Split-Panel Jackknife Estimation of Fixed-Effect Models

Abstract : Maximum-likelihood estimation of nonlinear models with fixed effects is subject to the incidental-parameter problem. This typically implies that point estimates suffer from large bias and confidence intervals have poor coverage. This paper presents a jackknife method to reduce this bias and to obtain confidence intervals that are correctly centered under rectangular-array asymptotics. The method is explicitly designed to handle dynamics in the data and yields estimators that are straightforward to implement and that can be readily applied to a range of models and estimands. We provide distribution theory for estimators of index coefficients and average effects, present validity tests for the jackknife, and consider extensions to higher-order bias correction and to two-step estimation problems. An empirical illustration on female labor-force participation is also provided.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [75 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-01070553
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : mercredi 1 octobre 2014 - 16:03:54
Dernière modification le : mardi 11 octobre 2016 - 13:42:14
Document(s) archivé(s) le : vendredi 14 avril 2017 - 13:55:45

Fichier

2014-03.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Geert Dhaene, Koen Jochmans. Split-Panel Jackknife Estimation of Fixed-Effect Models. 2014. 〈hal-01070553〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

276