Nonparametric estimation of finite mixtures

Abstract : The aim of this paper is to provide simple nonparametric methods to estimate finitemixture models from data with repeated measurements. Three measurements suffice for the mixture to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the mixing proportions and the mixture distributions, and various functionals thereof. We also discuss inference on the number of components. These estimators are found to perform well in a series of Monte Carlo exercises. We apply our techniques to document heterogeneity in log annual earnings using PSID data spanning the period 1969-1998.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-sciencespo.archives-ouvertes.fr/hal-00972868
Contributeur : Spire Sciences Po Institutional Repository <>
Soumis le : jeudi 3 avril 2014 - 20:07:52
Dernière modification le : mardi 18 juin 2019 - 01:11:27
Document(s) archivé(s) le : jeudi 3 juillet 2014 - 19:40:15

Fichier

dp2013-09bonhommejochmansrobin...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Stéphane Bonhomme, Koen Jochmans, Jean-Marc Robin. Nonparametric estimation of finite mixtures. 2013. ⟨hal-00972868⟩

Partager

Métriques

Consultations de la notice

200

Téléchargements de fichiers

189