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Abstract

The head of an organization is viewed as dealing with an optimiza-
tion problem under a variety of constraints. The bureaucracy, by con-
trast, is viewed as dealing with the constraints alone: it has to make
a multitude of low-level decisions, in such a way that no constraint
is violated. However, even the feasibility problem is computationally
hard. Hence bureaucracies often try to rely on past cases, in the hope
of making decisions that are feasible. We study the way that past
cases might affect current choices, and show that, under certain con-
ditions, the bureaucracy will guarantee feasibility only if it mimics its
behavior in a single past case.

1 Introduction

1.1 Motivation

A president of a university wishes to establish a graduate program in a new,

interdisciplinary field. A program of studies is being developed and approved,

and the president decides to launch it. Two years later she wishes to check
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how the program is doing, and finds out that the program has not been

launched yet. Inquiring why, she is told that there are staffing problems:

at least until the next round of new hires, no solution was found to the

assignments of instructors to the new courses as well as to the old ones. The

president wonders whether it was indeed infeasible to launch the program

with existing faculty, or is it the case that the administrators did not look

hard enough for new solutions. There might even be a possibility that some

departments were not sufficiently cooperative, perhaps because they feared

losing their top students to the new program. The president has access to

all the files and documents involved, including the new courses designed,

the existing faculty teaching records, and so on. Yet, the complexity of the

problem does not allow her to determine whether a solution could have been

found.

It is often the case that decisions made within organizations are not im-

plemented, or implemented in a different way from the directors’ original

intention.1 Typically, such implementation problems will not involve explicit

disobedience; rather, a decision that is made at the top level has to be trans-

lated to many minor decisions at lower levels of the hierarchy, and it is not

always clear how, if at all, the top-level decision can be implemented. As

a result, a decision can be stated without having any practical effects, or

having results that differ from those desired.

1.2 Outline

It might be useful to think of an organization as coping with an optimization

problem, where the directors set the objective function, and the bureaucracy

determines the values of many decision variables subject to various feasibility

constraints. According to this view, the bureaucracy consists of many lower-

level decision makers, each responsible for a subset of decision variables, and

1Observe that we use the term “implementation” in its everyday meaning, and not in
the formal sense used in the mechanism design literature.
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its sole goal is to satisfy the constraints. That is, the bureaucracy consists

of many decision makers who do not have a meaningful utility (or objective)

function; the bureaucracy only seeks feasibility. Clearly, a feasibility problem

can be viewed as a degenerate optimization problem, and, conversely, an

optimization problem can be regarded as a sequence of feasibility problems.

Indeed, a director of an organization can set goals for her objective function

that become constraints for the bureaucracy. Yet, we find it more intuitive

to think of directors as having objectives, and of the bureaucracy as seeking

feasibility alone.

Given a set of constraints, how does the bureaucracy make decisions that

may hopefully satisfy all constraints? In Section 2 we show that naturally-

arising feasibility problems are computationally complex in a well-defined

sense. Hence, it is unlikely to assume that the organization can compute an

optimal solution to its optimization problem, or even that a central decision-

making unit can find a feasible solution by considering the problem in the

abstract. But organizations have histories, and history is often a good source

of feasible solutions. For instance, if the set of constraints that the bureau-

cracy faces does not change over time, any solution that was chosen in the

past offers a possible solution for the present. More generally, when problems

faced in different periods are not necessarily identical, the bureaucracy would

tend to consult past decisions in similar cases in its quest for feasibility.

However, due to practical considerations, bureaucracy has to take deci-

sions in a decentralized way. It follows that repeating past decisions poses

a non-trivial coordination problem. History offers a collection of past cases,

which are relevant to the present problem to varying degrees, and different

decision makers within the bureaucracy should aggregate past decisions in a

way that leads to a feasible solution. In Section 3 we formulate the problem

and state two possible methods of aggregation, one akin to kernel classifica-

tion, and the other — to nearest-neighbor classification.

In Section 4 we show that the kernel classification method, which at-
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tempts to aggregate over all similar past cases, is prone to problems akin to

Condorcet’s paradox. Indeed, we prove an “impossibility” theorem, along

the lines of Arrow’s theorem, showing that, under certain conditions, any

method of aggregation that is not a (single-)nearest-neighbor approach may

end up aggregating feasible solutions into an infeasible one. The case that is

singled out as “the nearest” plays the role of the dictator in Arrow’s theo-

rem. However, our result does not have the same normative flavor as Arrow’s

impossibility theorem: first, Arrow’s assumption of IIA (Independence of Ir-

relevant Alternatives) is replaced in our context by the assumption that the

bureaucracy is constrained to make decisions in a decentralized way. This

assumption is based on organizational constraints, and has no normative fla-

vor. Second, our conclusion does not have a normatively negative meaning:

while the dictatorship in Arrow’s model is clearly an undesirable conclusion,

using a nearest-neighbor analogy seems to be ethically neutral. Thus, our

theorem bears a resemblance to social choice impossibility theorem, but its

interpretation is rather different. From a mathematical viewpoint, the the-

orem also may be seen as a significant generalization of such impossibility

results.

It is easy to observe that, if different branches of the bureaucracy have

different ways of judging similarity of past cases, feasibility is not guaranteed

even if all of them use a single-neighbor approach. As a result, we conclude

that bureaucracies can often make decisions that violate some of the con-

straints. This and other implications of our model are discussed in Section

5.

1.3 Related Literature

Organizations may be thought of as monolithic, rational decision makers,

maximizing expected utility under constraints. In the context of the decisions

of a firm, the rational decision maker model goes back to Smith (1776), Marx

(1867), and Durkheim (1893), with an emphasis on efficiency of production
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in the early 20th century (Taylor, 1911, Follett, 1918, Fayol, 1919). More

generally, any organization that satisfies the axioms of rational choice can

be viewed as an expected utility maximizer (along the axiomatic approach

of Debreu, 1959, von Neumann and Morgenstern, 1944, Savage, 1954).

However, organizations do not always seem to be sufficiently coherent to

be ascribed a utility function and a subjective probability that would describe

their choices via the expected utility maximization paradigm. One may es-

pouse a different view, according to which organizations are games played

by different agents, who have different utility functions, private information,

and perhaps also different a priori beliefs. Decomposing organizations to

sub-units was already suggested by Weber (1921, 1924), who viewed bureau-

cracy as a way of establishing legitimate authority, and of achieving maximal

efficiency. Buchanan and Tullock (1962) viewed the state as comprising of

rational agents with different goals. Niskanen (1971, 1975) analyzed bureau-

cracy as a production entity, and questioned its efficiency.

