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Abstract

This paper employs a homogenous firms database to investigate industry localiza-
tion in European countries. More specifically, we compare, across industries and
countries, the predictions of two of the most popular localization indices, i.e., the
Ellison and Glaeser index (Ellison and Glaeser, 1997) and the Duranton and Over-
man index (Duranton and Overman, 2005). We find that, independently from the
index used, localization is a pervasive phenomenon in all countries studied, but the
degree of localization is very uneven across industries in each country. Furthermore,
we find that the two indices significantly diverge in predicting the intensity of the
forces generating localization within each industry. Finally, we perform a cross-
sectoral analysis of localized industries. We show that, in all countries, localized
sectors are mainly “traditional” sectors (like jewelery, wine, and textiles) and sec-
tors where scale economies are important. However, once one controls for countries’
industrial structures science-based sectors turn out to be the most localized ones.
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1 Introduction

This paper investigates the empirical location patterns of manufacturing industries in

six European countries: Belgium, France, Germany, Italy, Spain, and the UK. Drawing

on a comprehensive source covering data on European manufacturing firms, we simul-

taneously perform both a cross-country and a cross-sector analysis of industry spatial-

localization patterns employing two of the most popular localization measures: the “El-

lison and Glaeser Index”(E&G index henceforth, see Ellison and Glaeser, 1997) and the

“Duranton and Overman Index” (D&O index henceforth, see Duranton and Overman,

2005). Our main goal is to provide a common empirical framework where, thanks to

the harmonized source of data employed, one might be able to compare predictions of

different indices across different countries in a homogeneous way. Indeed, as we argue in

more detail below, existing empirical studies on industry localization have almost entirely

focused on studying how different sectors were localized in a given country, according to a

single index. Results are therefore hardly comparable, due to the inherent heterogeneity

in data collection and definitions of variables (e.g., firm size).

The analysis of firms’ location has attracted the attention of economists for a very

long time (see e.g. Marshall, 1920). More recently, a relevant body of theoretical research

in the “New Economic Geography” literature (see e.g. Krugman, 1991; Fujita et al., 1999)

has been aimed at explaining what might be considered the basic stylized fact of economic

geography, i.e. that firms look more clustered in space than any theory of comparative

advantage would predict.

Beside these theoretical contributions, a good deal of empirical research has investi-

gated localization in manufacturing industries (see among others, Ellison and Glaeser,

1997; Maurel and Sédillot, 1999; Barrios et al., 2005; Lafourcade and Mion, 2007; Duran-

ton and Overman, 2005). All these works, mainly focusing on single countries, confirm

the expectation that firms are generally clustered in space. However, they also find huge

variability in the degree of localization across industrial sectors. A common characteristic

of these studies is the use of some measure of the degree of firms’ clustering in space

(“localization indices”). Despite very similar methodological approaches, however, the

literature has so far been quite heterogeneous in terms of the variety of the measures

employed (see e.g. Combes and Overman, 2004b, for a survey).

For example, Krugman (1991) and Haaland et al. (1999) have proposed indices based

on the “Location Quotient” or “Balassa-Index”. These indices measure localization of

an industry in “excess” with respect to what would be predicted by the overall presence

of economic activities into specific areas. By measuring excess localization, these indices

control for the overall tendency of manufacturing industries to agglomerate in specific

areas due to exogenous factors, e.g. population. Nevertheless, they do not provide any

null hypothesis against which evaluate the “absolute” degree of clustering of an industry.
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Moreover, they do not control for the level of industry concentration, which is important

to allow cross-industry comparisons and to avoid spurious measurements. Indeed, the

concentration of industry activity into a specific area could simply reflect the presence in

the area of a single plant accounting for most of the activity of the industry, rather than

the genuine presence of several industry plants in the same area.1 The contributions in

Ellison and Glaeser (1997); Dumais et al. (2002); Maurel and Sédillot (1999) overcome all

the foregoing problems, by providing localization indices which simultaneously: i) control

for the overall concentration of manufacturing; ii) control for industry concentration, iii)

provide a null hypothesis against which verifying the presence of localization. In par-

ticular, the index in Ellison and Glaeser (1997) tests the presence of localization driven

by the combination of sector-specific spillovers and natural advantage of specific areas,

against the null hypothesis of localization driven by random firm-specific choices. These

indices represent key advances in the measuring of localization. Nevertheless, by construc-

tion, they require an ex-ante partitioning of the geographical space (e.g. a country) into

smaller units (e.g. regions, departments). In other words, points on a map (corresponding

to the location of business units) are transformed into units in “boxes” (cf. Duranton and

Overman, 2005; Combes and Overman, 2004b). The division of the space into sub-units

has the advantage of making the computational problems involved in the measurement of

localization easier. However, it also introduces possible biases in the analysis. First, com-

parisons among countries are difficult, as the areas of spatial sub-units may significantly

vary across different countries. Second, and relatedly, comparisons become difficult also

within countries across different spatial scales (e.g. departments vs. regions). Finally,

clusters of firms located at the borders of neighboring regions and/or spanning over the

area covered by a single region are treated in the same way as clusters in two very distant

regions. More precisely, as pointed out in Arbia (2001) and Lafourcade and Mion (2007),

indices requiring the division of the space into smaller units are only able to capture “spa-

tial concentration” of industrial activity into some areas. They are not able to measure

instead “true agglomeration”, that is the degree of spatial correlation between firms’ loca-

tion choices. Localization indices that tackle the foregoing problems are those proposed in

Moran (1950) and Duranton and Overman (2005). In particular, the latter index does not

require any ex-ante partition of the geographical space into subunits. This is because the

index relies on the empirical distribution of distances across firms, computed by locating

firms on the basis of their postal codes (more on that in Section 3).

This paper is an attempt at improving upon the foregoing literature along two dimen-

sions. First, we simultaneously perform an investigation of industry localization in several

EU countries by exploiting a firms database homogeneous across European countries.

Using harmonized data allow us to detect cross-country localization patterns that are

1See however Bottazzi et al. (2007) for some skeptical remarks on the need for controlling for industry
lumpiness.
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not influenced by the different ways to measure firms’ size and location in the different

countries under investigation. Differently from the literature, however, we use firms rather

than plants data in our investigation. This could induce an upward bias in the estimation

of the number of localized industries, as all the production units belonging to the same

firm are all concentrated in the same area (the headquarters). To check for this possible

bias, we perform a more detailed analysis of localization, using different approaches to

detect and locate firm’s plants in space. The results of these robustness analyses show

that localization is not overestimated by using firms rather than plants data (more on

that in Section 5).

Second, we depart from the standard practice of analyzing localization employing a

single index, by performing a comparative study of different localization indices (E&G and

D&O indices) to estimate localization patterns. In particular, we compare the two indices

with respect to their predictions about: i) the number of sectors localized; ii) the intensity

of industry localization forces; iii) the types of localized sectors. The choice about the two

indices to compare is deliberate. Indeed, as briefly explained above, the E&G index and

the D&O index lie at two opposite extremes in the treatment of geographical space. It

turns out that one might expect significant divergences in the predictions about industry

localization characteristics.

Previous attempts in the same direction can be found in Barrios et al. (2005) and

Lafourcade and Mion (2007). However, differently from Barrios et al. (2005, 2008), we

consider a larger number of (size-heterogenous) countries. Furthermore, to account for

spatial features of the data we employ the D&O index rather than the Moran index

(Moran, 1950). This choice has been made because, as discussed at more length in

Arbia (2001), the Moran index cannot entirely capture the observed variability in spatial

permutations. For example, the Moran index measures the extent to which an industry is

spread across L neighboring regions. As a result, it is not able to distinguish between the

case of an industry which is spatially distributed from West to East and the case wherein

the same industry is distributed from West to South. Similarly it cannot account for the

actual distribution of firms within the contiguous regions where clusters are observed (we

will go back to these points in Section 3).

In line with previous studies, we find that localization is a pervasive phenomenon in all

countries studied albeit, in each country, the degree of localization is very unevenly dis-

tributed across sectors. Furthermore, we show that countries display significant variability

in the share of localized sectors. Finally, our exercises suggest that in all six countries

localized industries are mainly “traditional” ones (jewelery, wine, textiles, etc.), as well as

those where scale economies are important. This outcome mainly reflects the historical

evolution of countries’ industrial structures. Once we control for this factor, science based

industries become those where localization is more pervasive. We also detect significant

differences across the localization measures we employ. On the one hand, the two in-
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dices make the same predictions about: i) the share of countries’ localized sectors; ii) the

unevenness of localization forces across sectors; iii) the type of localized industries. On

the other hand, the two indices markedly differ in predicting the intensity of the forces

underlying localization within each industry, both across and within countries.

