Aggregation of Coarse Preferences - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Aggregation of Coarse Preferences

Hervé Crès
  • Function : Author
  • PersonId : 954777

Abstract

We consider weak preference orderings over a set An of n alternatives. An individual preference is of refinement ≤ n if it first partitions An into subsets of 'tied' alternatives, and then ranks these subsets within a linear ordering. When < n, preferences are coarse. It is shown that, if the refinement of preferences does not exceed , a super majority rule (within non-abstaining voters) with rate 1 − 1/ is necessary and sufficient to rule out Condorcet cycles of any length. It is argued moreover how the coarser the individual preferences, (1) the smaller the rate of super majority necessary to rule out cycles 'in probability'; (2) the more probable the pairwise comparisons of alternatives, for any given super majority rule.
Fichier principal
Vignette du fichier
cres-crhec-1998.pdf (279.22 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01064879 , version 1 (17-09-2014)

Identifiers

Cite

Hervé Crès. Aggregation of Coarse Preferences. 2000. ⟨hal-01064879⟩
31 View
100 Download

Share

Gmail Facebook Twitter LinkedIn More