Our model is akin to the second strand in the literature, as it does not

view the organization as a monolithic agent. However, it differs from the

models mentioned above in that it does not ascribe an objective function to

the bureaucracy, apart from following the path of least resistance.

Ours is by no means the only model that goes beyond the rational choice

paradigm, whether applied to the organization as a whole or to components

thereof. March and Simon (1958) pointed out the bounded rationality that

characterizes organizational decision making. Burns and Stalker (1961) sug-

gested that mechanistic bureaucracies are ill-adapted to deal with changing

environments. Kanter (1977) argued that power inside an organization may

not be easy to define, and suggested that the seemingly powerful are often

powerless.2 Bendor and Moe (1985) analyzed bureaucracies using bounded

rationality models.

2For extensive introductions to organization theory, see Handel (2003), Hatch-Cunliffe
(2006), and Scott and Davis (2007).
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More generally, there are many other images that have been used to de-

scribe organizations. Morgan (2006) mentions metaphors such as machines

(Taylor, 1911, Fayol, 1919, Weber, 1924), organisms (Parsons, 1951, Burns

and Stalker, 1961), brains (Sandelands and Stablein, 1987, Walsh and Ung-

son, 1991, March, 1999), cultures (Ouchi and Wilkins, 1985), and political

systems (Burns, 1961, March, 1962). For the most part, these images have

not been formally modeled.

Focusing on firms, Coase (1937) pointed out the absence of an economic

theory of the size of the firm. Williamson (1975, 1979, 1981) discussed the

transaction costs between and within organizations, with implications for ver-

tical integration and the boundaries of the firm. Jensen and Meckling (1976)

studied modern corporation from a principal-agent point of view, highlight-

ing the difficulties that are generated by the separation of ownership from

control.

Indeed, our distinction between directors and bureaucracy brings to mind

principal-agent problems. In the classical principal-agent problem (Arrow,

1963, Holmstrom, 1979), the principal does not have access to all the informa-

tion available to the agent, and cannot observe the level of effort exerted by

the agent. Similarly, in the problem discussed here, the principal (director)

does not typically know all the bureaucratic details involved in implementing

a decision, and therefore may not be able to tell whether a decision was not

implemented because it could not have been implemented, or because the

agent (bureaucracy) did not look hard enough for ways to implement it.

However, the director-bureaucracy problem we are interested in has sev-

eral special features that distinguish it from other principal-agent problems.

First, the bureaucracy need not have access to any factual information that

is not observable by the principal. Rather, we assume that the principal can

directly observe any file and any document that the organization possesses.

Thus, the feasibility of any possible solution to the decision-implementation

problem can be verified by the principal just as it can be by the bureaucracy.
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The asymmetry in “information” between the bureaucracy and the princi-

pal is a result of the complexity of the implementation problem: once the

principal considers a possible solution, she can verify whether it is feasible

and efficacious, but a priori she cannot consider all possible solutions. By

contrast, the bureaucracy can, through its collective memory, be aware of

more possible solutions than can the principal.

The present paper shares much of its motivation with Gilboa and Schmei-

dler (2011). In particular, that paper formally models organizations as enti-

ties that make decisions without a clear utility function, and with a tendency

to be consistent with past decisions. The complexity result discussed in Sec-

tion 2 appeared in the first version of Gilboa and Schmeidler (2011).

The main result of the paper, presented in Section 4, is related to Arrow’s

impossibility theorem (Arrow, 1951) and its generalizations by Wilson (1972)

and Fishburn and Rubinstein (1986), as well as to the recent literature on

judgment aggregation, starting with List and Pettit (2002), and followed by,

among others, Dietrich (2010), Dietrich and List (2010), Dietrich and Mon-

gin (2010), Dokow and Holzman (2010a,b), Nehring and Puppe (2010a,b)

(see List and Polak, 2010, for an introduction and a survey). Much of this

literature deals with decision variables that are binary, denoting whether one

alternative is preferred to another, whether a proposition is true, etc. In this

context, our result extends the scope of the model to deal with non-negative

integer variables that need not be restricted to {0, 1}. Indeed, the proof of

the theorem for the case of {0, 1} variables follows standard arguments, and

the main innovation is in the extension to general variables.

2 The Complexity of Implementation of a De-

cision

The implementation of a decision has to take into account various resource

constraints, such as monetary budgets, time constraints of employees of dif-
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ferent skills, scheduling of sub-tasks, and so forth. The problem is often

further complicated by the fact that the bureaucracy has several hierarchical

levels, and each decision made by a given level may have to be implemented

by the level below it, being translated into several minor decisions.

We show here that even if there is only one level of implementation, and

the only constraints are the availability of employees, implementation may be

too complex a problem to be solved by available computers and algorithmic

knowledge. Specifically, we state a simple version of the implementation

problem formally, and show that it belongs to the class of NP-Complete

problems, for which there are no known polynomial-time algorithms.3

Assume that implementing a decision requires the performance of t tasks.

Each task has to be performed by one of s employees. Not every employee

can perform every task. Assume that the index Lij ∈ {0, 1} denotes whether
task i ≤ t can be performed by employee j ≤ s. If Lij = 1, task i would

require ei ≥ 0 hours of employee j (assuming that all skilled employees are

equally efficient in performing the task). Finally, employee j ≤ s has a budget

of Bj ≥ 0 hours at the organization’s disposal. The implementation of the
decision requires that each task i be allocated to one of the employees j such

that the total hours of each employee does not exceed the available budget.

An allocation can be viewed as a matrix (aij)i≤t,j≤s with aij ∈ {0, 1}. The
allocation is consistent with (ei)i≤t, (Bj)j≤s, and (Lij)i≤t,j≤s if

aij ≤ Lij ∀i, j
X

j≤s

aij = 1 ∀i

and X

i≤t

aijei ≤ Bj ∀j

That is, an allocation has to conform to the skill requirements (so that Lij = 0

implies aij = 0); it has to make sure that every task is performed (
P

j≤s aij =

3See Appendix B for an informal explanation of these concepts.
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1) and that no employee is asked to work more than her allowed number of

hours (
P

i≤t aijei ≤ Bj).