These results have theoretical and empirical implications. First, the presence of cross-

country differences (given the index) in the share of localized sectors hints to the presence

of factors (e.g., natural advantages, institutions) that make localization in general more

pervasive in some EU countries than in others. Furthermore, the fact that the same

type of industries are localized across the different countries suggests the prevalence of

sector-specific localization drivers vs. cross-sectoral ones. Finally, our results provide

evidence about the empirical importance of the spatial scale in measuring localization

phenomena. More in detail, the spatial scale seems not to be important for detecting the

presence of localization forces into an industry. Conversely, using different spatial scales

can make a crucial difference in the type of localization phenomena one is observing.

More precisely, cross-index differences in localization intensity for a significant fraction of

industries indicate that localization forces operate quite differently across industries. In

some sectors, localization forces lead to clusters of firms characterized by strong spatial

correlation in firms’ location choices, possibly spanning over the territory defined by any

possible spatial subunit. In others, spatial correlation is much weaker and localization

reflect only the spatial concentration of business units is some ex-ante defined areas.

The rest of the paper is organized as follows. Section 2 presents the database used in

the analysis. Section 3 describes the localization indices employed. We begin with the

Ellison and Glaeser index and then we move to the Duranton and Overman index. Section

4 is devoted to the presentation and discussion of our results on the empirical analysis of

localization in EU countries. Furthermore, Section 5 checks the robustness of the results

obtained in the previous section, with particular emphasis on the possible biases due to

using firms rather than plants as the object of analysis. Finally, Section 6 concludes.

2 Data

The empirical analysis below is based on three different data sources. The data on firms

are from the Orbis dataset of the Bureau Van Dijk, 2006 release (cf. www.bvdep.com/en/

ORBIS). From this extensive dataset we have extracted information about location (i.e.,

postal codes), employment, and industrial classification of firms in six European countries

(Belgium, France, Germany, Italy, Spain and the United Kingdom) for the period 2004-

2006. These countries were selected partly out of choice and partly out of necessity. On

the one hand, we wanted to focus on those countries that have already been the object of
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single-country studies in the relevant literature.2 On the other hand, we were constrained

by the availability of reliable and detailed firm-specific data that could be matched with

the information of firms location (see also below). Indeed, only for a relatively small

number of European countries we were able to collect information on sufficiently large

samples disaggregated at the industry level, in such a way to efficiently compute firm

geographical coordinates and distances.

All information is available at the firm level and is derived from companies’ annual

reports. Firm-level data other than localization is available from 2004 to the last year

available in the database, which unfortunately differs among countries. More precisely,

data are available until 2005 for Belgium, France, Italy, and United Kingdom; until 2004

for Spain; and until 2006 for Germany. However, information on firm localization only

refers to the last year available. In principle, one would like to keep as many countries

as possible in the analysis and, at the same time, be sure that localization data are

synchronized with other firm-specific variables. In order to meet these two conditions, we

have thus decided to employ data, in each given country, only for the last year available in

the database. This of course prevents us from performing a proper cross-section analysis,

but we do not expect this to be a source of important bias to the analysis. Indeed, given

the relatively short time span covered by the database, we only a small fraction of all firms

are going to change their locations. Similarly, sectors are not very likely to dramatically

change their industrial structure.

We limit our analysis to manufacturing industries as defined by the NACE classifica-

tion (NACE Rev.1 section D). More specifically, following Duranton and Overman (2005),

we restricted our analysis to sectors with more than 10 firms. This allows us to exclude

sectors where localization is the result of location choices by few firms and therefore to

focus on clustering phenomena where localization forces attract a significant bunch of

firms.

To identify spatial sub-units, we apply the NUTS (Nomenclature of Territorial Units

for Statistics) classification (cf. www.ec.europa.eu/eurostat/ramon/nuts). NUTS is a

hierarchical classification at five levels (three regional and two local), extensively used

for comparative statistics among European countries.3 For our purposes we use NUTS-3

2In addition to US-focused research (Ellison and Glaeser, 1997; Rosenthal and Strange, 2001; Holmes
and Stevens, 2002a; Kim, 1995), existing contributions have been studying industry localization patterns
in UK (Devereux et al., 2004; Duranton and Overman, 2005); Belgium (Bertinelli and Decrop, 2005);
France (Maurel and Sédillot, 1999); Italy (Lafourcade and Mion, 2007); Germany (Brenner, 2006); Ireland
and Portugal (Barrios et al., 2005). See Combes and Overman (2004a) for a review. Notice that Brenner
(2006) and Holmes and Stevens (2002a) do not employ neither the E&G nor the D&O index.

3The NUTS partition of the EU territory has been used by EU since 1988 as a single uniform
breakdown of territorial units for the production of regional statistics for the European Union. The
classification does not build only on administrative boundaries, but follows maximum and minimum
population thresholds for the size of the region and analytical criteria. In particular, the former criterion
takes account of geographical structure and socio-economic characteristics of the territory, so that related
area under different administrative layers could be embraced in the same NUTS-3 level.
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regions, which are quite homogeneous and comparable between countries. We then assign

firms to each sub-unit on the basis of their postal codes. The data needed to map NUTS-

3 postal codes come from the European Commission Database (“Regional Indicator and

Geographical Information Unit”).

Since one of the two indices we employ in our analysis (D&O, cf. Section 3.2), re-

quires the identification of the longitude-latitude coordinates of firms in space, we also

employ data from the “TeleAtlas Multinet Europe” database (cf. www.teleatlas.com).

More precisely, this database provides the spatial coordinates of the contour of the ar-

eas corresponding to postal codes in our sample. Each firm is then assigned coordinates

coinciding with the centroid of the postal-code area.

Table 1 shows some descriptive statistics. The number of firms under analysis is

highly variable among countries considered, and in some cases (UK) it is quite low, mainly

because of a lack of data to match firm postal codes with Geographical Information System

(GIS) coordinates and NUTS-3 regions.4 Note that censoring the sample to sectors with

more than 10 active firms does not have a significant effect on the dimension of the sample.

Indeed, the fraction of sectors covered is always more than 50% of total sectors available in

each country. Finally, in our sample average firm size considerably varies across countries.

Average firm size is rather large in the UK and Italy, and relatively small in Spain and

France.

3 Localization Indices

This section describes the properties of the localization indices that we employ in our

investigation. As we argued in the introduction, the literature has so far proposed several

measures to capture firms’ spatial clustering.5. Here we shall focus on two indices that

have gained a lot of attention in the recent years. These are the index proposed in Ellison

and Glaeser (1997) (E&G Index) and that introduced in Duranton and Overman (2005)

(D&O Index). Both indices present solutions to problems affecting older measures of

localization. However, they markedly differ in their approach to geographical space and

in the type of localization phenomena they are able to capture.

4Cf. www.gis.com/. Indeed, some difficulties typically arise in tracking the spatial evolution
of postal codes. This can make geographic geo-referencing far from straightforward. For instance,
boundaries of postal-code areas move continuously due to new addresses, sometimes they can change
name, and/or new ones enter the stage. These events are quite common in UK, for more details, cf.
www.statistics.gov.uk/geography/.

5A full account of the properties of the different localization indices is beyond the scope of this paper.
Combes and Overman (2004b) provide a detailed description of some of the most popular indices, together
with a discussion of their properties.
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3.1 The Ellison and Glaeser Index

The E&G index proposed in Ellison and Glaeser (1997) is based on a probabilistic model of

location choice, where each business unit (plant or firm) sequentially chooses its location.

More precisely, the j-th business unit chooses its location vj in such a way to maximize

its profits πji from locating in area i:

log πji = log π̄i + gi(v1, ..., vj−1) + εji, (1)

where π̄i is a random variable reflecting cross-sectorally homogeneous profits arising from

“natural advantages” attached to area i (e.g., presence of a river, or favorable weather

conditions). The term gi(v1, ..., vj−1) captures the effect of sector-specific spillovers created

by business units that have previously chosen that location. Finally, εji is an additional

random component modeling factors that are idiosyncratic to the j-th business unit.

