpasses that of the other economy. Furthermore, in the low-yield

asset economy, inequality declines because a greater share of income comes from market

interactions.

A second experiment shows that a better matching rate is associated not only with larger

production and income, but also with a more equitable distribution of income.

A third macroeconomic experiment studies the aftermath of a crisis triggered by a neg-

ative shock to an asset return: liquidity and national income drop, and income inequality

shoots up.

A �nal experiment deals with a more radical return shock that causes multiple switches

along the adjustment process. The asset with the lowest yield turns into the one with the

highest yield. Along the adjustment process two groups of agents, at di¤erent times, switch

their trading strategies. Consequently, the amplitude and the length of the �uctuations are

more pronounced than in the previous experiments.

5.1 Reversal of Fortune over the Transition

Consider two economies that are similar in all respects, except that in one (S-economy),

the return on good 2 is lower than in the other (the F-economy). The returns satisfy

r3 < r2 < r1 in both economies. With the initial distribution of inventories, only good 1 is

used in indirect trading in either economy. Over the transition, as the di¤erence between

p3;1 and p2;1 increases (top-left plot of Fig. (1)), good 3 becomes relatively more marketable

than good 2. In the S-economy, where the good 2 commands a smaller return than in the

F-economy, good 3 emerges as an asset exchanged in indirect trading,14 whereas in the F-

economy it does not. Said di¤erently, in the F-economy, agents 1 choose to get a higher

fraction of their income from hoarding capital. Conversely, in the S-economy, agents are

willing to give up some capital income and to be more active in production.15

14The literature sometimes refers to this phenomenon as the emergence of commodity money.
15Speci�cally, the S-economy converges to the speculative equilibrium � = (1; 1; 0), p = 1

3
[ 1
2

p
2;
p
2� 1; 1],

and the F-economy to the fundamental equilibrium � = (0; 1; 0), p = 1

3
[1, 1

2
; 1]. The Appendix states the

conditions for the existence of these equilibria.
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Table 3: Reversal of Fortune

Panel A: Fundamental Equilibrium

Bottom/Top Gini Capital Share

Initial Position 0.1840 0.1091 0.3685

Steady State 0 0.1131 0.5074

Panel B: Speculative Equilibrium

Bottom/Top Gini Capital Share

Initial Position 0.1840 0.1235 0.3110

Steady State 0.5283 0.0595 0.3633

- Note: The �rst column of Panel A shows the ratio between the bottom and the top income level

at the initial point of the transition and when the economy reaches the fundamental steady state

(see Fig. (1)). For parameters� speci�cation see Table (2). The second and third columns report

the initial and �nal values of the Gini index, and of the average capital income share, respectively.

In steady state, the bottom income group consists of type 2 individuals holding good 3. Their

income is zero because they have no immediate prospect of obtaining a consumption good and

have no capital income (r3 = 0). Panel B shows similar data for the economy that converges to

the speculative steady state with r2 = 0:1. (In the initial phase of the transition agents 1 play also

fundamental strategies).
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Except for inequality, the two economies exhibit the similar macroeconomic and �nancial

indicators until agents 1 of the S-economy change their strategies. From then on, the S-

economy performs better. Aggregate production is larger, mostly thanks to an expansion in

the production of good 3 (the production of good 1 is relatively smaller for a while in the

S-economy because of a sudden drop in its marketability).

The middle-left graph of Fig. (1) contains the key insight of the experiment: The F-

economy has an initial advantage in terms of income because of the higher returns in asset 2.

Nevertheless, this initial advantage induces F-economy�s agents 1 to maintain a rent-seeking

behavior (i.e. to play fundamental strategies) whereas, their counterparts in the S-economy,

engage in indirect trading. The reversal emerges gradually as the market thickness and the

frequency of trade of good 3 become signi�cantly large to compensate agents 1 for the loss

of their rental income.

The crossing between the two economies occurs also with respect to income inequality

(bottom-left graph of Fig. (1)). In the F-economy, the group of type 2 individuals holding

good 3 converges to a zero income. These individuals do not earn any capital rent, and

do not have any immediate prospect of trading their holding against a consumption good.

Conversely, because in the S-economy good 3 is accepted by type 1 agents, the average

income at the lower end is about half of that of the richest group (see Table (3)).