Finding such an allocation is a difficult problem:

Proposition 1 Given expenses (ei)i≤t, (Bj)j≤s, and (Lij)i≤t,j≤s finding whether

there exists a consistent allocation (Aij)i≤t,j≤s is NP-Complete.

The proof of the proposition does not make use of more than two budgets

(s = 2) or of the matrix L (in fact, it assumes that Lij ≡ 1).4 Thus a

problem that would appear to be much simpler would still be as hard as

all the problems in the class NP. Clearly, the problem only becomes more

complicated if one takes into account additional constraints, such as the

timing of tasks and potential precedence constraints between them, budget

constraints, and the like.

The notion of NP-Completeness captures a few aspects of the asymmetry

between the director and the bureaucracy: first, the two are not asymmetric

with respect to any “hard”, factual information. Any concrete fact, such

as whether a certain employee can perform a given task, or how much time

an employee has, is known to the bureaucracy and to the director alike.

Once a proposed solution to the allocation problem is suggested, both the

bureaucracy and the director can verify whether it satisfies the constraints

or not. However, before a concrete solution is proposed, the director will

typically not be able to envisage all solutions due to their large number.

Can the bureaucracy solve the allocation problem? There are two rea-

sons for which it might have greater computational abilities than the direc-

tor. First, the bureaucracy might have a longer memory of past problems,

which might resemble the current one. Second, the bureaucracy consists of

many individuals, and they may be viewed as parts of a large, decentralized

computing machine. While coordination is viewed as one of the chief goals

of organizations (see Milgrom and Roberts, 1992), in the following section

4All proofs are relegated to Appendix A.
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we study a model the bureaucracy as a collection of decentralized sub-units,

whose coordination can only be done implicitly, by referring to past decisions.

3 Model

The bureaucracy is viewed as solving an integer programming problem, stated

as

Ax ≤ b

where x = (x1, ..., xn)
T is a vector of non-negative integer-valued decision

variables, A is a m × n matrix of real numbers, and b is a vector of m

extended real numbers, bj ∈ R ∪ {∞}. Clearly, setting bj = ∞ renders

the constraint vacuous; allowing this possibility simplifies notation in the

sequel. Evidently, constraints of the type ≤ can also capture constraints of
the type ≥ and hence also equality constraints. We denote the set of possible
right-hand-side (RHS) vectors by B ≡ (R ∪ {∞})m.
The restriction that all of the x’s be integer-valued is not crucial and

one may allow some x’s to be continuous. However, complexity results as

Proposition 1 do depend on integrality constraints for some variables. In

particular, linear constraints can capture binary decisions, as in the task

assignment problem, by using variables restricted to {0, 1}. On the other

hand, variables that are generally thought of as continuous can be approx-

imated by integer ones.5 Thus, for simplicity, we assume that all variables

are integer-valued, and all constraints are of the type ≤.
Recall that we use the term “solving a problem” for finding a solution

which is no more than an assignment of values to the decision variables, sat-

isfying all constraints. When a solution also optimizes an objective function,

it is referred to as an “optimal solution”. However, in this section we do not

deal with objective functions.

5And typically are integer-valued in the final analysis.
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We wish to model the bureaucracy’s reliance on past decisions in its

attempt to find a solution to the present problem. To this end, we need to

introduce a time index, t, such that, at period t the bureaucracy faces the

decision problem

Atx ≤ bt

where x is a vector with nt decision variables. To simplify notation, we

will assume that nt and At are independent of t. This involves no loss of

generality because, at each period t, we can take the union of all decision

variables that appeared in periods τ ≤ t, which is a finite set of variables. A

decision variable xi that was not actually present in period τ can be formally

included in the problemwith the constraint xi ≤ 0. Similarly, we can consider
the matrix A that consists of the union of all rows of the matrices (Aτ)τ≤t

and, when a certain constraint does not appear in period τ , set bj,τ =∞.
To sum, we assume that at each period t the bureaucracy faces the prob-

lem

Ax ≤ bt

with a period-independent matrix A, and period-dependent RHS vector bt ∈
B.

Problems encountered in the past would typically have additional char-

acteristics apart from the RHS vector. Let P be an abstract set denoting

possible circumstances of a problem. Thus, a problem presents itself as a pair

(p, b) ∈ P ×B where b denotes the RHS which directly defines the problem,

and p includes various relevant circumstances which may affect decisions.

A case is a triple c = (p, b, x) where (p, b) is a problem, and x ∈ Zn
+

describes the decisions that were made in this problem. At time t, the bu-

reaucracy faces a problem (pt, bt) ∈ P × B and needs to make a decision

xt ∈ Zn
+, so that Axt ≤ bt. When this decision is made, the organization has

a history

ht = ((p0, b0, x0) , ..., (pt−1, bt−1, xt−1) , (pt, bt)) .
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Given such a history, we suppose that decision makers would think of

past problems (pi, bi) that were similar to the current one, (pt, bt). Define a

similarity function to be

s : (P ×B)× (P ×B)→ R+

Such a similarity function can be used to identify the decision that is

“most often made in these circumstances”. Specifically, consider the i-th

decision, namely the value of the decision variable xi. One may go over all

past cases τ = 0, ..., t− 1, and see which value xi,τ appeared in past periods

in history ht, weigh each period by its degree of similarity to the current one,

and consider the sum of these similarity values. Formally, define, for x ∈ Z+
and history ht,

S(ht, x) =
t−1X

τ=0

s((pτ , bτ ) , (pt, bt))1{xi,τ=x}. (1)

We say that the bureaucracy makes decisions by aggregation of the simi-

larity function s if it selects xi that is a maximizer of S(ht, x) for each i (and

each t, given any ht). This decision mode is formally equivalent to kernel

classification in statistics (see Akaike, 1954, Parzen, 1962, Silverman, 1986).

In classification problems, (p, b) stands for the observable characteristics, and

the classifier has to guess the “correct” x based on past examples. In the

present context, x is a decision made by a branch of the bureaucracy, and

there is no external definition of “correctness”. However, the function that

is being maximized has the same structure, with the similarity function s

replacing the role of the kernel function in kernel classification.

Observe that computing a maximizer of S(ht, x) requires only the knowl-

edge of {xi,τ}τ and can thus be completely decentralized: to implement such

a maximal vector (xi)i, each decision xi can be made independently of the

others.