On the basis of this model of location choice, Ellison and Glaeser (1997) derive an

index γn, measuring the propensity of firms in industry n to co-locate in space:

γn =
Gn − (1 −

∑
i xi

2) Hn

(1 − Hn) (1 −
∑

i xi
2)

, (2)

where Gn is the “raw-concentration index”:

Gn =
∑

i

(si − xi)
2. (3)

In (2) and (3) si is the share of industry’s employment in area i, xi is the share of aggregate

manufacturing employment in area i. The term Hn is the Herfindahl index of industry

concentration Hn =
∑

j zj
2, with z being the share of employment of the jth firm in the

industry.

The E&G index has many interesting properties, as compared to other indices proposed

in the literature. First, similarly to the measure proposed in Krugman (1991), the E&G

index controls for the overall tendency of manufacturing to localize in space (e.g., spatial

concentration due to difference in population across areas), as captured by the term

1 −
∑

i xi
2. However —differently from earlier statistics— the E&G index also measures

localization in excess by what predicted by industry concentration. Indeed, the Herfindahl

index directly enters in (2) to re-scale the raw index Gn. Finally, the value of γn is related

to the theoretical model of location choice underlying Eq. (1) by the following relation:

γn = γna + γs − γnaγs, (4)

where γna and γs parametrize, respectively, the importance of natural advantages and

spillovers in driving location choices of the business units. The above relation implies
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two fundamental properties of the E&G index. First, the value of the index can be

directly interpreted as reflecting the (non-linear) combination of localization forces due

to natural advantage and spillovers. Second, it provides a null hypothesis against which

evaluating the degree of localization of an industry. Indeed, a value of the index equal

to zero implies that the effect of natural advantage and spillovers on location choices

is null. This corresponds to the case of “random location”: observed localization is

in this case entirely due to the effect of the random idiosyncratic term εji. This in turn

implies that industries characterized by a positive E&G value display “excess” localization,

as compared to what would be predicted by the overall localization of manufacturing

and by industry localization. The observed localization is thus driven by the combined

effect of natural advantages and firm spillovers. Conversely, industries with excess spatial

dispersion will exhibit a negative E&G value, whereas a value of the index equal to zero

indicates no localization. The latter situation corresponds to the benchmark scenario

where the observed spatial distribution is solely the result of random-location choices by

firms in the industry.

One of the major drawbacks of the E&G Index is the lack of a statistical procedure to

significantly measure the degree of excess localization (or dispersion) of an industry. To

partially solve such a problem, Ellison and Glaeser (1997) proposed some threshold values

to interpret and classify positive values of γn. According to their criterion, an industry

is not very localized when γn is below 0.02. Moreover, it is very localized if γn > 0.05.

These thresholds were chosen by the authors via an heuristic procedure based on their

application on US data and are somewhat arbitrary.6 Other contributions using the E&G

index have instead relied on more rigorous criteria to evaluate the statistical significance

of γn’s values. In particular, a procedure based on a standard “2-sigma rule” has been

proposed (see e.g. Rosenthal and Strange, 2001; Devereux et al., 2004; Barrios et al., 2005).

Since under the null hypothesis of random location γn = 0 and E(Gn) = (1−
∑

i xi
2)Hn,

an industry will be significantly localized (dispersed) whenever the difference between the

empirical value of the raw concentration index Gn and its expected value (1−
∑

i xi
2)Hn

is twice larger (smaller) than the standard deviation σG of the raw concentration index

(cf. Ellison and Glaeser, 1997):

σG =

√√√√√2



H2[

∑

i

x2

i − 2
∑

i

x3

i + (
∑

i

x2

i )
2] −

∑

j

z4

j [
∑

i

x2

i − 4
∑

i

x3

i + 3(
∑

i

x2

i )
2]



. (5)

Note that country and industry specific terms enter the expression of both the expected

value and the standard deviation of the raw index Gn. This makes the “2-sigma rule”

criterion more suitable to account for country and industry specificities in the analysis.

In what follows, we will use such a criterion to evaluate the statistical significance of

6Ellison and Glaeser define the values above by ranking sectors according to the average and median
of γn. They find that 25% of US industries are highly localized while 50% of them shows weak localization.
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localization (or dispersion) of an industry.

3.2 The Duranton and Overman Index

The E&G index is based on an exogenous division of the geographical space into sub-

units. Space partitions have the advantage of alleviating the computational problems

involved in the measurement of industry localization. Indeed, measuring the propensity

of firms to co-locate in space boils down to calculating the concentration of industrial

activity into m > 1 areas (e.g. regions, departments). Unfortunately, the division of

the space into subunits has also several disadvantages. First, it is not a-priori clear the

optimal spatial breakdown at which firm clustering should be measured. One could, e.g.,

decide to compute the index considering counties, regions or different NUTS layers. This

undermines comparison, both cross-country and across different disaggregation levels (see

e.g. Rosenthal and Strange, 2001; Devereux et al., 2004, for a discussion of this point).

Second, as argued at more length in Arbia (2001), the very computation of cumulative

shares of economic activity concentrated in spatial subunits implies disregarding the spa-

tial nature of the data. Indeed, indices based on cumulative shares (like the E&G index)

are generally invariant to any spatial permutation of the subunits under investigation.

However, having the bulk of industrial economic activity split among two distant regions

is totally different from splitting it in two neighboring areas. Moreover, by focusing on

total activity in one or more regions, one can only investigate spatial concentration, that is

the uneven distribution of industry activities across regions. One cannot instead evaluate

how industry activities are spatially distributed in the region (or across two neighboring

areas). This means disregarding “true agglomeration”, i.e. the degree of spatial correla-

tion in firms’ location decisions (cf. Arbia, 2001; Lafourcade and Mion, 2007; Duranton

and Overman, 2005).

Two indices that account for the spatial features of industrial data are those proposed

by Moran (1950) and by Duranton and Overman (2005). As briefly mentioned above,

the Moran index still requires an ex-ante partition of the space. However, it is based

on a weighting matrix W , whose generic element represents the weight of location l for

location i. Weights represent contiguity relationships: wil > 0 if and only if (i, l) are

contiguous regions and zero otherwise (with wii = 0, all i). As discussed in Arbia (2001),

this index does not solve all the space-related problems described above. For example, the

Moran index is invariant to different spatial permutations involving the same number of

contiguous regions. In fact, this index —by construction— can only capture the degree of

firm clustering across neighboring regions and is not able to distinguish between different

neighboring regions (e.g., from West to East, rather than from West to South). Similarly

it cannot account for the actual distribution of firms within the contiguous regions where

clusters are observed.
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In light of these considerations, in this paper we have preferred to focus on the D&O

index as our only alternative to the E&G index that accounts for the spatial features

of the data. Indeed, D&O index does not require any ex-ante division of the space into

subunits and therefore it seems to be better equipped to deal with the characteristics of

the spatial distribution of firms into industries.

To compute the D&O index, one needs to build Euclidean distances between pairs

economic units (plants or firms) in each industry, employing from their actual position

in geographical space. Geographic positioning is identified by firms’ postal codes. If the

number of firms is M , the number of unique bilateral distances is M(M − 1)/2. We can

then estimate the density of distances through the (Gaussian) kernel function:

K (d) =
1

M (M − 1) b

M−1∑

h=1

M∑

j=h+1

f

(
d − dhj

b

)
, (6)

where dhj is the distance between firms h and j, b is the bandwidth and f is the (Gaussian)

kernel function. All distances are computed in kilometres.7

Obviously, studying the distribution of kernel densities alone does not give us infor-

mation whether a sector is localized or not. To solve this problem, the D&O index allows

for a rigorous statistical test of industry localization. The test involves the comparison of

the empirical density to artificially generated distributions based on random location of

firms in space. Note that this procedure controls also for industry concentration. Indeed,

if the industry were only characterized by an uneven distribution of market shares, then

its spatial density would not be statistically different from the one generated by randomly

re-location of firms in space.

In what follows, we shall then bootstrap 1000 samples generated by randomly allocat-

ing the position of firms in a given sector, over the whole population of locations occupied

by firms in manufacturing. We then build a local confidence interval by ranking the

samples in ascending order for each target distance (d) and taking the 5th and the 95th

percentile for the lower 5% and the upper 95% confidence interval.8 In this way, 95% of

the distribution shall fall inside the confidence bands at each target distance. This means

that the measures of localization (α) and dispersion (δ) are given by:

αI(d) = KI(d) − KI (7)

δI(d) = K̃I − KI(d), (8)

7In the estimation of the densities, one typically restricts the support to the positive domain, replacing
negative densities with zeros and re-scaling all values to get the densities estimates sum up to one.
However, since the density function in Equation (6) has domain on the whole real line, it could return
positive density estimates at negative distances, even if the natural domain of our study is a positive
interval.