5.2 Market Frictions

The propagation mechanism stirred by an increase in the matching rate, �, is now considered.

Assume that the economy is in a steady state. The immediate e¤ect of the shock is a boost

in production and national income, re�ecting the more frequent trading activity. In the

experiment depicted in Fig. (2) the frequency of trade in assets 2 and 3 doubles when

the matching parameter goes up by 50%. Also the acceptability indices of these two assets

increase substantially. But the shock also a¤ects the distribution of assets, as it causes the

economy to transit from a fundamental to a speculative steady state equilibrium. As a

result, income inequality declines, because the holders of assets 2 and 3 earn a more meager

capital income, relative to asset 1 holders. The top-right plot indicates that the volume of

asset 2 shrinks, for this is partially replaced by asset 3. Since a larger stock of the wealth is

invested in a low-return asset, the fraction of the national income generated by capital return

goes down signi�cantly, the bottom to top income ratio rises, and the level of inequality is

signi�cantly reduced (Table (4)).

In sum, a reduction of market frictions not only boosts average income up, but it also

helps to reduce income disparity. Liquidity is, however, adversely a¤ected.
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Figure 2: Market Frictions
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- Note: The pre-shock parameter values are in Table (2) with r2 = 0:1 (fundamental equilibrium).

The shock raises the matching parameter by 50%. The plots of ratios and di¤erences are calculated

with respect to the pre-shock state. The income capital share and inequality measures are reported

in Table (4).

Table 4: Market Frictions

Steady State Bottom/Top Gini Capital Share

F (pre-shock) 0 0.1131 0.5074

S (post-shock) 0.6274 0.0467 0.2757

- Note: The matching technology improves by 50%. The initial set of parameters are depicted in

Table (2), with r2 = 0:2. The economy transits from the fundamental to the speculative steady

state, where trading is more frequent (Fig. (2)).
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Table 5: Higher Return of Asset 2

Steady State Bottom/Top Gini Capital Share

S (pre-shock) 0.5288 0.0594 0.3634

F (post-shock) 0 0.1131 0.5074

- Note: Inequality and capital share variations due to an increase in r2 from 0:1 to 0:2. For

remaining parameters see Table (2). The economy transits from the speculative to the fundamental

equilibrium (Fig. (3)).

5.3 From the Speculative to the Fundamental Equilibrium

Consider now the adjustment process of an economy displaced from its current long-run

equilibrium by a shock that a¤ects the return of one of the three assets. Upon inspecting

Panel A of Table (1), one realizes that equilibria in the con�gurations R2 and R3 can be

obtained through an appropriate permutation of the R1 equilibria.16

This section proposes an experiment that generates a contemporaneous drop in liquidity

and in national income,17 as well as a rise in income inequality. Imagine that an R1 economy

on a speculative steady state is hit by a shock that widens the return gap between assets

2 and 3. The shock is large enough to alter the long run equilibrium of the economy, but

not the ranking of the rates of return, that remains of R1 type. More precisely, the shock

induces agents 1 to give up indirect trading and to get a larger fraction of their income from

hoarding capital. This more passive strategy has a number of negative consequences for

economy�s performance. Fig. (3) shows that the frequency of trade and the acceptability

of assets decline. The liquidity drop is associated with a reduction of both national income

and aggregate production. Welfare inequality declines slightly, but there is a substantial

rise in income inequality. By renouncing to indirect trade, type 1 agents hoard asset 2 (see

top-right plot), for longer periods. As asset 2 yields a better return than asset 3, a larger

fraction of agents 1�s income is now derived from rents. Therefore, the gap between income

and production is larger after the shock (see left-middle graph of Fig. (3)). Because agents

2 face worse odds in trading away their holdings and they are also the ones that hold mostly

the asset with the lowest return, there is a dramatic drop of the bottom/top income ratio. In

fact, Table (5) indicates that income inequality doubles at the end of the adjustment process

and that the capital income ratio goes up from 36 to 51 percent. The correlation is in line

with Piketty�s (2014) argument that a higher interest rate lead to greater capital income and

