From Knothe's transport to Brenier's map and a continuation method for optimal transport

Abstract : A simple procedure to map two probability measures in Rd is the so-called Knothe-Rosenblatt rearrangement, which consists in rearranging monotonically the marginal distributions of the last coordinate, and then the conditional distributions, iteratively. We show that this mapping is the limit of solutions to a class of Monge-Kantorovich mass transportation problems with quadratic costs, with the weights of the coordinates asymptotically dominating one another. This enables us to design a continuation method for numerically solving the optimal transport problem.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-01023796
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : mardi 15 juillet 2014 - 11:35:47
Dernière modification le : lundi 17 juin 2019 - 18:26:08

Fichier

knothe-brenier-final.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Guillaume Carlier, Alfred Galichon, Filippo Santambrogio. From Knothe's transport to Brenier's map and a continuation method for optimal transport. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 416, pp.2554-2576. ⟨hal-01023796⟩

Partager

Métriques

Consultations de la notice

449

Téléchargements de fichiers

174