8Following Klier and McMillen (2008), we have selected 40 target distances.
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where KI is the upper confidence band in industry I, while K̃I is the lower confidence

band. Note that the indices α and δ allow us to draw implications only at the “local”

level, i.e. at a given distance. By employing them one cannot say anything in general

about the degree of localization (dispersion) of an industry as a whole. To cope with this

limitation a global confidence interval is needed. The difference with local bands is that

the kernel density is jointly evaluated at several target distances. The global confidence

interval is built in such a way that no more than the 95% of the random distribution

lies outside the interval between the upper and the lower global confidence bands. For

an industry n the index of (global) localization (A) and (global) dispersion (∆) are thus

given by:

An(d) = Kn(d) − Kn (9)

∆n(d) =

{ ˜̃
Kn − Kn(d) if

∑
dAn(d) = 0

0 otherwise
(10)

This definition implies that an industry will be considered localized if its kernel density

lies at least once above the interval delimited by global confidence bands. Conversely,

it will be considered dispersed if its kernel density is always below the lower confidence

band.

The measurement of localization without a previous partition of geographical space is

a crucial value added for the D&O index, but it can also represent an important drawback.

Indeed, data to compute geographical coordinates are often not easily accessible and barely

available at very detailed level. In addition, compared to the E&G index, computational

problems become huge. One indeed moves from calculating cumulative shares of industry

(and manufacturing) activities across L > 1 regions to tracking the entire distribution of

M(M − 1)/2 distances computed on the basis of M >> L postal codes areas.

4 Results

In this section we present the results of our analysis on the spatial distribution of firms

in manufacturing industries. We begin by investigating the extent of localization in the

countries analyzed. In other words, we study whether the number of industries where

firms co-locate is significant in the country under analysis. In addition, we study whether

the fraction of localized industries displays cross-country variation. Furthermore, we

investigate how strong is localization. Indeed, the value returned by each localization

index captures the strength of localization forces into an industry (see Section 3). It is

then worthwhile analyzing whether the intensity of those forces is heterogeneous across

countries and sectors. Finally, we carry out a detailed analysis of the sectoral composition

of localized industries, to check which kinds of industries are more often localized.
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In all the investigations below, we compare the results produced by the two localization

indices employed (E&G and D&O). As we discussed in Section 3, these indices markedly

differ in their approach to the measurement of localization. Thus, as suggested in Arbia

(2001), the identification of invariances and diversities in localization patterns captured

by the two indices may help unveiling different characteristics of industry localization in

the countries under study.

4.1 How many industries are localized?

Let us start by assessing how many industries are localized in each country considered.

Table 2 shows the fraction of sectors localized and dispersed using respectively the E&G

index and D&O index. In general, localization emerges as a widespread phenomenon in

all countries. The share of industries for which the value of the E&G index is strictly

positive turns to be very high in all countries considered (see Table 2, column 1). This

result is consistent with previous studies in the literature (see e.g. Devereux et al., 2004;

Maurel and Sédillot, 1999; Lafourcade and Mion, 2007). However, the fraction of local-

ized industries reduces considerably when one applies the 2-sigma rule to evaluate the

statistical significance of localization. For instance, the fraction is reduced by more than

half in Belgium (from 0.7 to 0.32), whereas in Spain and Italy 60% of total sectors still

display localization after the application of the stricter rule. The fraction of sectors dis-

playing excess dispersion (i.e., such that γn < 0) is very low in all countries considered.

Finally none of the sectors studied was significantly dispersed according to the 2-sigma

rule criterion. Turning to the D&O index, we find that in all countries but Belgium the

share of localized sectors is around 50%. Overall, the figures are lower than those obtained

by considering sectors with a positive value of the E&G index.9 However, the share of

localized sectors is very similar with the one obtained applying the 2-sigma rule to the

E&G index (cf. Table 2, columns 2 and 4).

Figure 1 summarizes the patterns of localization emerging in each country from the ap-

plication of the E&G index and the D&O index. It is tempting to roughly classify countries

in three groups according to their pervasiveness of localization. More precisely, we can

identify a group of “high-localization” countries, including Spain and Italy, wherein the

share of localized sectors is between 50% and 60% of the total; a group of “intermediate-

localization” countries, including France, Germany and (to a less extent) UK, wherein

such a fraction is between 40% and 50%; and, finally, a “low-localization” country —

Belgium— where only about one third of sectors is localized. Note, that the ranking of

countries is invariant to the type of index used. Indeed, as the Figure 1 shows, there

exists a clear monotonic non-decreasing relation between the share of sectors significantly

localized according to the E&G index and to the D&O index.

9A similar result for UK was already emphasized by Duranton and Overman (2005).
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4.2 How much are industries localized?

As discussed in Section 3, the magnitude of the E&G and D&O indices can provide some

information not only on whether a sector is localized or dispersed, but also on the intensity

of localization, and therefore of the forces underlying its emergence.10 For instance, the

E&G index is the result of the combination of forces arising from cross-firms spillovers

and geographical advantages of specific areas (see Eq. 4). Likewise, the value of the D&O

index captures the extent to which the spatial distribution of firms in the sector deviates

from the one generated under the hypothesis of random firm location choices. In light of

these remarks, this section studies in detail the cross-sector distributional properties of

the two indices in each country.

For each index, Table 3 reports the first four sample moments of within-country distri-

butions of localized industries in the countries considered. Results clearly indicate that, in

all countries, cross-sectors distributions are very right-skewed and display excess kurtosis.

This suggests that, within each country, localization forces operate very unevenly across

manufacturing sectors. In particular, all countries are characterized by the co-existence

of a vast majority of sectors displaying very low levels of localization, together with few

“outliers” where forces underlying the emergence of localization are extremely strong.

This is confirmed by kernel density estimates for E&G and D&O sectoral distributions,

cf. Figures 2 and 3.

The foregoing results are in line with previous findings in the literature (e.g. Ellison and

Glaeser, 1997; Maurel and Sédillot, 1999; Duranton and Overman, 2005), which however

make use of heterogeneous databases and statistical procedures. What is more, they

seem to be robust to the index employed. Indeed, both indices deliver distributions

of localized sectors having similar statistical properties (cf. Table 3, Figures 2 and 3).

Nonetheless, the two indices produce different cross-country rankings with respect to

average localization intensity. For instance, both indices predict that average intensity

is the lowest in Germany. However, the E&G index indicates that localization forces are

on average higher in UK, Belgium and Spain, whereas France and Italy (together with

Belgium) are the countries where localization is more intense according to the D&O Index.

To further investigate the cross-index differences in average localization intensity de-

tected above, we perform a Wilcoxon rank-sum (one-sided, non-paired) test for each pair

of countries (c1, c2).
11 The null hypothesis is that average localization intensity is the

same across the selected pair of countries —i.e., that the two distributions of localization

intensity are the same— whereas the alternative hypothesis is that the distribution of

localization intensity for country c1 is significantly shifted to the right of the distribution

10Strictu sensu, this is true for statistically-significant values of the E&G index, whereas it applies by
construction to the D&O index.

11Being non-parametric, the Wilcoxon test appears a good candidate for the analysis at stake. Stan-
dard t-tests indeed rely on the assumption of normality of the distribution which does not seem appro-
priate in our case (see Table 3).
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of country c2. Wilcoxon test statistics, together with their corresponding (exact) p-values

are reported in Table 4.

Most of the cross-index differences detected by sample moments are confirmed. Con-

sider first the E&G index (in what follows, we use a 5% threshold for convenience). Av-

erage intensity is significantly larger in UK with respect to all other countries considered.

Both Belgium and Spain present an average intensity larger than France and Germany.

Moreover, average intensity is significantly lower in Germany with respect to all countries.

Notice that for the cases Belgium vs. Italy and Belgium vs. Spain one cannot reject the

null hypothesis irrespective of the two one-sided alternatives. These results are by far

altered when one applies the D&O index to data. Indeed, the null of equal average is

not rejected for all pairs of countries except for the whole Germany’s profile and for the

Belgium-France comparison.

The evidence just described points to the presence of important cross-index differences.

Additional evidence on intensity patterns comes from the analysis of cross-country Spear-

man correlation matrices in industry rankings produced by the two indices employed,

cf. Table 5. Predictions about rank correlations differ markedly across the two indices

employed. On one hand, the E&G index assigns considerable positive correspondence

in ranks to all countries considered, with an average level of correlation equal to 0.59.