16The vectors of strategy and of assets for the R2 (R3) con�guration can be obtained by shifting one

position backward (forward) the elements of the corresponding R1 vectors.
17Such a correlation has also been investigated in variations of Kiyotaki and Moore (2012). See, for

instance, Aiello (2012), Shi (2012), and Del Negro et al. (2011).
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Figure 3: Higher Return of Asset 2
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Figure 4: Higher Return of Asset 3
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- Note: The initial position is the speculative equilibrium, under R1 con�guration. The shock raises

the rate of return of asset 3 above that of the other two assets (r3 goes from 0 to 0.22).

to more inequality. Notice that here the expansion in inequality is induced mostly by the

decline in liquidity (i.e. by rent-seeking behavior). Despite the decline in national income

and liquidity, the middle-left plot of Fig. (3) shows that the average income of type 1 agents

goes substantially up, for it bene�ts from the higher returns of asset 2 � a second major

factor contributing to the increased income inequality.

5.4 Transition between Speculative Equilibria: Multiple Switches

When the shock alters the order of the assets� returns there are broader e¤ects on the agents�

strategies. A sudden increase in r3 above both r1 and r2, may induce two groups of agents

to abandon their current strategies. Fig. (4) accounts for such a scenario. An R1 economy
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Table 6: Higher Return of Asset 3

Steady State Bottom/Top Gini Capital Share

S of R1 (pre-shock) 0.5288 0.0594 0.3634

S of R2 (post-shock 0.7358 0.0241 0.4453

- Note: The rate of return of asset 3, r3, increases from 0 to 0:22. The remaining parameters are

reported in Table (2), with r2 = 0:2. The economy transits from the R1 speculative equilibrium

to the R2 speculative equilibrium (Fig. (4)).

(see Table (1)), initially on the speculative steady state (1,1,0), moves, as a result of the

shock, towards an R2 (1,0,1) equilibrium. In the new steady state, type 3 rather than type

1 agents play speculative strategies (although type 1 agents do not change their trading

behavior, indirect trade in the R2 economy actually comes through fundamental strategies).

Inequality has a non monotonic adjustment. First, it goes up, re�ecting the greater capital

income disparity across groups, and then declines, as the patterns of trade partially level the

playing �eld. In particular, the shock and the responses that it triggers make type 1 and type

2 agents better o¤, whereas type 3 are worse o¤. Type 2 agents bene�t as the return on the

good they produce goes up. Type 1 agents gain from the fact that their production good is

now more �liquid�, for it is accepted in indirect trading. Conversely, type 3 agents lose from

the shock because their production good is no longer accepted in indirect trading. Overall,

Table (6) shows that the shock rebalances substantially the income levels of the poorest

and richest individuals and slashes the Gini index by half. Contrary to previous examples,

however, this time there is a negative long-run correlation between inequality and capital

share, because the capital windfall goes to type 2 agents that used to face the least favorable

trading odds. Furthermore, liquidity of asset 1 and asset 3 move in opposite directions, a

phenomenon that also contributes to the contraction of inequality.

6 Conclusion and Future Research

This article developed a simple algorithm for computing Dynamic Nash Equilibria for a

class of models where agents with di¤erent skills trade goods in decentralized meetings. The

method exploited a general feature of this class of models: the fact that a dynamical system

describing the evolution of assets can be studied for any interesting (but not necessarily

optimal) policy function, which here takes the form of a pro�le of trading strategies. The

article then proposed an iterative procedure able to select a pro�le of strategies that satis�es

the conditions of an open loop Nash equilibrium.

The algorithm proved �exible enough to replicate some of the most common applications
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of dynamic general equilibrium theory with centralized markets, such as shocks to assets�

returns, as well as to propose experiments geared towards economies with decentralized

meetings, such as variations in the level of market frictions. The detailed connections between

the policy functions and the behavior of aggregate variables that resulted in the numerical

illustrations could not have been obtained using only analytical methods or by restricting

the focus only to steady state analysis. The applications of the algorithm allowed for the

uncovering of phenomena interesting on their own.