The formal analogy to classification problems brings to mind the nearest-

neighbor approach (Fix and Hodges, 1951, 1952), where the classifier selects
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a past case that maximizes the similarity to the present one, and makes a pre-

diction that is the x value that was observed in that case. Correspondingly,

one may select τ such that

s((pτ , bτ) , (pt, bt)) ≥ s((pr, br) , (pt, bt))

for all r < t, and set xi = xi,τ .

Gilboa and Schmeidler (2003) provide an axiomatization of kernel classifi-

cation. They consider the choice of xi given different histories, and show that

certain consistency requirements imply that there exists a similarity function

s for which the choice of xi is made to as to maximize an aggregation of

the similarity function. Gilboa and Schmeidler (2011) employ this result for

binary choices in the context of organization behavior. Ravid (2009) axiom-

atized nearest-neighbor approaches (with k neighbors, including the case of

k = 1), and his results can similarly be re-interpreted as assumptions about

the behavior of an organization.

These axiomatizations highlight the role of consistency of choice across

different histories. However, in our context there is another notion of con-

sistency that is crucial: consistency of the many minor decisions made by

different branches of the bureaucracy. In particular, in the next section we

ask, which decision mode guarantees that feasibility is retained.

4 Feasibility and The Prominence of a Single

Case

4.1 A Condorcet-Style Problem

Consider the following example, which is a highly simplified version of the

course scheduling problem discussed in the introduction. Mary can teach

any one of three courses, but her teaching load is only two courses. Let

xi ∈ {0, 1} denote whether she is assigned to course i = 1, 2, 3. Thus, the
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three variables have to satisfy a single constraint,

x1 + x2 + x3 = 2

(which, to fit the mold of our model, can be written as two inequalities,

x1+x2+x3 ≤ 2 and −x1−x2−x3 ≤ −2). Assume that these courses belong
to different programs and are run by different branches of the administration,

so that each variable xi is governed by a different office.

Next assume that we are at period t = 3, and that the three past problems

(τ = 0, 1, 2) had the same constraint. However, in each past period there have

been additional constraints, for example, the presence of a visitor who was

assigned to one of the courses. Be that as it may, past decisions varied across

periods. Specifically, suppose that the observed past decisions are

xiτ τ = 0 τ = 1 τ = 2
i = 1 1 1 0
i = 2 1 0 1
i = 3 0 1 1

Assume, for simplicity, that all branches of the bureaucracy view the three

past problems as equally similar to the current one. This implies that the

similarity-aggregation method boils down to assigning to each variable its

most common value in history. Clearly, this would lead to the assignment

x1 = x2 = x3 = 1, which violates the constraint of Mary’s teaching load.

We therefore find that doing “what has been most commonly done in the

past” may lead to infeasibility: even if history consists only of solutions that

satisfy a certain set of constraints, choosing the most common value for each

xi separately may lead to an assignment of values which is infeasible. The

analogy to Condorcet’s paradox is inevitable: in this paradox, a majority

vote among agents is taken, for any pair of alternatives separately. Each

single voter has transitive preferences, but the majority preferences fail to

be transitive. In our case, the role of the voters is played by past cases.

Decision by aggregation of similarity generalizes majority vote; indeed, it
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can be viewed as a (similarity-)weighted majority vote. Each single case

may be feasible relative to a given constraint, while the “majority case” is

not.

Similarly, the problem we face here is also akin to the “doctrinal paradox”

of List and Pettit (2002). In their example, three judges have to vote on the

validity of three propositions, p, q, and r. All judges agree with the “doctrine”

that ((p ∧ q)↔ r) that is, that r can be established if and only if both p and

q hold. When the judges vote on each proposition separately, majority vote

may be inconsistent with the doctrine.

The Condorcet problem suggests that “retaining the status quo” may not

be as simple as it appears. Even if the bureaucracy seeks feasible solutions,

independently of their optimality, following a “business as usual” approach,

letting different offices do “what they usually do” may lead to inconsistent

choices. A potential way out is not to attempt to summarize all of history,

but simply to follow the most recent period choices, or, more generally, the

most similar period choices. Assuming that the most similar period had the

same set of constraints, this would guarantee feasibility. Indeed, this is the

counterpart of a dictatorial solution to the aggregation problem: adopting

a single agent’s preferences in the social choice problem is equivalent to re-

peating the decisions made in a single past case. In the next sub-section we

show that, under fairly general conditions, this is the most promising way to

guarantee feasibility.

4.2 An Arrow-Style Theorem

Consider a given period t ≥ 2. We will consider different histories of length
t, ht = ((p0, b0, x0) , ..., (pt−1, bt−1, xt−1) , (pt, bt)). Focusing on the decisions

made in the past, such a history defines an n × t matrix, so that xiτ is the

value chosen for the variable xi at period τ < t. We assume that the decision

at time t, xit, is made for each i separately, as a function of past decisions

made for the same variable. This separability assumption corresponds to
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Arrow’s (1951) IIA (Independence of Irrelevant Alternatives) assumption or

the Independence assumption of List and Pettit (2002). However, in our case

it is not offered as a normative axiom on social choice; rather, it is dictated by

necessity: different branches of the bureaucracy have to make daily decisions

in a decentralized way. Each office has access to its own decisions in the

past, but not necessarily to others’. Thus, we take it as an organizational

constraint that each xi will be determined based on its own past values alone.

Assume, then, that there is a function

f : Zt
+ → Z+

such that, for each i,

xit = f
¡
xi0, xi1, ..., xi(t−1)

¢

A function f will be called a most-similar-case function if there exists

τ < t such that

f (x0, x1, ..., xt−1) = xτ

for all (x0, x1, ..., xt−1) ∈ Zt
+. It is easily seen that f is a most-similar-case

function according to this definition if and only if there exists a 1-1 function

s : (P ×B) × (P ×B) → R+ such that f is the nearest-neighbor decision

according to the similarity function s. (Where the restriction to 1-1 functions

is needed to avoid the ambiguity generated by ties.)

Clearly, even if all offices of the bureaucracy make decisions by the same

most-similar-case function, feasibility is not guaranteed if the problem faced

by the organization is new. In fact, the new problem may not be feasible at

all. However, in the extreme case in which the same feasibility problem is

repeated, and if the problem has been solved in each period in the past, one

may hope that a (feasible) solution will be found again.

To capture this intuition, define a history

ht = ((p0, b0, x0) , ..., (pt−1, bt−1, xt−1) , (pt, bt))
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to be regular if

(i) bτ = b for all τ ≤ t ;

(ii) xτ is feasible for all τ < t (that is, Axτ ≤ b).