On the other hand, rank correlation values decrease sharply using the D&O index and in

many cases they are not even statistically significant. The pairs of countries displaying the

highest rank correspondence are also different. The E&G index predicts that the pairs of

countries displaying highest rank correlation are Belgium and France, France and Spain,

and UK and Germany, with values of the coefficients respectively equal to 0.73, 0.71 and

0.74. In contrast, the D&O index suggests that such pairs are Belgium and Germany, and

Italy and Spain.

By and large, the above results indicate that localization indices significantly diverge in

predicting the intensity of localization forces both within industries and across countries.

Interestingly, the same type of divergence is observed also within countries. Indeed, as

Table 6 shows, the Spearman rank correlation coefficient between the E&G index and the

D&O index —among localized sectors— are always significant (with the exception of the

UK). Nevertheless, correlation coefficients appear in general quite small. In particular,

the correlation between the two indices appears much weaker vis-à-vis their predictions

on within-country shares of localized sectors (cf. Figure 1 and Table 2).

To sum up, the foregoing findings provide some empirical support in favor of the claim

that the analysis of industry localization is sensitive to the type of index used (Arbia,

2001). More in detail, the low rank correlation observed within countries indicates the

presence of sectors that are spatially concentrated at the NUTS-3 level, but wherein firm

location choices are not spatially correlated. Interestingly, the same mismatches are found

across countries, as indicated by cross-index differences found in average intensity and in
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ranking correlations. The weak cross-country correlation found applying the D&O index

shows that the same industry can be very agglomerated in one country (i.e., location

choices may display high levels of spatial correlation) but much less in others.

4.3 Which industries are localized?

The results presented in the previous sections show that, independently of the index

used: i) localization is a pervasive phenomenon in most EU countries; ii) in each country

localization forces are very uneven across manufacturing sectors. Moreover, they indicate

that different indices make quite different predictions about the intensity of the forces

underlying the emergence of industrial localization. In this section we investigate the

composition of the group of localized industries in the countries considered.

We begin by looking at how much groups of localized industries are similar across

countries. Despite similar shares (cf. Table 2), countries could indeed be very different in

terms of the composition of the group of localized sectors (e.g., due to different industrial

structures). We therefore begin by computing the share of sectors in common between

pairs of countries, see Table 7. The fraction of localized sectors across countries is in

general large for each index, especially E&G. On average, countries share respectively

68% and 64% of the localized sectors according to E&G index and D&O index. In some

cases, ratios go up to 75%. In particular, Spain shares the major number of clustered

sectors with other countries.

But which are the most localized sectors in each country? As Tables 8 – 13 show, in

each country the most localized sectors include to a great extent “traditional” industries,

like jewelery, wine, and textiles. Moreover, the tables reveal the presence of a relevant

cross-country variability in localized industries. Nonetheless, it is possible to detect the

presence of a “core” of localized sectors that is invariant across countries. More precisely,

considering the E&G index, 13 industries appear in the list of localized sectors in all

countries considered, while this number reduces to 8 if we consider the D&O index. Among

these sectors, 4 are in common between the two indices and belong to the publishing and

printing sector group (NACE 2211, 2213, 2215 and 2222).12

In order to better interpret these results, we have performed a cross-sectoral investiga-

tion of all localized industries, employing a taxonomy that classifies industries in macro

groups composed of sectors with relatively homogeneous characteristics. More specifically,

we employ here Pavitt’s taxonomy (Pavitt, 1984), one of the first (and most widely used)

12The other industries being part of the “core” for the E&G index are: “Manufacture (Mfg) of meat”
(1513), “Mfg of prepared feeds for farm animals” (1571), “Finishing of textiles” (1730), “Mfg of other
outwear” (1822), “Mfg of metal structure” (2811), “Forging, pressing, stamping and roll forming of metal”
(2840), “General mechanical engineering” (2852), “Building and repairing of ships” (3511) and “Mfg of
chairs and seats” (3611). The other “core” sectors for D&O index are: “Mfg of perfumes and toilet
preparations” (2452), “Mfg of taps and valves” (2913), “Mfg of machinery for textile, apparel and leather
production” (2954) and “Mfg of jewelery” (3622).
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classification frameworks proposed in the industrial organization literature. Pavitt’s tax-

onomy classifies industries mostly on the basis of their technological characteristics (e.g.,

internal vs. external sources of the innovation process; product/process innovation; the

degree of appropriability of innovations, etc.), but takes also into account other industry

dimensions like type entry barriers, average size of firms in the sectors, etc. Using such

classification criteria, one is able to identify at least four macro-categories of industries:

science based, specialized suppliers, scale intensive and traditional.13 The most salient

features of each Pavitt category are summarized in Table 14.

We begin by computing the share of localized sectors in each Pavitt category, for the

countries considered and for each localization index (cf. Table 15). Note, first, that the

two indices do not exhibit great differences in the share of localized sectors across Pavitt

categories. Furthermore both E&G and D&O suggest that localized industries mainly

belong to the groups of “traditional” and scale intensive sectors. Taken together, these

two groups cover more than 70% of localized industries in all countries. Second, science

based sectors (typically characterized by intense internal and external R&D activity)

feature the smallest fraction of localized industries.

All this suggests that localization is more pervasive across “traditional” industries and

across industries where scale economies are important. As argued at more length in Bot-

tazzi et al. (2005), these two groups of sectors are characterized by two distinct localization

phenomena. On the one hand, firms in traditional sectors are often spatially organized

in horizontally diversified clusters, with the coexistence of many producers of similar but

differentiated products. On the other hand, localization patterns in scale intensive in-

dustries takes typically the form of hierarchical clusters, involving an oligopolistic core

together with subcontracting networks.

Furthermore, the results in Table 15 seem to indicate that localization phenomena

driven by knowledge complementarities (e.g., in science based industries) is a quite rare

phenomenon. This might contrast with previous results in the literature (see in particular

Audretsch and Feldman, 1996), that find a positive correlation between clustering and de-

gree of innovativeness in science-based industries. This seemingly puzzling pattern could

however reflect the numerical prevalence of traditional and scale intensive industries in the

countries under examination (see Table 16). Thus, the apparent weakness of localization

within science-based industries could simply be the sheer outcome of the historical evolu-

tion of different industrial structures (Ottaviano, 1999). To control for such a factor, we

have re-scaled the share of localized sectors in each Pavitt category by the share of sectors

in each category. The results of this exercise are reported in Table 17. Controlling for

industrial structures implies a significant increase in the share of science-based localized

industries. Indeed, according to both localization indices, the share is above one in all

13The group of “traditional” industries corresponds to the group of “supplier dominated” industries
in the original Pavitt taxonomy.
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countries (but Belgium and UK) and is almost always the largest one, as compared to

that of other Pavitt categories. This indicates that in science-based sectors there seems

to be a more pervasive localization effect than what predicted by the share of sectors in

total manufacturing.

Notice also that, unlike what happens with raw shares, cross-index differences emerge

if one considers re-scaled ratios. More precisely, according to the E&G index, localization

seems in general weaker in all Pavitt’s categories other than science based, whereas this

does not occur using the D&O index. In the latter case, scale intensive industries and

specialized suppliers do exhibit a marked “excess localization” in most countries.

Such a cross-index heterogeneity provides additional clues on the characteristics of

industry localization. On one hand, the excess localization predicted by both localization

indices in science-based sectors hints at firms that, in those sectors, tend to co-locate at

very small distances. In particular, distances look smaller than those defined by NUTS-3

level regions. On the other hand, the D&O index predicts a higher share of scale-intensive

and specialized-suppliers industries vs. the E&G index. This suggests that firms in these

sectors are more often localized at the borders of neighboring regions and/or at distances

that go beyond those defined by the NUTS-3 breakdown level.

5 Robustness Analysis

The analysis presented in the previous sections indicate that industry localization is a per-

vasive phenomenon across European countries. Localized sectors are mainly “traditional”

or scale-intensive industries or —taking into account country-heterogeneity in industrial

structures— science based industries. Albeit such results are robust to the type of local-

ization index employed, E&G and D&O make different predictions about the strength of

the forces underlying localization. In particular, both cross-country and within-country

differences emerge with respect to the ranking of localized sectors generated by each index.