One was an example of reversal of fortune: The initial advantage of an economy endowed

with an asset that fetches a higher return is dissipated over the transition, because of the

limited participation into trading activity. As a result, in the long run it is the society with

a low-return asset that becomes the leading economy. Furthermore, because in this econ-

omy agents trade more intensively, �nancial markets are more liquid, and income inequality

declines. An improvement of market frictions can also induce an intensi�cation of trade,

and a reduction in income inequality. More in general, there is a positive correlation between

liquidity and production, and a negative one between liquidity and inequality.

Because the features of the equilibria crucially depend on the ordering of the asset returns,

the consequences are radically di¤erent depending on the magnitude of the shock and on

the type of asset return hit by it. In one experiment, the shock favored the low-return

asset, which also happened to have the lowest level of liquidity. Therefore, in the economy

converged to an equilibrium with greater liquidity and more equal distribution of income.

The simulated economies showed a quite low level of the income Gini index: only between

a quarter and a half of the one reported for the most egalitarian countries. One reason for

such feature is that agents have the same level of productivity. In fact, the only source of

inequality of the model economy is the marketability and the returns of assets. Yet, the

model suggests that inequality originated from capital income is compressed substantially

when assets becomes more liquid, because agents �nd it more pro�table to earn income from

production rather than from hoarding capital.

I conclude with two comments on future work. First, the algorithm generates a converging

sequence of the pro�le of strategies, suggesting that a contraction is at work. Further research

could investigate the algorithm�s contraction property starting from some general features of

the value functions and of the system representing the evolution of assets. Second, because

the algorithm is not demanding from a computational point of view, it could be extended

to environments where some of the special assumptions in KW, such as the unit-storage

capacity or the �xed terms of trades, are relaxed along the lines, suggested, among others,

by Molico (2006), Lagos and Rocheteau (2008), and Chu and Molico (2010).
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Appendix

Distribution of Inventories (Proposition 1)

For a given pro�le of strategies the system (5)-(7) converges globally to the unique steady

state reported in the following table:

Strategies Assets Distribution Strategies Assets Distribution

(0,1,0) [�1;
�2�1
�3+�1

; �3] (1,0,1) [p#1;2; �2; p
#
3;1]

(1,0,0) [ �1�3
�2+�3

; �2; �3] (0,1,1) [�1; p
xo
2;3; p

xo
3;2]

(0,0,1) [�1; �2;
�1�3
�1+�2

] (0,0,0) [�1; �2; �3]

(1,1,0) [p�1;2; p
�
2;3; �3]

Case (0,1,0). Eq. (5) reduces to _p1;2 = �p1;3�3, implying that the line p1;2 = �1,

is globally attractive (henceforth g.a.). Similarly because Eq. (7) _p3;1 = �p3;2[p1;3 + �2],

p3;1 = �3 is g.a.. Finally, along these lines the system collapses to

_p2;3 = (�2 � p2;3)�1 � p2;3�3;

which clearly converges globally to �2�1
�3+�1

. In brief, under the pro�le of strategies (0,1,0) the

distribution of inventories converges globally to the stationary distribution [�1;
�2�1
�3+�1

; �3].

Case (0,0,1) and Case (1,0,0). One can verify that the stationary distribution converges

to [�1; �2;
�1�3
�1+�2

] and [ �1�3
�2+�3

; �2; �3], respectively, using the same observations as in the pre-

vious case.

Case (1,1,0). Eq. (7) becomes _p3;1 = �2(�3�p3;1). Consequently, �3 = p3;1 is an invariant
set. The Jacobian, J , of the system of the two remaining equations (5) and (6) along the

line �3 = p3;1 is

J = �

"

�(�3 + p2;3) �p1;2
(�2 � p2;3) �(�3 + p1;2)

#

:

The determinant is positive and the trace is negative; therefore, both eigenvalues are negative

and the system is globally stable. To �nd the stationary distribution, set (5) and (6) to zero.

They yield p1;2 = �1�3=(�3+p2;3) and p1;2 =
�3

�2=p2;3�1
, respectively. The two lines necessarily

cross once and only once for p2;3 in the interval [0,�3]. The �xed point is [p
�
1;2; p

�
2;3; �3] where

p�2;3 =
1
2
[�(�1 + �3) +

p

(�1 + �3)
2 + 4�1�2] and p

�
1;2 =

�1�3
�3+p

�
2;3

.

