A. Braides, ?-convergence for beginners, 2002.
DOI : 10.1093/acprof:oso/9780198507840.001.0001

J. D. Benamou and Y. Brenier, A numerical method for the optimal time-continuous mass transport problem and related problems, Contemp. Math, vol.226, pp.1-11, 1999.
DOI : 10.1090/conm/226/03232

J. D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik, vol.84, issue.3, pp.375-393, 2000.
DOI : 10.1007/s002110050002

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, pp.375-417, 1991.
DOI : 10.1002/cpa.3160440402

W. Gangbo, An elementary proof of the polar factorization of vector-valued functions, Archive for Rational Mechanics and Analysis, vol.305, issue.4, pp.381-399, 1994.
DOI : 10.1007/BF00387715

H. Knothe, Contributions to the theory of convex bodies., The Michigan Mathematical Journal, vol.4, issue.1, pp.39-52, 1957.
DOI : 10.1307/mmj/1028990175

R. J. Mccann, Existence and uniqueness of monotone measure preserving maps, Duke Math, J, vol.80, pp.309-323, 1995.

M. Rosenblatt, Remarks on a Multivariate Transformation, The Annals of Mathematical Statistics, vol.23, issue.3, pp.470-472, 1952.
DOI : 10.1214/aoms/1177729394

J. V. Ryff, Measure preserving transformations and rearrangements, Journal of Mathematical Analysis and Applications, vol.31, issue.2, pp.449-458, 1970.
DOI : 10.1016/0022-247X(70)90038-7

URL : http://doi.org/10.1016/0022-247x(70)90038-7

C. Villani, Topics in Optimal Transportation, 2003.
DOI : 10.1090/gsm/058

C. Villani, Optimal transport: Old and New, lecture notes, Ecole d'´ eté de probabilités de Saint-Flour, to appear, 2008.
DOI : 10.1007/978-3-540-71050-9