A function f : Zt
+ → Z+ is consistent if it generates a feasible decision for

each regular history. That is, for a regular ht = ((p0, b, x0) , ..., (pt−1, b, xt−1) , (pt, b)),

it has to be the case that

Ax ≤ b

where

xit = f
¡
xi0, xi1, ..., xi(t−1)

¢
.

To establish our result, we need to make sure that the matrix of con-

straints, A, allows for sufficient interaction among the decisions. Indeed, if,

for example, each constraint involves only one variable, the bureaucracy’s

decisions may well be decentralized without fear of inconsistency. However,

this would hardly be a realistic model of actual organizations. To rule out

some trivial cases such as this, we assume that the matrix A satisfies the

following condition.

A (m×n) matrix A contains potentially conflicting rows if (i) there exist

two rows i1, i2 ≤ m and three columns j1, j2, j3 ≤ n such that ai1j > 0 and

ai2j < 0 for j = j1, j2, j3 and (ii) there exists a row i such that
P

j aij > 0.6

In our example there was one constraint, namely,

x1 + x2 + x3 = 2.

Translating this constraint to ≤ inequalities, it would take the form

x1 + x2 + x3 ≤ 2

−x1 − x2 − x3 ≤ −2.

These two constraints would appear in the matrix A as

+1 +1 +1
−1 −1 −1

6We comment on condition (ii) after the statement of the theorem.
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which clearly define A as containing potentially conflicting rows. Differently

put, the condition of “containing potentially conflicting rows” generalizes

the example we started out with, by allowing any three positive values (not

necessarily all 1) associated with any three negative values (not necessarily

all −1), as long as the sum of (the entire) row with the positive values is a

positive number. It turns out that this condition is sufficient to establish our

result.

Theorem 2 Assume that A contains potentially conflicting rows. Then f is

consistent if and only if it is a most-similar-case function.

This result shows that the only way that the bureaucracy can guarantee

feasibility is by sticking to a single case, say, τ , out of each history ht. As

mentioned above, we can always find a similarity function s : (P ×B) ×

(P ×B) → R+ such that this single case in ht be the most similar case to

(pt, bt) in ht. However, in practice it is likely that the similarity function that

can serve as a focal point for the organization’s sub-unit would be determined

by recency. Thus, the theorem can be viewed as a possible explanation for

a particular type of inertia: organizations may tend to do what they have

done in the most recent period, as this is a simple way to coordinate on a

single most-similar-case.

Comparing this result to the impossibility theorems in the social choice

literature, our consistency requirement corresponds to the transitivity of pref-

erences in Arrow (1951) or the “doctrine” in List and Pettit (2002). As

mentioned above, Arrow’s IIA condition, or List and Pettit’s Independence

assumption, are built into the definition of the function f . In this context,

one might wonder why our theorem does not require a Pareto or a Unanimity

assumption. Such a condition would mean, in our model, that the function

f has to retain the status quo in the sense that f(c, ..., c) = c for all c ∈ Z+.
However, it turns out that this condition is implied by consistency, if the ma-

trix A has at least one row whose sum is positive, as guaranteed by condition
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(ii).

Observe that if every row of the matrix A adds up to zero, then functions

that do not retain the status quo can also be consistent. Specifically, if

f is a most-similar-case function and f 0 is defined by f 0 (x0, x1, ..., xt−1) =

f (x0, x1, ..., xt−1)+d for d ∈ Z++, then f 0 is also consistent.7 This possibility

is ruled out by condition (ii), which appears rather natural for constraints

arising in real-life problems.

5 Discussion

Observe that in Theorem 2 the histories that are considered are not neces-

sarily compatible with the function f discussed. Indeed, for a regular history

(with a RHS vector b that is independent of the period), any function f that

retains the status quo will choose the same x in each period. However, vari-

ous unmodeled phenomena may yield different x’s in the past. This is akin to

the definition of a strategy in an extensive form game, which is defined also

at nodes that are inconsistent with itself. Indeed, one would like to have the

strategy defined also in case of “trembling hand” deviations, and, similarly,

to have the function f defined also on histories in which past decisions ended

up being different than the choice dictated by f .8

Real bureaucracies will face problems that are more complicated than

those modeled in our Proposition 2. Typically, the RHS vectors will vary from

period to period, and the new vector, bt may not have been encountered in

the past at all. If it is the case that bτ ≤ bt for some τ ≤ t, one may be assured

that the present problem is feasible. Indeed, introducing the inequality bτ ≤
bt into the judgment of similarity of the problem (pτ , bτ ) to (pt, bt) might

mean that, when maximizing s((pτ , bτ) , (pt, bt)), the bureaucracy will find

7It follows from the proof in the Appendix that these functions are the only consistent
ones. In particular, the only consistent functions that retain the status quo are the most-
similar-case ones, even when all rows of A add up to zero.

8Note, however, that the function f is defined for a given history length t, as opposed
to a strategy that is defined for the entire game tree.
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a past case τ whose solution is still feasible under present circumstances.

However, it may be the case that no such past case τ exists, and then there

is no guarantee that there is a practical way to find out whether a feasible

solution exists.

Additional difficulties that arise in reality are that the judgment similari-

ties of different offices of the bureaucracy need not be identical. For idiosyn-

cratic or systematic reasons, different people would vary in their similarity

judgments. In this case, a most-similar-case function might prove rather sen-

sitive, and the overall decision vector might fail to be coherent. With this

view in mind, it is possible that aggregated similarity functions might be

more robust than most-similar-case ones. Be that as it may, there remains

the possibility that different branches of the bureaucracy make reasonable

decisions that, taken together, are incoherent.
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6 Appendix A: Proofs

6.1 Proof of Proposition 1

It is straightforward that the problem is in NP. To see that it is NP-Complete,

consider the following problem (which is known to be NP-Complete, see Gary

and Johnson, 1979):

Problem KNAPSACK: Given integers c1, ..., cn and b, is there a subset

K ⊂ {1, ..., n} such thatPi∈K ci = b?