Cases (1,0,1) and (0,1,1). A Jacobian with similar properties can be obtained when

the pro�les of strategies are (1,0,1) or (0,1,1). The �xed point with (1,0,1) is [p#1;2; �2; p
#
3;1],

where p#1;2 =
1
2
[�(�3 + �2) +

p

(�3 + �2)
2 + 4�3�1] and p

#
3;1 =

�1�3
p#1;2+�2

. Similarly, under
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(0,1,1) the �xed point is [�1; p
xo
2;3; p

xo
3;2] where p

xo
3;1 =

1
2
[�(�2+�1)+

p

(�2 + �1)
2 + 4�2�3] and

pxo2;3 =
�1�2
pxo3;1+�1

.

Case (0,0,0). The system converges globally p = [�1,�2,�]. In this stationary state

agents keep their production goods.

When the pro�le of strategies is (1,1,1) it is more di¢cult to characterize the properties

of the Jacobian. This turns out not to be a Nash equilibrium, at least when the population

is equally split across types.

Value Functions

Eq. (3) describes Vi;i+1(t). The following does the same for Vi;i+2(t)

Vi;i+2(t) = max
f� i(s)gs�t

Z 1

t

�e��(s�t)fe��(s�t)([pi+1;i(1� �i+1) + pi+2;i](Vi;i+1 + ui)+ (9)

[pi;i+1�i + pi+2;i+1](1� � i)Vi;i+1
[1� pi+1;i(1� �i+1)� pi+2;i � (pi;i+1�i + pi+2;i+1)(1� � i)]Vi;i+2+
1� e�(s�t)�

�
ri+2gds;

Time derivatives of eqs. (3) and (9) give

_Vi;i+1 =� �([pi;i+2� i(1� �i) + pi+1;i+2� i]Vi;i+2+ (10)

p+ [1� pi;i+2� i(1� �i)� pi+1;i+2� i]Vi;i+1+
[pi+1;i + pi+2;i�i+2]ui)� ri+1 + (� + �)Vi;i+1(s);

_Vi;i+2 =� �([pi+1;i(1� �i+1) + pi+2;i](Vi;i+1 + ui) + [pi;i+1�i + pi+2;i+1](1� � i)Vi;i+1
+ [pi;i+1�i + pi+2;i+1](1� � i)Vi;i+1+
+ [1� pi+1;i(1� �i+1)� pi+2;i � (pi;i+1�i + pi+2;i+1)(1� � i)]Vi;i+2)+
� ri+2 + (� + �)Vi;i+2;

respectively.

The last two expressions can also be written as

_Vi;i+1 =� �([pi;i+2� i(1� �i) + pi+1;i+2� i](��i) + Vi;i+1+

[pi+1;i + pi+2;i�i+2]ui)� ri+1 + (� + �)Vi;i+1(s);
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_Vi;i+2 =� �([pi+1;i(1� �i+1) + pi+2;i + [pi;i+1�i + pi+2;i+1](1� � i)]�i + [pi+1;i(1� �i+1) + pi+2;i]ui
+ Vi;i+2)� ri+2 + (� + �)Vi;i+2;

Subtracting side-by-side we obtain

_�i =� �([pi;i+2� i(1� �i) + pi+1;i+2� i + pi+1;i(1� �i+1) + pi+2;i + (pi;i+1�i + pi+2;i+1)(1� � i)](��i)+

+ �i + [pi+1;i�i+1 � pi+2;i(1� �i+2)]ui)� ri+1 + ri+2 + (� + �)�i

Let

�i � pi;i+2� i(1� �i) + pi+1;i+2� i + pi+1;i(1� �i+1) + pi+2;i + (pi;i+1�i + pi+2;i+1)(1� � i)

where �i � [pi;i+2� i(1� �i) + pi+1;i+2� i]. Then the last two di¤erential equations reduce
to:

_�i = ��((1� �i)�i + [pi+1;i�i+1 � pi+2;i(1� �i+2)]ui)� ri+1 + ri+2 + (� + �)�i; (11)

Since (� + �) > 0, for any given pattern of asset distribution, the system is unstable.

The Technical Appendix explains how this equation is used to verify whether a stationary

distribution of assets is a Nash equilibrium.