As mentioned, all our results rely on a country-homogenous database where observa-

tional units are firms rather plants. At a first glance, the use of firm-level data (as opposed

to plant-based data) may induce an upward bias in the measurement of localization, as

different production units belonging to the same (large, multi-plant) firm would wrongly

show up in the data as they were located in the area of the their headquarter. Such an

upward bias is likely to be affected by the share of medium and large firm in the data,

due to the positive correlation between firm size and the number of firms’ plants typically

observed in empirical studies (cf., e.g., Coad, 2008). A more careful scrutiny of the in-

dices and their characteristics, however, suggests that the direction of the bias is rather

unclear. On the one hand, the concentration of production units in the headquarter’s

area could indeed induce an upward-biased estimation of localization. On the other hand,

moving from plants to firms implies also an increase in industrial concentration for the
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sector under study. The latter point can better grasped by noticing that the Herfindahl

index entering the E&G formula (2) involves the sum of squares of employment shares of

business units (firms or plants). Moving from plants to firms implies coeteris paribus an

increase of industry concentration, just because all double products for plants belonging

to the same firm are now counted. This may therefore counterbalance the upward bias

discussed above.

In order to check the robustness of our results to such biases, we run two differ-

ent sets of analyses. First, we study localization levels predicted by the two indices by

conditioning to firm size. The assumption is that multi-plant firms are mainly firms of

medium/large size. Thus, knowing how localization indices perform, within each indus-

try, across firms belonging to different size classes may convey useful information on the

direction of the purported firm-plant bias. Second, we perform a simulation analysis of

localization patterns on samples built by artificially disaggregating medium-large firms

in several production units, and by locating those units in space according to different

theoretical scenarios.

To perform a size-conditioned localization study, we have initially partitioned our

sample into two classes of firms (small vs. big) employing as a size threshold the median

of the industry-pooled size distribution in each country. Then, for each country and

sector, we have computed E&G and D&O indices separately for each size class, in such a

way to identify the size-conditioned shares of localized and dispersed industries. Table 18

reports the results of this exercise.14 A comparison of size-conditioned figures with those

obtained in the unconditioned analysis (cf. Table 2) seems to indicate that the effects of

the firm-plant bias are quite negligible in our sample. Indeed, splitting the sample into

small and big firms causes, on the one hand, a modest reduction in the share of localized

industries in both size classes, and in all countries considered. Such a decrease is actually

weaker in the small-size class, which under our assumption, should mainly reflect location

choices made by single-plant firms. On the other hand, the decrease in the fraction of

localized industries in countries having the largest median employment in our sample (e.g.,

UK) is comparable to those in countries having smaller median firm sizes (e.g., Spain and

France).

To further verify that the firm-plant bias is not that relevant in our sample, we also

performed a simulation analysis of localization patterns by artificially disaggregating the

empirically-observed firms of our sample (in each industry and country) into fixed-size

plants and reallocating such plants in the geographical space. To do so, we first assumed

that the expected number of plant for a given firm increases with its size. Following

Lafourcade and Mion (2007), we assumed that, in all industries and countries, the plant

size is d = 20 employees. This means that the number of plants p of each firm of size s is

14Notice that such results are, to a large extent, robust to different criteria for choosing the size
threshold (e.g., exogenously determined using the threshold employed by Lafourcade and Mion, 2007).
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simply equal to p = s/20 (rounded to the closest integer). Second, we set up alternative

theoretical hypotheses about the way these artificially-generated plants can be spatially

reallocated in the space. More specifically, plants in a given country and industry can be

assigned to existing locations according to one of the following scenarios:

• Uniform distribution: Distribute plants randomly among all existing locations with

probability 1/L;

• Small-firm based distribution: Distribute plants randomly among all existing loca-

tions so that the probability pl that a plant is in a location l is i.i.d. and equal

to pl = sil∑
l
sil

. i.e. the ratio between the number of employees of small firms in

industry i in location l (sil) and the number of employees of small firms in industry

i (
∑

l sil). In this way, we try to reproduce the geographical distribution of small

firms that, under our assumption, is in our sample the best proxy to the actual (but

to us unobservable) spatial distribution of plants.

Under either scenarios, we performed several independent replications (R=1000) of the

above procedure, where in each replication we have disaggregated and reallocated all firms

in the database. We thus computed the share of sectors that in each country turned to

be localized in all R simulations. Given the tremendous computational requirements that

the D&O index places on this kind of simulation analysis (especially in countries with

a huge number of firm observations), we present results for the E&G index only (see

Table 19).15 Our simulation analysis seems indeed to confirm, by and large, the findings

obtained using a size-conditioned analysis. Indeed, in both allocation scenarios, the share

of sectors that are localized in all simulation runs according to the 2-sigma rule is quite

high in almost all countries (except for Belgium and UK), and larger than the fraction

of localized sectors computed on actual data (cf. Table 2). All that hints to a downward

(rather than upward) sample bias associated to considering firms instead of plants as

observational units.

6 Conclusions

In this paper, we have empirically investigated industry-localization patterns in EU coun-

tries. Unlike the majority of existing works in this field, we have employed a firm-based

dataset that is homogeneous across countries, and computed two different localization

indices —i.e., the Ellison and Glaeser index (see Ellison and Glaeser, 1997) and the Du-

ranton and Overman index (see Duranton and Overman, 2005). This has allowed us to

make statistically-sound comparisons both across countries and across localization indices,

at aggregate and sector-disaggregated levels. In line with previous studies, we have found

15Preliminary results on the D&O index, however, do not seem to contradict E&G simulation findings.
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that, independently from the index used, localization is a pervasive phenomenon in all

countries studied. However, countries significantly differ in the share of localized sectors.

In addition, in all countries the values of localization indices display a relevant sectoral

variability. Furthermore, a cross-sectoral analysis of localized industries has shown that,

in all countries and for both indices, “traditional” and scale intensive sectors are those

displaying the highest tendency to localize. These results partly reflect the composition

of country industrial structures: once one controls for such a factor, science-based sectors

turn out to be the most localized. Finally, we have detected significant cross-index dif-

ferences with respect to predictions on the intensity of the forces underlying localization.

This may reflect some heterogeneity in the way geographical firm clustering looks like in

space. Some clusters might indeed map “true agglomeration”, i.e. strong spatial corre-

lation among firms’ location choices, while other clusters might only reflect the “spatial

concentration” of firms in some ex-ante, exogenously determined, areas.

The present work could be extended in several ways. First, one could perform a more

detailed investigation of the influence of firm size in affecting firm location choice. In

addition, one could bridge this attempt to a full-fledged analysis of the links between

industry dynamics (e.g., firm entry, exit, and growth) and the generation and evolution

of localization phenomena, cf. Ottaviano (1999), Holmes and Stevens (2002b), Klepper

(2002) and Lafourcade and Mion (2007) for important contributions in this direction.

Second, our results suggest that groups of sectors differ in their tendency to localize.

However, the indices employed in this work do not allow one to distinguish sector-specific

drivers from drivers that are independent on technological factors and are specific to

geographical areas (e.g., natural advantages). One could therefore employ a different

index (e.g., the one proposed in Bottazzi et al., 2007) that explicitly disentangle sector-

specific factors from location-sectoral ones, and then rigorously study the influence of

sectoral characteristics in firm location choices.

Third, in the foregoing exercises we have disregarded, on a first approximation, the

characteristics of the areas where firms tend to localize. In fact, one could use our firm-

based dataset, to study in more detail the tendency of EU firms to locate in very urbanized

areas, e.g. due to the presence of services (e.g. financial, consulting, auditing) supporting

firm activity (see Henderson and Ono, 2007; Davis and Henderson, 2008; Strauss-Kahn

and Vives, 2009).

Finally, one could develop more rigorous testing procedures for the Ellison and Glaeser

index, in order to overcome the limits of the 2-sigma rule, which is implicitly based on a

non-tested assumption of normality of E&G statistic distribution. For instance, following

a procedure in line with Duranton and Overman (2005), one could generate artificial

samples based on a model of random location of firms, and then compute a theoretical

distribution of the Ellison and Glaeser index. This way, statistical-significance tests for

empirical values of the index would not depend either on the characteristics of the country
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studied or on the characteristics of the data source used.
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Country No. of Last Year No. of Avg. No. of No. of Avg. Firm
Firms Available NACE Sectors1 Employees2 Firms 3 Size2

Belgium 13032 2005 160 (227) 1603 65 20
France 50396 2005 201 (237) 4051 227 16
Germany 62588 2006 231 (239) 7445 264 27
Italy 26940 2005 206 (234) 5472 120 42
Spain 67809 2004 282 (309) 3711 228 15
UK 6056 2005 115 (204) 7675 157 33

Table 1: Descriptive statistics. Notes: 1 Number of NACE sectors with at least 10 active firms. Total
number of sectors in each country in brackets. 2 In NACE sectors. Size: firm employees. 3 Average
number of firms per sector.

