Majority Stable Production Equilibria: A Multivariate Mean Shareholders Theorem

Abstract : In a simple parametric general equilibrium model with S states of nature and K * S ¯rms |and thus potentially incomplete markets|, rates of super majority rule ½ 2 [0; 1] are computed which guarantee the existence of ½{majority stable production equilibria: within each ¯rm, no alternative production plan can rally a proportion bigger than ½ of the shareholders, or shares (depending on the governance), against the equilibrium. Under some assumptions of concavity on the distributions of agents' types, the smallest ½ are shown to obtain for announced production plans whose span contains the ideal securities of all K mean shareholders. These rates of super majority are always smaller than Caplin and Nalebu® (1988, 1991) bound of 1¡1=e ¼ 0:64. Moreover, simple majority production equilibria are shown to exist for any initial distribution of types when K = S ¡1, and for symmetric distributions of types as soon as K ¸ S=2.
Type de document :
Pré-publication, Document de travail
2000
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-01064883
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : mercredi 17 septembre 2014 - 13:10:42
Dernière modification le : mardi 11 octobre 2016 - 13:29:24
Document(s) archivé(s) le : jeudi 18 décembre 2014 - 11:01:05

Fichier

cres-crhec-2000.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01064883, version 1
  • SCIENCESPO : 2441/10284

Collections

Citation

Hervé Crès. Majority Stable Production Equilibria: A Multivariate Mean Shareholders Theorem. 2000. 〈hal-01064883〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

81