An Experiment with Uneven Distribution of Skills

When the assumption that the population is equally split across the three groups is

relaxed, multiple steady state equilibria may emerge (Wright (1995)). For instance, if �3 is

su¢ciently high, the (1,1,0) Nash equilibrium (high marketability of good 3) may coexist

with (0,0,1).

Fig. (5) illustrates an economy that transits from a (0,0,1) to a (1,1,0) steady state.

The movement is induced by a rise in the returns of stock 1. Although with the pre-shock

set of parameters there are multiple equilibria, after the shock only the (1,1,0) steady state

equilibrium exists. For a su¢ciently high r1, type 3 agents abandon indirect trading. If

they switch, agents 1 and 2 �ip their strategies as well because of the new marketability

conditions. The switch of the three groups of agents actually occurs immediately after the

shock, causing a swift drop in the acceptability of asset 2. This explains the income decline of

type 1 agents. In the (0,0,1) equilibrium, type 2 and type 3 agents play speculative strategies,

whereas type 1 play fundamental strategies. Interestingly, the largest income variation shows

up not immediately after the shock but during the transition. Type 2 agents, by switching

strategy, tend to accumulate more and more of the asset with the highest return. Overall
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Figure 5: Higher Return of Asset 1

-0.05 0 0.05 0.1 0.15
0.2

0.4

0.6

0.8

1
Phase Diagram

p21

p3
1

0 10 20 30 40 50
-2

-1

0

1
Market Thickness (log-ratio)

0 10 20 30 40 50
-1

0

1

2
Income and Production (log-ratio)

0 10 20 30 40 50
-2

-1

0

1
Frequency of Trade (log-ratio)

0 10 20 30 40 50
-0.06

-0.05

-0.04

-0.03

-0.02
Inequality (difference)

Time (Years)
0 10 20 30 40 50

-2

-1

0

1

2
Acceptabi lity (log-ratio)

Time (Years)

1

2

3

2

3

Income

Welfare

1

1

2

3
1

3

2

(0,0,1)

(1,1,0)

National Income

Aggregate Production

Note - A shock raises the returns of asset 1 by 10%. As a result, the economy moves from the (0,0,1)

(multiple) equilibrium to a (1,1,0) (unique) equilibrium. The population is distributed as follows:

�1 = �2 = 1=7 and �3 = 5=7. The rest or the parameters are as in Table (2) with r2 = 0:2.

30



production tends to decline because with the new strategies there is less trade. National

income goes up after the shock thanks to the windfall of capital income in favor of asset 1

holders, but then also slides down as a result of the weaker trade in goods 2 and 3.

An Experiment with Model B

Multiple equilibria also emerge when the population is equally split across the three

groups, for the three combinations of returns listed in row R4-R6, in Table (1). When r3 <

r1 < r2, the fundamental equilibrium is (0,1,1), whereas the speculative one is (1,1,0) (type

1 and type 3 agents follow a speculative behavior). The top-left graph of Fig. (6) shows

two alternative paths for the distribution of assets: If agents coordinate on the (1,1,0) steady

state equilibrium, they follow the (1,1,0) pro�le all along the transition. If, instead, they

coordinate on the (0,1,1) equilibrium, type 1 agents switch strategies along the transition.

The plots in the �gure show a substantial di¤erence in macroeconomic time series associated

with the two paths. The �speculative path� is associated with lower inequality in income and

welfare. It also exhibits higher national income in the early phase of the transition because

all individuals engage in indirect trade. The three liquidity plots show the greater (smaller)

role of asset 3 (2) in the economy converging to the speculative equilibrium, re�ecting the

greater (smaller) role in indirect trading.
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Figure 6: Dynamics in Model B
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Figure 7: Combining Forward and Backward Integration
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The path of p(t) in �1(t) is obtained by integrating the system (5)-(7) forward in time (left plot).

Technical Appendix [Not intended for publication]

Forward and Backward Integration
The right plot of Fig. (7) illustrates a solution of (8) for i = 1 for a particular pattern

of �1: This pattern is obtained by integrating forward in time (5)-(7) starting from some

arbitrary initial p(0), under an exogenous pro�le of strategies.

