Solving Heterogeneous-agent Models with Parameterized Cross-sectional Distributions

Abstract : A new algorithm is developed to solve models with heterogeneous agents and aggregate uncertainty that avoids some disadvantages of the prevailing algorithm that strongly relies on simulation techniques and is easier to implement than existing algorithms. A key aspect of the algorithm is a new procedure that parameterizes the cross-sectional distribution, which makes it possible to avoid Monte Carlo integration. The paper also develops a new simulation procedure that not only avoids cross-sectional sampling variation but is also more than ten times faster than the standard procedure of simulating an economy with a large but finite number of agents. This procedure can help to improve the efficiency of the most popular algorithm in which simulation procedures play a key role.
Type de document :
Pré-publication, Document de travail
2006
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-01065663
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : jeudi 18 septembre 2014 - 13:15:48
Dernière modification le : jeudi 2 février 2017 - 15:59:26
Document(s) archivé(s) le : vendredi 19 décembre 2014 - 13:26:07

Fichier

wp200646.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01065663, version 1
  • SCIENCESPO : 2441/8845

Collections

Citation

Yann Algan, Olivier Allais, Wouter J Den Haan. Solving Heterogeneous-agent Models with Parameterized Cross-sectional Distributions. 2006. 〈hal-01065663〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

150