Given the input c1, ..., cn, b for KNAPSACK, define an allocation prob-

lem with (ei)i≤t, (Bj)j≤s, and (Lij)i≤t,j≤s as follows: s = 2, B1 = b, B2 =P
i∈K ci − b. Next, t = n and ei = ci. Finally, Lij = 1 for all i ≤ n and

j = 1, 2. Thus, any task can be performed by each of the two employees. If

there exists K ⊂ {1, ..., n} such that
P

i∈K ci = b = B1, it is obvious thatP
i/∈K ci =

P
i∈K ci−b = B2 and thus an allocation has been found such that

no employee’s hour budget is exceeded. If, on the other hand, such an allo-

cation exists, satisfying
P

i∈K ci ≤ B1 and
P

i/∈K ci ≤ B2, both inequalities

have to hold as equalities, and K solves the knapsack problem.

Clearly, the construction is done in polynomial time.¤

6.2 Proof of Theorem 2

It is immediate that a most-similar-case function is consistent. We wish to

prove the converse.

We let be given am×n matrix A, a history length t ≥ 1, and a consistent
map f : Zt

+ → Z+.

Since A contains potentially conflicting rows, in particular it contains at

least one row whose entries add up to a positive value. We show that this

suffices to conclude that f(0, . . . , 0) must be equal to zero.

Lemma 1 One has f(0, . . . , 0) = 0.

Proof. Using the notations of Section 4.2, consider a regular history ht
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in which the right-hand side b of the system of constraints is the null vector

�0Rm, and in which all earlier decisions were set to zero: xiτ = 0 for each i

and τ ≤ t. Since xi = f(xi0, . . . , xit) = f(0, . . . , 0) for each branch i of the

bureaucracy, the decision xi does not depend on i following the history ht,

and we denote this common value by c ∈ Z+.
Since f is consistent, the vector �c := (c, . . . , c) in Zn

+ solves A�c ≤ b = �0Rm.

Since there is at least one row of A whose entries add up to a positive number,

this implies c = 0.

Let i1, i2 ∈ {1, . . . , n} and j1, j2, j3 ∈ {1, . . . ,m} be such that ai1j > 0

and ai2j < 0 for j = j1, j2, j3. W.l.o.g., we take these rows and columns to

be, respectively, the first two rows and the first three columns of A.

For notational simplicity, we denote the first three entries of the first

two rows by a,b, and c, and −a0, −b0, and −c0 respectively, so that all six

numbers a, b, c, a0, b0, and c0 are positive. We will be interested in the sub-

matrix generated by these three numbers. Specifically, for d, d0 ∈ R+∪{+∞}
we define the system S(d, d0) in the variables y = (y1, y2, y3) as

½
ay1 + by2 + cy3 ≤ d
a0y1 + b0y2 + c0y3 ≥ d0.

Thus, for y ∈ Z3+ we say that y is a solution to S(d, d0) if the above inequalities
hold.

We will prove that f is a most-similar-case function. We will use the

consistency property only through Lemma 2 below.

Lemma 2 The map f satisfies the following property. Let d, d0 ∈ R+ ∪
{+∞}, and, for τ = 1, . . . , t, let y(τ) ∈ Z

3
+ be a solution to the sys-

tem S(d, d0). Then the (three-dimensional) vector (f(y1), f(y2), f(y3)) is

also a solution to S(d, d0), where yi stands for the t-dimensional vector

(yi(τ))τ=1,...,t.

Proof. For each τ = 1, . . . , t, let x(τ) be the n-dimensional vector ob-

tained by appending n−3 zeroes to y(τ). Set b1 = d, b2 = −d0, and bi = +∞

22



for i > 2, so that x(τ) solves Ax ≤ b for each τ .

By Lemma 1, f(xj) = 0 for j = 4, . . . , n. Since f is consistent, the

n-dimensional vector (f(y1), f(y2), f(y3), 0, . . . , 0) solves Ax ≤ b as well.

Given d, d0 ∈ R+ ∪ {+∞}, and three t-dimensional vectors α, β, and

γ, we will slightly abuse terminology and say that (α, β, γ) solves S(d, d0)

when (α(τ), β(τ), γ(τ)) solves S(d, d0) for each τ . Lemma 2 thus says that

(f(α), f(β), f(γ)) is a solution to S(d, d0) whenever (α, β, γ) solves S(d, d0).

The proof proceeds in three steps. We first argue in Step 0 that f

retains the status quo. In Step 1, we next prove that f coincides with a

most-similar-case function on the set of inputs {0, 1}t. In Step 2, we remove

the latter restriction.

Step 0: f retains the status quo.

We here prove, as a preliminary step, that the preservation of status quo

is a consequence of the consistency requirement.

Lemma 3 One has f(c, . . . , c) = c, for every c ∈ Z+.

Proof. We apply Lemma 2 with d = a× c, and d0 = a0× c. For each τ =

1, . . . , t, set y(τ) := (k, 0, 0), and observe that y(τ) is a solution to the system

S(d, d0). By Lemma 2 and using the fact that f(0, . . . , 0) = 0, the triple

(f(c, . . . , c), 0, 0) is also a solution to S(d, d0). This implies af(c, . . . , c) ≤ d

and a0f(c, . . . , c) ≥ d0, so that f(c, . . . , c) = c, as desired.

Step 1: The restriction of f to {0, 1}t is a most-similar-case function

Throughout Step 1, we restrict inputs in {0, 1}t, and use the following

piece of notation. Given a set B ⊂ {1, ..., t}, we denote by �1B ∈ {0, 1}t the
indicator function of B. That is, �1B(τ) = 1 iff τ ∈ B, and we similarly denote

by �0B the vector defined by �0B(τ) = 0 iff τ ∈ B. For B = {1, ..., t}, we will

abbreviate �0B and �1B to �0 and �1, respectively. Note that �1B = �0B̄ where B̄

is the complement of B in {1, ..., t}. Any vector α ∈ {0, 1}t can be written
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as α = �1B, for B = Bα := { τ |α(τ) = 1}. We abuse notation and write ᾱ

to denote �0Bα = �1− α.

Observe that f(�0) = 0 and f(�1) = 1 because f retains the status quo.

Lemma 4 For every α ∈ {0, 1}t, one has f(α) ∈ {0, 1}.

Proof. Assume to the contrary that f(α) ≥ 2 for some α ∈ {0, 1}t.

Choose y1 = α, y2 = y3 = �0. Note that (α, 0, 0) solves S(a, 0) but (f(α), f(�0), f(�0)) =

(f(α), 0, 0) doesn’t solve S(a, 0), contrary to Lemma 2. A similar contradic-

tion is obtained if f(α) ≤ −1.
In the rest of Step 1 of the proof, we derive consequences of Lemma 2,

with d := max(a+ b, a + c, b + c) and d0 := min(a0, b0, c0). Note that the set

of integer-valued solutions of S(d, d0) in {0, 1}3 consists of all vectors in this

set, apart from (0, 0, 0) and (1, 1, 1).