Stationary Nash Equilibria (Proposition 2)
The stationary distribution of inventories are derived from (3.1) under the assumption

that �1 = �2 = �3 =
1
3
. The key condition to determine whether a stationary distribution is

a NE is the sign of �i. From (11) it follows that �i > 0 if

pi+1;i�i+1 � pi+2;i(1� �i+2) >
ri+2 � ri+1

�ui
(12)

Consistency requires that �i = 0 (1) with �i > 0 (< 0). This section reviews the consistency

conditions (12) for the six rankings listed in Table (1).

R1 ( r3 < r2 < r1). There are two unique NE: (0,1,0) and (1,1,0·). The (0,1,0) equilibrium

requires that
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p2;1 � p3;1 >
r1 � r3
�u1

(13)

�p1;2 <
r2 � r1
�u2

; (14)

and

0 >
r2 � r1
�u3

; (15)

with p2;1 =
1
3
� p2;3, p1;2 = 1

3
, p2;3 =

1
6
, and p3;1 =

1
3
. Conditions (14) and (15) are clearly

veri�ed. From (13) it follows that the (0,1,0) exists if 1
6
> r1�r3

�u1
. For the (1,1,0) equilibrium

the stationary distribution is p = 1
3
[a; b; 1]: The above three conditions are replaced by

p2;1 � p3;1 <
r3 � r2
�u1

;

0 <
r1 � r3
�u2

;

and

p1;3 >
r2 � r1
�u3

;

respectively, with p2;1 =
1
3
� p2;3, p1;2 = a

3
, p2;3 =

b
6
, and p3;1 =

1
3
. Again, the last

two conditions are obviously satis�ed. The �rst condition says that in a NE agents 1 play

speculative if

� b
6
<
r3 � r2
�u1

.

There are no other NE. A similar proof applies for the combination of cost R2 and R3. A

summary of the outcome follows.

R2 ( r2 < r1 < r3). There are two unique NE: (1,0,0) and (1,0,1). The inequalities

�1 < 0 and �2 > 0 are always veri�ed. If p1;3�p2;3 = �1
6
> r2�r1

�u3
agents 3 play fundamental

strategies and the NE is (1,0,0). If p1;3 � p2;3 = � b
3
< r2�r1

�u3
agents 3 play speculative

strategies and the NE is (1,0,1).

R3 ( r1 < r3 < r2). There are two unique NE: (0,0,1) and (0,1,1). The conditions �1 > 0

and �3 < 0 are always veri�ed. If p3;2 � p1;2 > r1�r3
�u2

agents 2 play fundamental strategies

and the NE is (0,0,1). The condition is �1
6
> r1�r3

�u2
. Otherwise, if � b

6
< r1�r3

�u2
agents two

play speculative strategies and the equilibrium is (0,1,1).

In the combinations of returns that follow, one fundamental NE always exist. This could

coexist with another equilibrium in which two types of agents play speculative strategies

(multiple equilibria).

R4 ( r2 < r3 < r1). The conditions for the NE (1,1,0) are �1 < 0, �2 < 0, and �3 > 0,

that is

p2;1 � p3;1 <
r3 � r2
�u1
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0 <
r1 � r3
�u2

p1;3 >
r2 � r1
�u3

with p2;1 =
1
3
(1� b), p3;1 = 1

3
, and p1;3 =

1
3
(1�a). Because p2;1 �p3;1 < 0, the �rst condition

from the top is satis�ed. The following one clearly always holds, as r1 > r3. Similarly

r2 � r1 < 0 ensures that the last inequality is true. Therefore the (1,1,0) NE exists for any
set of parameters � as long as r2 < r3 < r1: Next, the (1,0,1) equilibrium is veri�ed. The

three conditions implied by (12) are now

0 <
r3 � r2
�u1

p3;2 >
r1 � r3
�u2

p1;3 � p2;3 <
r2 � r1
�u3

with p3;2 =
1
3
(1� a), p1;3 = 1

3
(1� b), and p2;3 = 1

3
. The top inequality is always veri�ed.

The middle one requires 1
3
(1 � a) > r1�r3

�u2
. The bottom one requires � b

3
< r2�r1

�u3
. In sum,

if 1
3
(1 � a) > r1�r3

�u2
and � b

3
< r2�r1

�u3
agents 2 and agents 3 play speculative strategies. The

(1,0,1) NE exists along with the (1,1,0) NE.