E&G index D&O index
Country LOC1 LOC2 DISP LOC DISP

Belgium 0.7000 0.3187 0.3000 0.3312 0.1000
France 0.7910 0.5274 0.2090 0.5025 0.1741
Germany 0.7749 0.4675 0.2251 0.4935 0.1039
Italy 0.8107 0.5922 0.1893 0.4757 0.1990
Spain 0.8191 0.6028 0.1809 0.5355 0.1560
UK 0.7043 0.4000 0.2957 0.4435 0.1913

Table 2: Share of sectors localized (LOC) and dispersed (DISP) in each country. Notes: 1 Share of sectors
with strictly positive E&G index. 2 Share of sectors significantly localized according to the 2-sigma rule.
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Figure 1: Share of localized sectors according to the E&G index (x -axis) vs. share of localized sectors
according to the D&O index (y-axis).

E&G Index Mean Std Dev Skewness Kurtosis
Belgium 0.0853 0.0964 1.8069 5.8337
France 0.0536 0.0938 4.3353 25.7457
Germany 0.0269 0.0374 3.0638 16.1371
Italy 0.0708 0.1000 3.8002 22.7231
Spain 0.0862 0.1030 3.4528 20.5689
UK 0.1012 0.0964 1.7770 5.2609

D&O Index Mean Std Dev Skewness Kurtosis
Belgium 0.0367 0.0849 3.5573 16.3644
France 0.0140 0.0265 3.4644 17.8371
Germany 0.0065 0.0173 6.3512 52.3214
Italy 0.0150 0.0283 3.9659 22.2184
Spain 0.0114 0.0173 2.7720 11.6615
UK 0.0133 0.0200 2.8677 12.8419

Table 3: Moments of empirical distributions of localized industries.
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E&G Belgium France Germany Italy Spain UK
W P-value W P-value W P-value W P-value W P-value W P-value

Belgium – – 3614 0.0003 4231 0.0000 3409 0.1606 4063 0.7515 929 0.9610
France 1792 0.9997 – – 7111 0.0011 4881.5 0.9993 5520 1.0000 1212 1.0000

Germany 1277 1.0000 4337 0.9989 – – 3461 1.0000 3663 1.0000 680 1.0000
Italy 2813 0.8394 8050.5 0.0007 9715 0.0000 – – 8634 0.9926 1848 0.9997

Spain 4607 0.2485 12500 0.0000 14697 0.0000 12106 0.0074 – – 3240 0.9626
UK 1417 0.0390 3664 0.0000 4288 0.0000 3764 0.0003 4580 0.0374 – –

D&O Belgium France Germany Italy Spain UK
W P-value W P-value W P-value W P-value W P-value W P-value

Belgium – – 3195 0.0243 4224.5 0.0000 2874.5 0.1397 4364 0.1634 1497 0.1720
France 2158 0.9757 – – 6924 0.0052 4459.5 0.8859 6781 0.9318 2349 0.8116

Germany 1817.5 1.0000 4590 0.9948 – – 3785.5 1.0000 5509 1.0000 2008 0.9992
Italy 2319.5 0.8603 5438.5 0.1141 7386.5 0.0000 – – 7277.5 0.5866 2505.5 0.4896

Spain 3639 0.8366 8470 0.0682 11705 0.0000 7520.5 0.4134 – – 3876.5 0.4713
UK 1206 0.8280 2802 0.1884 3806 0.0008 2492.5 0.5104 3824.5 0.5287 – –

Table 4: One sided Wilcoxon rank sum test statistics (W ) and exact p-values in brackets. Null hypothesis: Row and column distributions are the same. Alternative
hypothesis: Row distribution shifted to the right of column distribution. Note: Due to the properties of the test statistics W , the sum of p-values of two entries
symmetric to the main diagonal is one.
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Figure 2: Kernel density estimates of the distribution of E&G index. Localized vs. dispersed sectors. Notes: Log scale on the x-axis. A sector is localized (resp.,
dispersed) if the value of the E&G index is greater (resp., smaller) than zero.
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Figure 3: Kernel density estimates of the distribution of D&O index. Localized vs. dispersed sectors. Note: Log scale on the x-axis.
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G&E France Germany Italy Spain UK
Belgium 0.7347 0.5620 0.5269 0.6660 0.6772

(0.0000) (0.0008) (0.0007) (0.0000) (0.0014)
France 0.6639 0.5771 0.7085 0.6056

(0.0000) (0.0000) (0.0000) (0.0008)
Germany 0.5939 0.4754 0.6618

(0.0000) (0.0000) (0.0002)
Italy 0.5985 0.2054

(0.0000) (0.2851)
Spain 0.5844

(0.0001)

D&O France Germany Italy Spain UK
Belgium 0.3713 0.5190 0.3262 0.4352 0.3735

(0.0364) (0.0010) (0.0733) (0.0040) (0.1541)
France 0.2703 0.4193 0.2536 0.2966

(0.0282) (0.0006) (0.0215) (0.1115)
Germany -0.0021 0.1847 0.4149

(0.9870) (0.0988) (0.0226)
Italy 0.5081 0.4646

(0.0000) (0.0168)
Spain 0.1810

(0.2909)

Table 5: Cross-country Spearman rank correlation matrices for localized sectors: E&G vs. D&O indices.
Note: Localized sectors in E&G results are computed according to the 2-sigma rule. P-values in brackets.

Localized sectors∗

Country Correlation P-value
Belgium 0.5561 (0.0021)
France 0.5118 (0.0000)
Germany 0.3204 (0.0051)
Italy 0.5725 (0.0000)
Spain 0.4735 (0.0000)
UK 0.1560 (0.4280)

Table 6: Spearman rank correlation between E&G index and D&O index in localized sectors. Note:
Localized sectors in E&G results are computed according to the 2-sigma rule. P-values in brackets.
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G&E France Germany Italy Spain UK
Belgium 0.6863 0.6275 0.7451 0.8235 0.4130
France 0.6226 0.6887 0.7547 0.5870
Germany 0.6019 0.7778 0.5870
Italy 0.7869 0.6304
Spain 0.8696

D&O France Germany Italy Spain UK
Belgium 0.6038 0.6981 0.5849 0.7925 0.3137
France 0.6535 0.6429 0.8119 0.5882
Germany 0.6633 0.7168 0.5882
Italy 0.7959 0.5098
Spain 0.7059

Table 7: Share of localized sectors in common between pairs of countries. E&G index vs. D&O index.
Note: Localized sectors in E&G results are computed according to the 2-sigma rule. Shares are computed
dividing the number of localized industries in common between each pair of countries by the minimum
of the number of localized sectors between the two countries.

E&G Index D&O Index
NACE Sector Name NACE Sector Name

1724 Silk-type weaving 1724 Silk-type weaving
3622 Mfg of jewelery 1714 Prep. and spinning of flax-type fibres
2626 Mfg of refractory ceramic products 1721 Cotton-type weaving
2954 Mfg of machinery for textile 1751 Mfg of carpets and rugs
1772 Mfg of knitted & crocheted pullovers 1725 Other textile weaving
3511 Building and repairing of ships 3622 Mfg of jewelery
1751 Mfg of carpets and rugs 2954 Mfg of machinery for textile
2913 Mfg of taps and valves 1772 Mfg of knitted & crocheted pullovers
2462 Mfg of glues and gelatines 2213 Publishing of journals and periodicals
1725 Other textile weaving 2211 Publishing of books

Table 8: Ten most localized NACE 4-digit manufacturing sectors, Belgium.

E&G Index D&O Index
NACE Sector Name NACE Sector Name

2861 Mfg of cutlery 1715 Throwing and preparation of silk
3350 Mfg of watches and clocks 1724 Silk-type weaving
2211 Publishing of books 2861 Mfg of cutlery
2214 Publishing of sound recordings 2411 Mfg of industrial gases
1715 Throwing and preparation of silk 2214 Publishing of sound recordings
2320 Mfg of petroleum products 1725 Other textile weaving
2213 Publishing of journals and periodicals 2211 Publishing of books
2461 Mfg of explosives 1713 Prep. and spinning of fibres
1593 Mfg of wines 2213 Publishing of journals and periodicals
3661 Mfg of imitation jewelery 2231 Reproduction of sound recording

Table 9: Ten most localized NACE 4-digit manufacturing sectors, France.
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E&G Index D&O Index
NACE Sector Name NACE Sector Name

2861 Mfg of cutlery 2861 Mfg of cutlery
3613 Mfg of other kitchen furniture 2732 Cold rolling of narrow strips
2732 Cold rolling of narrow strips 1593 Mfg of wines
3622 Mfg of jewelery 2214 Publishing of sound recordings
2411 Mfg of industrial gases 2840 Forging, pressing, stamping and roll

forming of metal
1543 Manufacture of margarine & fats 3622 Mfg of jewelery
1717 Prep. and spinning of other textile fibres 3350 Mfg of watches and clocks
3661 Mfg of imitation jewelery 2215 Other publishing
2511 Mfg of rubber tyres and tubes 2225 Ancillary activities related to printing
2741 Precious metals production 1772 Mfg of knitted & crocheted pullovers

Table 10: Ten most localized NACE 4-digit manufacturing sectors, Germany.