Lemma 5 For every α ∈ {0, 1}t, one has f(ᾱ) = 1− f(α).

Proof. Assume to the contrary that f(α) = f(ᾱ) = δ ∈ {0, 1} for

some α. Observe that (α, ᾱ,�δ) solves S(d, d0) (since (α(t), ᾱ(t),�δ(t)) is either

(1, 0, δ) or (0, 1, δ)). Yet, (f(α), f(ᾱ), f(�δ)) = (δ, δ, δ) does not solve S(d, d0)

— a contradiction.

Lemma 6 f is non-decreasing on {0, 1}t (w.r.t. the product order).

Proof. Assume to the contrary that f(α) = 1 and f(β) = 0 for some

α ≤ β. Since α ≤ β, we know that, for every τ , if α(τ) = 1, then β(τ) = 1,

that is, β̄(τ) = 0. This implies that (α(τ), β̄(τ),�1) solves S(d, d0) for each τ .

Thus, (f(α), f(β̄), f(�1)) solves S(d, d0) as well. Yet f(β̄) = 1 by Lemma 5,

so that (f(α), f(β̄), f(�1)) = (1, 1, 1) — a contradiction.

Lemma 7 Let B,C ⊂ {1, ..., t} be given. If f(�1B) = 1 and f(�1C) = 1, then

B ∩ C 6= ∅ and f(�1B∩C) = 1.
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Proof. Assume to the contrary that f(�1B∩C) = 0, so that f(�1B̄∪C̄) = 1.

Plainly, 1B̄∪C̄(τ) = 0 as soon as 1B(τ) = 1C(τ) = 1 and 1B̄∪C̄(τ) = 1

as soon as 1B(τ) = 1C(τ) = 0. Therefore, (�1B,�1C ,�1B̄∪C̄) solves S(d, d
0).

Yet, (f(�1B), f(�1C), f(�1B̄∪C̄)) = (1, 1, 1) — a contradiction. Hence we obtain

f(�1B∩C) = 1. This implies B ∩ C 6= ∅, since f(�1∅) = f(�0) = 0.

By exchanging the roles of zeroes and ones, one gets the following version

of Lemma 7.

Lemma 8 Let B,C ⊂ {1, ..., t} be given. If f(�0B) = 0 and f(�0C) = 0, then

B ∩ C 6= ∅ and f(�0B∩C) = 0.

Lemma 9 The restriction of f to {0, 1}t is a most-similar-case function.

Proof. Denote by S1 the intersection of all sets B ⊆ {1, ..., t} such

that f(�1B) = 1, and by S0 the intersection of all sets C such that f(�0C) = 0.

Thanks to Lemmas 7 and 8, S0 and S1 are non-empty. By Lemma 6, f(α) = 1

if and only if α ≥ �1S1 and similarly, f(α) = 0 if and only if α ≤ �0S0 .

We now prove that the sets S0 and S1 coincide and that this common set

is a singleton. Pick any element τ ∈ S0. Since the inequality �1{τ} ≤ �0S0 does

not hold, one must have f(�1{τ}) = 1 and therefore �1{τ} ≥ �1S1 and it follows

that S1 = {τ}. Since τ was an arbitrary element of S0, for every τ , τ 0 ∈ S0

we have S1 = {τ} = {τ
0} and thus τ = τ 0. Hence S0 is a singleton, S0 = {τ}

and, as we concluded that S1 = {τ}, we also have S0 = S1.

Note now that, for δ ∈ {0, 1}, f(α) = δ as soon as α(τ) = δ. That is,

f(α) = α(τ) for every α, as desired.

For clarity, we will henceforth assume that the unique element of S0 = S1

is τ ∗ = 1.

Step 2. We now remove the restriction of inputs to {0, 1}t, and we prove

that f(α) = α(1) for every α ∈ Zt
+.
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We proceed by induction and prove that, for each k ≥ 1, one has f(α) =
α(1) for every α ∈ [0; k]t. Assume thus that the latter property holds for
some k ≥ 1 (with k = 1 proven in Step 1), and let α ∈ [0; k + 1]t be given.
The proof that f(α) = α(1) goes by contradiction.

Assume first that f(α) > α(1). Fix d0 = 0 so that the second constraint

in S(d, d0) is satisfied by every α ∈ Zt
+. By possibly permuting the first three

columns of A, we may assume that a ≤ b, c. Set d = aα(1) + (b + c)k, and

observe that

d ≥ (b+ c)k ≥ a(k + 1) (2)

where the last inequality follows from the facts that b, c ≥ a and that k ≥ 1.
Let β, γ ∈ [0; k]t be given by β = γ = (k, 0, . . . , 0). By the choice of d,

(α(1), β(1), γ(1)) is a solution to S(d, d0). Moreover, for τ > 1, one has

aα(τ) + bβ(τ) + cγ(τ) = aα(τ) ≤ a(k + 1) ≤ d,

where the first inequality follows from the fact that α ∈ [0; k + 1]t (and that
β(τ) = γ(τ) = 0) and the second — from inequality (2). Thus, (α(τ), β(τ), γ(τ))

is a solution to S(d, d0) for all τ ≥ 1. Hence, (f(α), f(β), f(γ)) is a solution
to S(d, d0). Yet f(β) = f(γ) = k by the induction hypothesis, and therefore,

af(α) + bf(β) + cf(γ) > aα(1) + (b+ c)k = d — a contradiction.

Assume now that f(α) < α(1). Fix d = +∞ so that the first constraint

in S(d, d0) is satisfied by every α ∈ Zt
+. By possibly permuting the first three

columns of A, we may assume that a0 ≤ b0, c0. Set d0 = a0α(1). Let β, γ ∈
[0; k]t be given by β = γ = (0, k, . . . , k). By the choice of d0, (α(1), β(1), γ(1))

is a solution to S(d, d0). As for τ > 1, one has

a0α(τ) + b0β(τ) + c0γ(τ) ≥ (b0 + c0)k ≥ 2a0k ≥ a0α(1) = d0

where the last inequality follows from the fact that α(1) ≤ k + 1 ≤ 2k.
Hence, (f(α), f(β), f(γ)) is a solution to S(d, d0). Yet f(β) = f(γ) = 0 by

the induction hypothesis, and therefore, a0f(α)+ b0f(β)+ c0f(γ) = a0f(α) <

a0α(1) = d0 — a contradiction.
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7 Appendix B: Computational Complexity

A problem can be thought of as a set of legitimate inputs, and a correspon-

dence from it into a set of legitimate outputs. For instance, consider the

problem “Given a graph, and two nodes in it, s and t, find a minimal path

from s to t”. An input would be a graph and two nodes in it. These are as-

sumed to be appropriately encoded into finite strings over a given alphabet.