Because the following two cases are qualitatively similar to the one just discussed, the

existence conditions are simply summarized.

R5 (r3 < r1 < r2). The (0,1,1) is the fundamental NE. It exists for any set of parameters

(for which the value functions are non negative). Under the following two conditions it also

exists the (1,1,0) NE:

p2;1 � p3;1 >
r3 � r2
�u1

p1;3 >
r2 � r1
�u3

with p2;1 =
1
3
(1� b), p3;1 = 1

3
and p1;3 =

1
3
(1� a). The top one requires � b

3
> r3�r2

�u1
and

the bottom one that 1
3
(1� a) > r2�r1

�u3
.

R6 (r1 < r2 < r3). The (1,0,1) is the fundamental NE. It exists for any set of parameters

(for which the value functions are non negative). The two conditions for the existence of

(0,1,1) NE (speculative) are:

p2;1 >
r3 � r2
�u1

p3;2 � p1;2 <
r1 � r3
�u2
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with p2;1 =
1
3
(1 � a), p3;2 = 1

3
(1 � b). With these values the two inequalities become

1
3
(1� a) > r3�r2

�u1
and � b

3
< r1�r3

�u2
.

Liquidity

This section constructs the indices of market thickness, frequency of trade, and accept-

ability. The market thickness captured by the stock of commodity i on the market at a given

time is

xi(s) = pi+2 + (�i+1 � pi+1);

for all i. Let oi(s)ds be the probability that good i is o¤ered (but not necessarily traded) on

the market between time s and s+ ds. Then

oi(s) = �pi+2[pi+1 + (�i � pi) + (pi + �i+2 � pi+2)�i+2]+
�(�i+1 � pi+1)[pi + (�i+2 � pi+2) + (pi+1 + �i � pi)(1� �i+1)];

for i = 1; 2; 3.

Let ti(s)ds the probability that good i is traded on the market between time s and s+ds.

Then

ti(s) = �fpi+2(�i � pi(1� �i+2) + �i+1pi+1) + (�i+1 � pi+1)[pi+
(�i � pi)(1� �i+1) + (�i+2 � pi+2)(1� �i+2)]g:

The �velocity� of circulation of good i is vi(s) =
ti(s)
xi(s)

. This quantity is not a good indicator

of the moneyness of an object, because, paradoxically, the velocity can be very high even if

it is rarely traded.

Finally, the acceptability of commodity i is

ai(s) =
ti(s)

oi(s)
:

This indicates how willing people are to accept commodity i, once it is being o¤ered.

Numerical Methods

All the programming is done in Matlab. The main running �le, called �dynamics_KW�,

sets the parameters, speci�es the initial distribution of inventories and the initial guess of

the strategies, launches the iteration solution procedure, and generates the plots. The iter-

ation procedure is based on the interaction between two �les, triggered within the �le �dy-

namics_KW�: �backward_ode_kw89� and �forward_ode_kw89�. The �backward� �le gives

instructions to integrate the distribution of inventories forward. The resulting distribution
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of inventories (reversed with respect to time) is saved and used as an input for in the �back-

ward� �le. This integrates the value functions using, as initial condition, their steady state

values. The �backward� �le delivers the three the value functions (in di¤erences) of the rep-

resentative agents i = 1; 2; 3 as well as a pro�le of strategies. The �dynamics_KW� �le saves

this pro�le and uses it as new initial guess for the overall population. After each iteration,

the �dynamics_KW� �le computes the di¤erences between vector �i (t)and of � i(t). When

no discrepancy is noticed, the iteration is stopped, the resulting trajectory of strategies and

of the assets distribution is recorded as an equilibrium, and all remaining variables (accept-

ability, consumption, etc...) are computed along such a trajectory. In both in the backward

and in the forward �les the ordinary di¤erential equations are computed at a �xed 0.0001

time-step of a year. The Runge-Kutta approximation method with adjustable steps readily

available in Matlab, is not used because it would require an additional layer of coding to

synchronize the timing in the �backward_ode_kw89� and �forward_ode_kw89� �le.
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