O. Alvarez, J. Lasry, and P. Lions, Convex viscosity solutions and state constraints, Journal de Math??matiques Pures et Appliqu??es, vol.76, issue.3, pp.265-288, 1997.
DOI : 10.1016/S0021-7824(97)89952-7

URL : http://doi.org/10.1016/s0021-7824(97)89952-7

Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Proc. Japan Acad, pp.207-210, 1989.

M. G. Crandall, H. Ishii, and P. Lions, user's guide to viscosity solutions\\ of second order\\ partial differential equations, Bulletin of the American Mathematical Society, vol.27, issue.1, pp.27-28, 1992.
DOI : 10.1090/S0273-0979-1992-00266-5

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Graduate Studies in Mathematics, vol.58, 1993.

B. Kirchheim and J. Kristensen, Differentiability of convex envelopes, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.333, issue.8, pp.725-728, 2001.
DOI : 10.1016/S0764-4442(01)02117-6

A. Oberman, The convex envelope is the solution of a nonlinear obstacle problem, Proceedings of the American Mathematical Society, vol.135, issue.06, pp.1689-1694, 2007.
DOI : 10.1090/S0002-9939-07-08887-9

A. Oberman, COMPUTING THE CONVEX ENVELOPE USING A NONLINEAR PARTIAL DIFFERENTIAL EQUATION, Mathematical Models and Methods in Applied Sciences, vol.18, issue.05, pp.759-780, 2008.
DOI : 10.1142/S0218202508002851

A. Oberman and L. Silvestre, The Dirichlet Problem for the Convex Envelope , to appear in Trans

N. Touzi, Stochastic control and application to Finance, Lecture Notes available at http

L. Vese, A method to convexify functions via curve evolution, Communications in Partial Differential Equations, vol.15, issue.1, pp.1573-1591, 1999.
DOI : 10.1080/03605309908821476