The corresponding encoding of a shortest path between the two nodes would

be an appropriate output.

An algorithm is a method of solution that specifies what the solver

should do at each stage. Church’s thesis maintains that algorithms are

those methods of solution that can be implemented by Turing machines.

It is neither a theorem nor a conjecture, because the term “algorithm” has

no formal definition. In fact, Church’s thesis may be viewed as defining

an “algorithm” to be a Turing machine. It has been proved that Turing

machines are equivalent, in terms of the algorithms they can implement, to

various other computational models. In particular, a PASCAL program run

on a modern computer with an infinite memory is also equivalent to a Turing

machine and can therefore be viewed as a definition of an “algorithm”.

It is convenient to restrict attention toYES/NO problems. Such prob-

lems are formally defined as subsets of the legitimate inputs, interpreted as

the inputs for which the answer is YES. Many problems naturally define

corresponding YES/NO problems. For instance, the previous problem may

be represented as “Given a graph, two nodes in it s and t, and a number

k, is there a path of length k between s and t in the graph?” It is usually

the case that if one can solve all such YES/NO problems, one can solve the

corresponding optimization problem. For example, an algorithm that can

solve the YES/NO problem above for any given k can find the minimal k for

which the answer is YES (it can also do so efficiently). Moreover, such an

algorithm will typically also find a path that is no longer than the specified

k.

27



Much of the literature on computational complexity focuses on time

complexity: how many operations will an algorithm need to perform in

order to obtain the solution and halt. It is customary to count input/output

operations, as well as logical and algebraic operations as taking a single unit

of time each. Taking into account the amount of time these operations ac-

tually take (for instance, the number of actual operations needed to add two

numbers of, say, 10 digits) typically yields qualitatively similar results.

The literature focuses on asymptotic analysis: how does the number of

operations grow with the size of the input. It is customary to conductworst-

case analyses, though attention is also given to average-case performance.

Obviously, the latter requires some assumptions on the distribution of inputs,

whereas worst-case analysis is free from distributional assumptions. Hence

the complexity of an algorithm is generally defined as the order of magnitude

of the number of operations it needs to perform, in the worst case, to obtain

a solution, as a function of the input size. The complexity of a problem is

the minimal complexity of an algorithm that solves it. Thus, a problem is

polynomial if there exists an algorithm that always solves it correctly within

a number of operations that is bounded by a polynomial of the input size.

A problem is exponential if all the algorithms that solve it may require

a number of operations that is exponential in the size of the input, and so

forth.

Polynomial problems are generally considered relatively “easy”, even though

they may still be hard to solve in practice, especially if the degree of the

polynomial is high. By contrast, exponential problems become intractable

already for inputs of moderate sizes. To prove that a problem is polynomial,

one typically points to a polynomial algorithm that solves it. Proving that

a YES/NO problem is exponential, however, is a very hard task, because it

is generally hard to show that there does not exist an algorithm that solves

the problem in a number of steps that is, say, O(n17) or even O(2
√
n).

A non-deterministic Turing machine is a Turing machine that allows
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multiple transitions at each stage of the computation. It can be thought of

as a parallel processing modern computer with an unbounded number of

processors. It is assumed that these processors can work simultaneously,

and, should one of them find a solution, the machine halts. Consider, for

instance, the Hamiltonian path problem: given a graph, is there a path

that visits each node precisely once? A straightforward algorithm for this

problem would be exponential: given n nodes, one needs to check all the

n! permutations to see if any of them defines a path in the graph. A non-

deterministic Turing machine can solve this problem in linear time. Roughly,

one can imagine that n! processors work on this problem in parallel, each

checking a different permutation. Each processor will therefore need no more

than O(n) operations. In a sense, the difficulty of the Hamiltonian path

problem arises from the multitude of possible solutions, and not from the

inherent complexity of each of them.

The class NP is the class of all YES/NO problems that can be solved

in Polynomial time by a Non-deterministic Turing machine. Equivalently,

it can be defined as the class of YES/NO problems for which the validity of

a suggested solution can be verified in polynomial time (by a regular, deter-

ministic algorithm). The class of problems that can be solved in polynomial

time (by a deterministic Turing machine) is denoted P and it is obviously a

subset of NP. Whether P=NP is considered to be the most important open

problem in computer science. While the common belief is that the answer is

negative, there is no proof of this fact.

A problem A is NP-Hard if the following statement is true (“the con-

ditional solution property”): if there were a polynomial algorithm for A,

there would be a polynomial algorithm for any problem B in NP. There may

be many ways in which such a conditional statement can be proved. For

instance, one may show that using the polynomial algorithm for A a poly-

nomial number of times would result in an algorithm for B. Alternatively,

one may show a polynomial algorithm that translates an input for B to an
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input for A, in such a way that the B-answer on its input is YES iff so is the

A-answer of its own input. In this case we say that B is reduced to A.

A problem is NP-Complete if it is in NP, and any other problem in NP

can be reduced to it. It was shown that the SATISFIABILITY problem

(whether a Boolean expression is not identically zero) is such a problem by a

direct construction. That is, there exists an algorithm that accepts as input

an NP problem B and input for that problem, z, and generates in polynomial

time a Boolean expression that can be satisfied iff the B-answer on z is YES.

With the help of one problem that is known to be NP-Complete (NPC), one

may show that other problems, to which the NPC problem can be reduced,

are also NPC. Indeed, it has been shown that many combinatorial problems

are NPC.

NPC problem are NP-Hard, but the converse is false. First, NP-Hard

problems need not be in NP themselves, and they may not be YES/NO

problems. Second, NPC problems are also defined by a particular way in

which the conditional solution property is proved, namely, by reduction.

There are by now hundreds of problems that are known to be NPC.

Had we known one polynomial algorithm for one of them, we would have

a polynomial algorithm for each problem in NP. As mentioned above, it is

believed that no such algorithm exists.
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