E&G Index D&O Index
NACE Sector Name NACE Sector Name

1722 Woollen-type weaving 1722 Woollen-type weaving
1724 Silk-type weaving 1724 Silk-type weaving
2213 Publishing of journals and periodicals 1713 Prep. and spinning of fibres
2622 Mfg of ceramic sanitary fixtures 2731 Cold drawing
2630 Mfg of ceramic tiles and flags 2955 Mfg of machinery for paper
3541 Mfg of motorcycles 1725 Other textile weaving
1910 Tanning and dressing of leather 2913 Mfg of taps and valves
2411 Mfg of industrial gases 1910 Tanning and dressing of leather
3661 Mfg of imitation jewelery 1721 Cotton-type weaving
1771 Mfg of hosiery 1771 Mfg of hosiery

Table 11: Ten most localized NACE 4-digit manufacturing sectors, Italy.
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E&G Index D&O Index
NACE Sector Name NACE Sector Name

2630 Mfg of ceramic tiles and flags 1760 Mfg of knitted and crocheted fabrics
1594 Mfg of cider and other fruit wines 1715 Throwing and preparation of silk
2624 Mfg of other technical ceramic 2954 Mfg of machinery for textile

products
1930 Mfg of footwear 1713 Prep. and spinning of worsted-type fibres
3630 Mfg of musical instruments 1723 Worsted-type weaving
1713 Prep. and spinning of worsted-type 1717 Prep. and spinning of other textile

fibres fibres
1723 Worsted-type weaving 1721 Cotton-type weaving
1717 Prep. and spinning of other textile 1712 Prep. and spinning of woollen-type

fibres fibres
2052 Mfg of articles of cork 1722 Woollen-type weaving
3650 Mfg of games and toys 1711 Prep. and spinning of cotton-type fibres

Table 12: Ten most localized NACE 4-digit manufacturing sectors, Spain.

E&G Index D&O Index
NACE Sector Name NACE Sector Name

3511 Building and repairing of ships 2221 Printing of newspapers
2625 Mfg of other ceramic products 2213 Publishing of journals and periodicals
2954 Manufacture of machinery for textile etc 2211 Publishing of books
3650 Mfg of games and toys 2840 Forging, pressing, stamping of metal
1712 Prep. and spinning of woollen-type fibres 3622 Mfg of jewelery
2221 Printing of newspapers 2415 Mfg of fertilizers and nitrogen

beverages compounds
1591 Mfg of distilled potable alcoholic 2320 Mfg of refined petroleum products
1582 Mfg of rusks and biscuits 2513 Mfg of other rubber products
2751 Casting of iron 2215 Other publishing

compounds
2415 Mfg of fertilizers and nitrogen 2625 Mfg of other ceramic products

Table 13: Ten most localized NACE 4-digit manufacturing sectors, UK.
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Category Typical Average Type of Main External Main Internal Appropriability Entry
Sectors Firm Size Innovation Source of Innovation Source of Innovation Conditions Barriers

Traditional Traditional Mfg Small/Medium Process Embodied Innovation Learning-by-doing Low Low
(leather, jewelery)

Bulk materials
(steel, glass)

Scale Intensive Assembly Medium/Large Product/Process Supply Relationships R&D Medium Medium
(durables,

automobiles)

Machinery
Specialized (machinery/equipment)
Suppliers Instruments Small Product Customer Learning-by-doing High Medium

(medical, precision, Relationships
optical instruments)

Electronics/Electrical
Science Based Pharmaceutical Small/Large Product/Process Universities R&D High Very High

Chemicals and R&D centers

Table 14: Pavitt taxonomy of manufacturing industries. Note: Adapted from Pavitt (1984).
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Science Specialized Scale
E&G Index Based Suppliers Intensive Traditional
Belgium 0.0196 0.1176 0.3529 0.5098
France 0.0943 0.1038 0.3962 0.4057
Germany 0.0741 0.1019 0.3889 0.4352
Italy 0.0738 0.1639 0.3525 0.4098
Spain 0.0706 0.1235 0.3059 0.5000
UK 0.0652 0.0870 0.4348 0.4130

Science Specialized Scale
D&O Index Based Suppliers Intensive Traditional
Belgium 0.0566 0.1132 0.3019 0.5283
France 0.0990 0.1584 0.3960 0.3465
Germany 0.0708 0.1150 0.4336 0.3805
Italy 0.0918 0.1531 0.4592 0.2959
Spain 0.0728 0.1788 0.3576 0.3907
UK 0.0392 0.1373 0.4706 0.3529

Table 15: Share of localized sectors in each Pavitt category.

Science Specialized Scale
Country Based Suppliers Intensive Traditional
Belgium 0.0688 0.1313 0.3750 0.4250
France 0.0597 0.1443 0.3532 0.4428
Germany 0.0563 0.1255 0.3723 0.4459
Italy 0.0631 0.1311 0.3689 0.4369
Spain 0.0532 0.1241 0.3652 0.4574
UK 0.0957 0.1565 0.3652 0.3826

Table 16: Share of manufacturing sectors in each Pavitt category.
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Science Specialized Scale
E&G Index Based Suppliers Intensive Traditional
Belgium 0.2852 0.8964 0.9412 1.1995
France 1.5802 0.7193 1.1217 0.9162
Germany 1.3162 0.8113 1.0446 0.9760
Italy 1.1690 1.2508 0.9553 0.9381
Spain 1.3271 0.9953 0.8375 1.0930
UK 0.6818 0.5556 1.1905 1.0795

Science Specialized Scale
D&O Index Based Suppliers Intensive Traditional
Belgium 1.2041 1.2615 1.1774 1.8180
France 1.9967 1.3220 1.3499 0.9423
Germany 1.3179 0.9600 1.2202 0.8941
Italy 1.6813 1.3492 1.4380 0.7825
Spain 1.5055 1.5837 1.0763 0.9390
UK 0.8235 1.7614 2.5882 1.8529

Table 17: Share of localized sectors in each Pavitt category divided by the share of sectors in each Pavitt
category.
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Small Firms E&G index D&O index
Country LOC1 LOC2 DISP LOC DISP

Belgium 0.4623 0.2736 0.5377 0.2547 0.0755
France 0.6813 0.4500 0.3187 0.4000 0.1812
Germany 0.5482 0.2944 0.4518 0.3959 0.1015
Italy 0.7500 0.4940 0.2500 0.3631 0.1726
Spain 0.7860 0.5802 0.2140 0.4733 0.1523
UK 0.5294 0.3088 0.4706 0.3235 0.0735

Large Firms E&G index D&O index
Country LOC1 LOC2 DISP LOC DISP

Belgium 0.6829 0.2846 0.3171 0.3008 0.0813
France 0.7784 0.5455 0.2216 0.3920 0.1932
Germany 0.7033 0.4306 0.2967 0.4067 0.0718
Italy 0.8092 0.5838 0.1908 0.4971 0.1272
Spain 0.8496 0.6301 0.1504 0.5813 0.1423
UK 0.7703 0.4459 0.2297 0.2973 0.0541

Table 18: Small vs. large firms. Share of sectors localized and dispersed in each country. Small firms:
firms with below-median employment. Large firms: firms with above-median employment. Median
computed on the industry-pooled within-country employee distribution. Notes: 1 Share of sectors with
strictly positive E&G index. 2 Share of sectors significantly localized according to the 2-sigma rule.

Simulation Scenario
Uniform Small-firm based

Country Distribution distribution
Belgium 0.5726 0.5214
France 0.8058 0.7934
Germany 0.9545 0.9421
Italy 0.8445 0.8319
Spain 0.7903 0.6677
UK 0.4935 0.4935

Table 19: Simulation analysis of localization with artificially generated plants (E&G index). Share of
sectors that are localized in all R = 1000 independent runs. Localized sectors identified using a 2-sigma
rule.

37


